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The Dicke model of superradiance studied in a previous paper by Wang and Hioe is generalized

(i) to include an interaction energy of the form a cr+ +a cr, where a,a and cr,cr+ are the usual

photon and spin operators, {ii}to include the spatial variation of the electromagnetic field, and (iii} to

include the possibility of small classical motions of atoms from their equi1ibrium positions. The free

energies of these generalized models are calculated exactly in the thermodynamic»rriit, and their

phase-transition properties are presented.

I. INTRODUCTION

In a previous paper, Wang and Hioe' (hereafter
caged paper I} studied and solved the Dicke model

of superradiance with a new method which is
quite different from the approach of Hepp and

Lieb. ' The Dicke model' is a simplified model

of a system of N two-level atoms interacting
vrith a quantized field. The atoms are considered
to be at fixed positions vnthin a linear cavity
of volume 7' and the separations bebveen the atoms
are assumed to be large enough so that the direct
interaction among them can be ignored. The
reader is referred to Paper I for a more detailed
description of the Dicke model. In this paper,
me shall apply the method used in Paper I to
solve a more general type of Dicke model. Spe-
cifically, we shall consider the following simple
generalizations of the model: (i) The Hamiltonian
includes an interaction between the photon field
and the spine of the form a~g'+ag, where c, u~

and g, g' are the usual photon and spin operators;
(ii) the spatial variation of the electromagnetic
field, which is assumed to be of a simple sinusoi-
dal form, is taken into consideration; and (iii) the

atoms are assumed to make small classical
motions about their equilibrium positions. These
models, which we shall call models A, 8, and C,
respectively, for easy reference, mill be con-
sidered separately in order to illustrate clearly
the effects of the variations of the Hamiltonian
on the thermodynamic properties of the system.
The exact solutions of these models in the thermo-
dynamic limit that N, V- ~, N/V is finite, and

their phase-transition properties are presented
in Secs. II-IV. A brief conclusion is given in
Sec. V.

It should be pointed out that our calculations
are based on the same two assumptions used
in Paper I, namely, (i) the limits as N ~ of
the fieM operators s/4N and at/vN are assumed

to exist, and (ii) the order of the double limit in
the exponential series

Iim Iimg (-'H'"
N~ ~rW

where P denotes, as usual, I/kT and H„denotes
the Hamiltonian, is assumed to be interchangeable.
%e hope to provide a rigorous justification of
these assumptions in a future publication.

II. MODEL A

%e recall that the Hamiltonian of the Dicke
model is given by [5=I, see Eg. (6) of Paper I]

}}=su+Q EU}+ ~ (att}+s tip}),
g=l

where g~ and g are the photon creation and an-
nihilation operators; g,' and g~ are the spin
operators for the jth atom defined by g& =g& +ig&,

g&
= g& -ig&, g' and g' being the g and y components

of the Pauli-spin matrices; A, measures the cou-
pling of the interaction terms gg,'+gtg~ and

a = a&/v, Ru being the energy difference between
the two levels of the atom and y being the frequency
of the electromagnetic wave; and N is the total
number of atoms.

%e noir consider the following Hamiltonian,
which has the additional interaction terms
ato&+ac, (the so-called antiresonant terms),
namelyy

N

H =0 0++ g6og+ ~ (cog+s Qg)
j= i

where the coupling constants A. and A,
' are assumed

to be real and positive. We shall call the model
with the above Hamiltonian model A.

Using the method described in Paper I, it
follows that the expectation value of e 8~ with
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respect to the set of Glauber's coherent states' z's is given, as N- ~, by

N

(ale '"la&=~mI &&
&

-I'+Z le&+ J—&(+R +~'~&~j+&~~+~' &~&]

and that the partition function Z(N, T} of the system, in the limit N ~-, is given by

I d2a
Z(N, T)= & e e~~~ 2cosh —1+, [(A.'+A. ")~n~'+AX'(a*'+a')]

J 1T 2»2N y (4)

where Jd'o, means JJ d(Reu) d(Imu). By letting a=x+iy and n~=x —fy,

Z(N, T) =
& e 8' ~ 2 cosh —1+, [(a+A.')'x'+(P. —A. ')'y']fdh dy pg 4

&E

(5)

Let us first assume A. &A.'. Let A. +A. '=a, A. -A. '

