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It is known that a nonabsorbing one-dimensional semi-infinite random medium is totally reflecting.
In connection with this, when the medium is subject to monochromatic excitation with an arbitrary
frequency, well-localized "stochastic resonances" may appear, at which the wave amplitude can exceed
any given value, with nonzero probability in such a way as to make the mean energy density inside the
medium infinite. The problem is considered both for continuous media (e.g., a random elastic bar)
and discrete media (e.g. , disordered linear atomic chains).

I. INTRODUCTION H. STOCHASTK HEI.MHOLTZ EQUATION

During the last few years, several authors
have investigated the reflection and transmission
properties of a one-dimensional random medi-
um. ' ' The present study originates from the
result obtained by P.-L. Sulem and U. Frisch'
that, under quite general conditions, the modulus
of the reQection coefficient y of a nonabsorbing
one-dimensional random medium converges
almost surely to one when the length E, of the
medium increases indefinitely. Owing to the
energy Qux conservation, the transmission co-
efficient t of the medium is related to r by

I.et a one-dimensional, nonabsorbing medium with
random refractive index n(x) be subject to mono-
chromatic excitation with angular frequency. The
wave amplitude g(x) satisfies the stochastic Helm-
holtz equation

(d
+—,s'(x) |t(x) = 0,

where c denotes a reference speed of propagation.
Assuming that the medium extends from x =0 to
g = t., we impose the following boundary conditions:
at g = 0, the medium is excited with unit ampli-
tude

and tends to zero when L,—~. In a mechanical
scope, this result means for example that if a
linear elastic, nonabsorbing random bar is
longitudinally excited at one end, the amplitude
at the other end, assumed to be free, tends
almost surely to zero when the length of the bar
increases indefinitely.

This result gives no indication as to what
happens inside the medium. It may be, however,
that the total reQection property induces localized
storages of energy inside the medium. Specifical-
ly, is there an upper bound for the amplitude of
vibration inside the medium'P If not, we shall
say that "stochastic resonances" can take place
inside the medium.

In Sec. II, the problem is formulated using
the stochastic Helmholtz equation. In Sec. III,
we introduce the "forward-backward method"
for calculating the amplitude of vibration at
any point inside the medium. In Sec. IV, the
existence of stochastic resonances if proven
both theoretically and numerically. Section V
is devoted to a discrete version of this problem
(disorder linear atomic chains). In Sec. VI,
possible applications and a few open problems
are mentioned.

y(0) =1,
at g = t., we impose, the impedance Z,„~,

Owing to the total reQection property, only
stationary waves can exist in the semi-infinite
medium. ' Since we are interested in the limiting
case L,- ~, we impose stationarity for the finite
medium by taking a real value for Z,~. A physical
picture of this problem is provided by an elastic,
nonabsorbing, cylindrical bar with random param-
eters, excited longitudinally at one end and free
at the other end. In this case, Z,„~=O.

In order to bring out the phenomenon of sto-
chastic resonance in a simple case, we assume
henceforth the refractive index n(x) to be a real
stepwise constant random function as pictured
in Fig. 1. The values of the refractive index
are chosen independently, at random, with equal
probabilities between two values n' and n". A

typical picture is provided by a random stack of
two kinds of homogeneous materials. To exclude
pathological cases corresponding to resonances
in the usual sense, we assume that neither
um's jcv nor cue" s/cw are rational numbers.

For each realization of the random refractive
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index s(x}, the two-point boundary-value problem
(2.1-2.3) has a unique solution p~(x), where L
denotes the length of the medium. We say that
the medium can exhibit stochastic resonances if

col[P(x},g'(x)] onto col[g(y), g'(y)], which satisfies
the matrix differential equation

—G(x, y) =M(x}G(x, y);
d

vA & 0, vx &0, lim prob{ ] g~ (x) ~
&A}& 0; (2.4)

G(y, y) =I = identity.
(3.3)

in other terms, there is a nonzero probability
that the amplitude at any given point exceeds any
given value. There is also a weak formulation
which is more convenient for numerical investiga-
tion, namely,

detG(x, y}=1. (3.4)

Note that the Green's function follows a one-Point
boundary condition for x= y. Note also that, since
TrM(x) =0, the Green's function is unimodular,
l.e.,

YA &0, lim prob[ sup ] q~ (x)
~
&A} & 0; (2.5)

III. FORWARD-BACKWARD METHOD

ln matrix notation, Eq. (2.1) reads, with
g' = dg/dx and ko = to/c,

in other terms, there is a nonzero probability
that, somewhere inside the random medium, the
amplitude exceeds any given value.