=b, ax=a cosg, (6)

and

by =rsing;

then

Let r'/N =y, then

2

2abw ~p a
~0 -p 4x I dy exp N ln2 cosh —1+—

2 y
p 2»

a2x2+b' y' = (8) Consider the integral
(12}

and

x'+ y' = r'(cos'8/a'+ sin'8/b'),

~X ~X

dxd ='("'y d de=' '
d de

8(r, e} sy sy
Br 88

(9)

(10)

0p

cos'8 sin' e
a2 b2

= 4 exp NPy-, +, de. (13}
cos'g sin' 8

4 p
a' b'

This integral can be readily evaluated using the
Laplace method. ' Let

cos g y sing
a a

dr dg= —dr dg.r
sing y cos 8 ab

b b

Therefore, substituting the transformed variables
r and 8 into Eq. (4), we obtain

1 ",cos'g sin'8
Z(N, T) = exp pr', -+ b, de

nab a

-p» 4 1/2- N

x rdr 2cosh —1+ ~ r . (11)
4 p 2»'N

&)(8) = Py(cos'8/a'+ sin'8/b'),

dy(e) 1 1
d8

= Py(+2 sinecos8) ——+-
a2 b2

d'&J&(8) 1 1
d82 b2 a

= 2Py ———(cos'8 —sin'8) .

Thus, sing =0 corresponds to the maximum of
&J(e), and

&) (8) = Py/a'.

Therefore, as N- ~,

(14)

(15)

(16}

2CN ]" Py p» 4 1/2

Z(N, T) = expN ——,+ ln2 cosh —1+—,y dy
sabvN s, a' 2

2aCN P» 4a2 }I/ 2e~ -py+ln2cosh
2

1+ ~ y dy
7T Jp 2

(18}

where C is some constant. Applying the Laplace
method for the evaluation of the integral (18) and

proceeding as for the case A.
' =0 discussed in

Paper I, the equation which determines the critical
temperature of the system becomes

(e/a'}&) = tanh(-', P~g),

where

&l
= [1+(4a'/e')y]~'.

(19)

(20}
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Thus, the phase-transition property of the systems
is precisely the same as for the case X' =0 con-
sidered in Paper I with, however, X replaced

by a =A+A. ' [see Eg. (29) of Paper I].
In the case X'=A. , the partition function Z(N, T}

becomes

40 i «)
Pg 4A2 1/2 I N

Z(N, T)= —
I dye e" e e* 2cosh —1+, x' dx,

2 &N (21)

where A =2k, .
In this case, instead of letting x'/N =u, let us put x'/N =s'. Then

p oo -p 4A2 +2-
Z(N, T)=CvN ~ d'uexpIN -pF+In2cosh —1+, u'

2
(22)

The integral can be evaluated by the I aplace
method as before. Thus, letting

pE 4A'
p(u) = -Pu'+In2 cosh —1+, u', (23)„2

If=a a++ 2c,'+2 (ao, +a o, )
f=1

(29)

dg( ) 2''u 4A',
)

Pe 4A'
x tanh —1 + u'

2 E
(24)

e/a' = tanh(-,'P,~), P, = I/kT, , (25)

at which the system undergoes a phase transition.
At p&p„ the free energy per atom f(T) of the
system is given by

-g(T) = ln[2cosh( —,'Pe}]. (26)

At P&P„however, f(T) is given by

y(u) is determined by putting Q'(u) =0 as before.
It is easy to show that the free-energy and the
phase-transition property of the system are the
same as in the previous case with A =2k. in the
place of a = A. + A.'.

Summarizing the thermodynamic properties of
model A: (i) if a'&e, no phase transition occurs
in the system at any temperature, and the free
energy per atom f(T) is given by Pf(T)-
= In[2cosh(-', pe)]; (ii) if s'&e, there is a critical
temperature T, given by

is precisely the same as that for the system with
the Hamiltonian given by Eg. (2).