The solutions of the boundary-value problem
(3.2) are expressible in terms of

( 0)
o.(x) P(x)

Iy(x) 5(x)~

Indeed,

y(x) = o(x)q(0) +P(x) q'(0) .
y'(x) = y(») y(0) +5(x}y'(0) .

(3.5)

(3 6)

with

d gx x (S.la)

(3.1b)

To obtain the value of g'(0), we put x = L in (3.6)
and get, using (3.2), ,

g'(0) = [Z,„qn(L} -y(L)]/[6(L) -Z„~P(L)]. (S.V)

Inserting this value into (3.6), we finally obtain

ln order to solve Eq. (3.1) with the boundary
conditions

q(0}= 1, q'(L)/g(L) =Z..a,

it is useful to introduce the Green's function
G(», y), i.e., the linear operator carrying

(3.2)

(3.8)

Z(»} = q'(x)/y(x), (3.9)

Z,~ n(L) —y(L)q(x)=a(»)+P(x)
( ) ( }

.

For the study of statistical properties of g(x),
a more convenient form is obtained by introducing
the impedance
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FIG. 1. The refractive
index, a real stepwise con-
stant random function of
position.
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which, as a consequence of (3.1}, is the solution
of the nonlinear Ricatti equation'

—+Z'+k', n'(x) =0; Z(L) =Z,~. (3.10)

q(x) =1/[5(x) —P(x)Z(x)]. (3.12)

As it stands, g(x) is a functional of G(x, 0) which
satisfies the boundary condition G(0, 0) =I at
x =0, and of Z(x} which satisfies the boundary con-
dition Z(L) = Z,„~ at x = L. Therefore, in principle,
to obtain g(x), we must integrate Eq. (3.3) for-
wards from 0 to x and Eq. (3.10) backwards from
L to g', hence, the name "forward-backward meth-
Od. '

In the special case where n(x) is the step
process defined in Sec. II, we can calculate
G(x, 0), using the semi-group-property

G(x, 0) = G (x, x~)G(x~, x~,). . .G(x„xo), (3.13)

with x~=js, where s denotes the length of the
individual steps (cf. Fig. 1). For x, ~x cx„„
the refractive index n(x) has a constant value
nz„, hence, we can explicitly integrate the
Helmholtz equation to obtain the expression of
transfer matrices'.

G,. = G(x„x, ,)

1
cos(k, n, s)

k
sin(k, n, s))

k, n& si-n(k, n,.s) cos(k, n&s) j
It follows that

p'(x&} cos(konqs)Z, .„+kon& sin(k, n&s)

y(x,.) sin(k, n, s)Z„,+cos(k, n~s)
0 ng

(3.15)

Equations (3.14) and (3.15) may be used to calcu-
late g, = g(x, ) which, from Eq. (3.12), reads

g =1/(6, —f),Z;). (3.16)

It is important to notice that Z& depends only on
the n~'s for k &j whereas p,. and 5,. depend only
on the n~'s for k ~j; since the different n, 's are
statistically independent, Z& is independent of
both P& and i5J.

IV. STOCHASTIC RESONANCE

From the remark at the end of the preceding
section, the statistical properties of p~ are

Note that Z obeys a boundary condition at z= L
only. Using (3.6) and (3.9), we obtain

Z(x) = [r(x) + 6(x)Z(0)]/[n(x) + P(x)Z (0)] (3 11)

A straightforward calculation using detG=1 and
Eqs. (3.6) and (3.8) leads to

easily related to the separate statistical prop-
erties of the Green's function and the impedance.
Qle shall deal only with those statistical prop-
erties which are most relevant to the stochastic
resonance.