It is clear that in general, systems with the
following Hamiltonian can be solved in a similar
way by the same method:

00
Q 8H=Q 8+/ g~+g~f {Agq~ . ~ij=l

(30)

where f((XJ, a/vÃ, at/WN) and g ((A,g, s/vÃ, at/WN)

are some arbitrary functions of (A.g, a/WN and
at/WN ((A,g represents a set of coupling parameters
a„A.2i. . .).

m. MODEL B

As pointed out in Paper I, the assumption that,
all atoms see exactly the sa,me field even in the
thermodynamic limit is somewhat unrealistic.
To relax this restriction, we shall take into
consideration the spatial variation of the electro-
magnetic wave. %e shaH consider only the sim-
plest case in which the spatial variation is of a
simple sinusoidal form.

Let us consider the Hamiltonian of the system
to be given by

-pf(T) = in[2 cosh(pa'o)] —pg'o'+ pe'/4s', (27)

2o = tanh(Pa o) & 0 ~

It will be noted from Eq. (5) that the partition
function Z(N, T) is symmetric with respect to
A. +A.' and X -A, '. Thus, the thermodynamics of the
system with the Hamiltonian given by

where L, is the length of the cavity containing the
atoms and

k=nx/I. , a =0, 1,2, . . . . (32)

N

ii=d +g !;~ (i)2') si j)(; Niv, }— +
2-1

(31)
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For the case n =0, the problem becomes trivial.
In the follovring discussion, it is assumed that
n is not to be equal to zero. We shall call the
model vrith the above Hamiltonian model B.

Follovring the method used in Paper I, it is easy
to show that the partition function Z(W, T) of
the system, as N- ~, is given by

"d'o, Pe 4A,
'

mn
Z(N, T)= e 8~"( g2cosh —1+ ~a~ sin' —jEN N

Replacing J d'o. /w by 2fo r dr and letting y =r'/N as before, we obtain

p~
Z(N, T) =N: dy expN -py+- gln2 cosh —1+, ysin' —j

~n 2 e N

N Pe 4A.~ . ,nm . ~'
p(y) = -py+ —p ln2 cosh —1+, y sin' —jN~, 2 a' N

(35)

1 Pe 4X'
p(y) = —py+ — ln 2 cosh —1+, ysin'se dg

m 2 f

2n "'/'" p& 4A, '=-Py+ — ln 2cosh —1+, ysin'ng dg
7T 2 f

~«/a pe 4)p i/2 2 i ii/2 pePi+ — in-leash —i+, isirP~ d~=-Pi+ — in 2~ash —&(i, ~))dtd,
Q 0 2

q(y, cu) = [1+(4)P/e')y sin'ca&]'/',

«/2 -
p~

exp -Py+ — ln 2cosh—
0 2

j/2-

g 1+ 2 ysln ~du

(38)

Putting dP/dy =0, the equation which determines
the phase txansition pxoperty of the system is
given by

&n "/' sin'cu P~
2x' a, q(y, &u) 2

tanh —'/}(g, (d} d(d, 1 ~& q & iii .

is a monotonically decreasing function of
y(0 ~ y & ~) in this case. For (ii), A.

' & 2e and
P&P„where P, is given by

2c/)P = tanh-', P,c,

the integral equation (39) again has no solution
and the free energy per atom of the system is
given as in the previous case by

(41)

(89)

Denoting the integral on the right-hand side of
Eq. (39) byf(g), it is seen that f(q) & j,"/'sin'&ed~
= —,'~ for 1 ~ q & ~, since the function tanh g & 1
for x &~. It is also easy to see that f(q) is a
decreasing function of q as q increases from
1 to ~(f(~) =0}. Thus, for (i), A.'&2e, the integral
equation (39}has no solution and the free energy
f(T}per atom of the system is given by

-Pf(T) = ln(2 cosh —,'Pe)

for it is easy to shower that the function

-Pf(T) = ln(2 cosh —,'Pe) .

For (iii) x'&2~ and p& p„ the integral equation
(89) has one (and only one) solution y, (&0) which
satisfies

«/2 sin'
2)P, [1+(4X'/~')y, sin'(u]'/'

Pa 4A.~
xtanh —1+, y, sin'&u dip (43)

and the free energy Per atom f(T) of the system
is given by
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%12 p~-Pf(T) =-Py + — ln 2cosh-
n J, 2

4~'
)( 1+, ypsin'co

(44}

Summarizing the thermodynamic properties of
model B: (i) If X'&2e, no phase transition occurs
in the system at any temperature, the free energy
per atom is given Eq. (40). (ii) If X' &2&, there
is a critical temperature T, given by Eq. (41)
(p, = 1/kT, ). At p& p„ the free energy per atom
of the system is given by Eg. (42). At P &P„
however, the free energy per atom of the system
is given by Eq. (44), where y, is given by Eq.
(43). It will be noted that these solutions are
independent of the value of n(46).