A. Asymptotic Behavior of the Green's Function

The asymptotic behavior of random products
of statistically independent identically distributed,
unimodular matrices has already been considered
several times in the mathematical literature" ".
A particular interest in the present context is
taken in the following Theorem (Adapted from
Furstenberg"): Assume that the group of
transfer matrices G,. is noncompact and has no
reducible subgroup of finite index (condition F};
let U, = col(g(0), g'(0)) be a nonzero initial condi-
tion, then (1/j)ln)(Q', , G,.U, ~[

tends to a finite
positive limit I as j-~, where

)( "() denotes the
Euclidian norm.

In Ref. 13, Sec. 3, it is proved that condition
F holds for a disordered linear chain; this
proof is easily carried over the present case.
The Furstenberg theorem means that z&, P&, y&
and 5~ grow exponentially with j.

B. Asymptotic Properties of the Impedance

It is known that the iteration of random homo-
graphic transformations of the form (3.15) leads
to a stationary and ergodic distribution for the
impedance. "" Since Z satisfies a deterministic
boundary condition at x = L, the impedance will
have a limiting distribution P(Z) as L- ~ which
is independent of x."" This distribution may be
obtained either by solving the Schmidt functional
equation, "or by making a direct numerical
calculation using a Monte Carlo procedure based
upon the ergodicity of Z. A histogram of the
impedance distribution is plotted on Fig. 2. It
must also be mentioned that when s is not a
constant but a random variable distributed ac-
cording to an exponential law, the distribution of
Z can be calculated analytically by solving an
exact Fokker-Planck equation. ' It is important
to notice that in any case, when L- ~, the values
of Z become densely distributed between -~
and +~.

C. Stochastic Resonance

Using the forward-backward method of Sec.
III, we have calculated numerically the amplitude

g~ inside the medium for several realizations
corresponding to the values n, = 2, n, = 5,
s =I, N = L/s =1000. Two typical results are
plotted in Fig. 3. Note that, in both cases,
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there is negligible energy left far from the excited
end; this agrees well with the property of total
reflection. There is, however, a striking dif-
ference between Fig. 3(a) and 3(b). In the former
case, the maximum amplitude is obtained at
the excited end j=0; in the latter case, "stochastic
resonances" appear inside the medium i.e. the
amplitude can exceed the exciting amplitude by a
large factor. Notice that the stochastic resonances
are rather well localized in position. The point
where the absolute maximum is obtained has a
random distribution; this point is however more
likely to be located near the excited end, a result
which is clearly displayed on Fig. 4 where we
have plotted the position and peak amplitudes of
the stochastic resonances for 70 realizations
of the medium.

The existence and properties of stochastic
resonances are now established on a theoretical
basis. Let us consider formula (3.16) for the
amplitude g~ inside the medium. We have already
noticed that, in the limit I.- ~, Z& becomes
densely distributed between -~ and +~. Since
Z, is independent of (P~, 6~), the denominator
of (3.16}can become arbitrary close to cancella-
tion, i.e., ve&O,

I 6~—-Z~ &
IP~ I

and recall that lp& l grows exponentially as j- ~
(Furstenberg theorem}, we see that, as j in-
creases, the resonance condition becomes more
and more stringent; hence, the probability of
appearance of stochastic resonances decreases
away from the excited end.

Finally, it is possible to write the expression
for the probability density II, (g} of g, as L- ~.
Let us denote d6'~(P, 5) the joint probability
distribution of (P&, 5,.) and P(Z) the limiting
probability density of Z& as L,- ~ which is
independent of j. In view of the independence

(a)

prob ( I 6, —PP, I «}& o,

and therefore l g& l
can take arbitrary large values

with nonzero probability.
For a given realization, if the resonance condi-

tion
l 6&

—pp& l
& e is satisfied for some j„ it will

usually hold only in some neighborhood of jp.,
hence, the localized character of the resonance.
Furthermore, if we write the resonance condition
in the form

-8

(b)

0.16
p(z) 4 I-

008.
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FIG. 2. Asymptotic distribution of the impedance by a
Monte Carlo method.