The above results can be immediately extended
to the case in which the electromagnetic wave
assumes a more general form g(szj /N), say,
provided that g(8) has the main characteristic of
sin6) required in the above formulation, namely,
it is a function of period 2m and is a monotonically
increasing function of 0 from 0 to 2m, etc.

IV. MODEL C

Suppose that the atoms are not held rigidly in
their positions but are held to their equilibrium

positions by a force which is proportional to any
displacements from these positions. Suppose also
that the small motions of the atoms can be treated
classically such that the momentum and the dis-
placement variables are assumed to commute.
If the direct interactions among the atoms are
ignored as in the previous cases, the effect of
the atoms taking up positions in the neighborhood
of their equilibrium positions is still significant
if the spatial variation of the electromagnetic
fieM is taken into consideration.

Consider the Hamiltonian of the system to be
given by

H = ata + Q((-', e}of+ (X/2vN)

x [sink(z, . + x&)(ao,'. +a~o&)] +yx&'},

(45)

where z~ denotes the distance of the jth atom from
the first atom, g~ denotes the displacement of
the jth atom from its equilibrium position, and

y represents the strength of the force which
keeps the atoms to their equilibrium positions.
We shall call the model with the above Hamiltonian
model C. Following the calculations in Sec. III
for model B, it is easily seen that the partition
function Z(N, T}for model C, in the limit N- ~,
is given by

fd'n 2" 1 pe 4A.', nnj
Z(N, T)=

~

e 8~& g — dx e 8+i2cosh —1+ ~u~'sin' +kx
~, I. 2 e'N N (45)

and the equation which determines the phase transition property of the system is given by

ze ' "~' fdx{e z&'sin'(ur+kx)sinh[ 2Peq(x, y, u&)]/q(x, y, &u}]

2A, fdxe Sv 'cosh-[ ', Peg(x, y—, e)]
(4V}

where

g(x, y, v}= [1+(4)P/e')y sin'(++kx)]~'. (48)

1(P, y) & max R(P), (49)

Let us denote the integral on the right-hand side
of Eq. (47) by I(P, y). Since coshx &sinhx for all
x, hence coshx & (sinhx)/x for all x & 1. Moreover,
since (tanhx)/x is a decreasing function of x as
x increases from 1 to ~, thus the integral
I(p, y) is a monotonically decreasing function of

y as y increases from 0 to ~, and I(P, ~) =0.
It also follows that in the region 0 ~y&~, that

R(P) = (tanh —
)

4 p

2f „dxe z& sin'((o+kx) x Pedv "
f ~ dxe-8~2 =4 taW

2
(50)

Therefore, R(P) = —,'v and

I(P, y}&—,'w for 0 ~y &~. (51)

Thus, the thermodynamic properties of model C
can be outlined as follows: (i) If A.'&2z, no phase
transition occurs in the system at any temperature,
the free energy per atom f(T} of the system is
given by

where -pf(T) = In(2cosh-,'pz} . (52}
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(ii} If X' &2&, there is a critical temperature
T, given by

2e/X' = tanh-,' p, ~, p, = 1/kT, . (53)

At P &P„ the free energy per atom of the system

is given as in the previous case by

-Pf(T) = 1n(2 cosh —,'Pe} .
At P&P„however, the free energy per atom
of the system is given by

(54)

2 "/
Pe 4A.

'
-pf(T) = -py, +— dv 1n — '

dg e 8& 2 cosh —1+, y, sin'(~ +k~)
p L ~ ~]2 2

where yp is given by

(55)

mq
t

"~' t J-x/2 Ch{e e& sin'(co+kg)sinh[ —,'peg(x, y„s)]/q(x, y„(u)j t

(56)

V. CONCLUSION

We have solved and discussed some simple
generalizations of the Dicke model of super-
radiance. Beside the obvious interest of the
models themselves, it is also hoped that the
solutions for these models will serve as an

introduction to a broader class of related
problems which can be approached and solved
in a similar way.
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