FIG. 3. Typical variations of wave amplitude 4'z with-
in the random medium; (a) a nonresonant case, (b) a
resonant case.
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of Z~ and (P~, 6~} we obtain from (3.16) in the
llmlt I » oo p

U„
olid

ff- I
(5.4b)

1 1 1 1
11 (y)=— —I 5 ———dd (P, 5).

ipse q p
(3.1V)

It can be checked that the integral in (3.1V) has
a finite limit as g-~, thus

%e then study the limit as N- ~ of the statistical
properties of U, ~ for a finite j, the index (N)
denoting the total number of masses in the chain.
Using the same approach as in the preceding
section, we can derive the following results:

1
II, (y) o- —, (3.18} (i) the chain is totally reflecting, a result which

had already been found by Rubin";
From (3.18) it follows that (in the limit L- ~) the
mean and mean-square amplitudes (g,.) and

(~i), (') are both infinite. It must be recalled,
however, that we are considering a stationary
regime where energy is being continuously
injected into the medium. Presumably, the total
reflection property is accompanied by energy
accumulations inside the medium.

V. STOCHASTIC RESONANCE IN SEMI-INFINITE

DISORDERED LINEAR CHAINS

&'m„U-„=k(U„„+U„,- 2U„)

can be rewritten in matrix form

(5.1)

(5.3)

wherein

k
~2 —"I

O
~ (5.3)

Such chains have been used by several authors
to figure the interaction of the atoms of disordered
linear crystals. In fact, most authors" "have
studied the normal modes of a chain infinite in
both directions, and especially its integrated
distribution

1
SR(&u) = lim —(number of normal modes with

N
frequency less than &u).

The formalism we have developed in the previous
sections can also be used to study the longitudinal
harmonic vibrations, with angular frequency &u,

of a linear chain of N random masses, each
coupled to its nearest neighbors by elastic springs
with constant strength k. Let U„be the amplitude
of vibration of the mass ~. The equation of
motion of the chain

(ii) there is a nonzero probability for U, to
be larger than any given value (stochastic
resonance).

REMARK

In our approach, we have formulated a boundary
value problem for a finite chain [cf. Eqs. (5.4)]
and afterwards, we have taken the limit of the
probability densities as N- ~. It is impossible
to take the limit N- ~ on U, ~ itself since this
limit does not exist. Nevertheless, using a
result of Matsuda and Ishii, " it is possible to
fox mulate the stochastic resonance for semi-
infinite chain. Indeed, in Ref. 13, it is proved
that for almost every semi-infinite chain, the
two-dimensional space of solutions of Eq. (5.1)
has a one-dimensional subspace such as U„- ~
for n- ~. [These solutions are used by Matsuda
and Ishii" to construct localized" normal modes
for chains infinite in both directions, i.e., solu-
tions of Eq. (5.1) which are bounded by a de-
creasing exponential for n- +~. "Localization"
as used by us, has a different meaning since it
refers to spatial extension of the stochastic
resonance of a semi-infinite chain excited at
one end. ] Hence, the boundary value problem

15-

10-

In this section, we study a quite different
problem. %e assume that a finite chain with N
masses is excited at one end with unit amplitude 01

~ ~ ~
~ ~ J

5 10

~ ~

20

0 4 ~ g ~ ~ ~
~0

SO

0

200

and that at the other end the impedance is given:

FIG. 4. Peak amplitGde + max and its position x for 70
realizations of the medium. Notice that due to the log
scale in x, the density is higher near x = 0.
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(5.5a)

(5.5b)

has a unique solution. It may be shown that,
in the limit N- ~, the statistical properties of the
solution of problem (5.5) are the same as those
of problem (5.5).

VI. CONCLUDING REMARKS

A new kind of resonance has been exhibited
which is somewhat atypical: usual resonances
are not localized in space and occur at well
defined frequencies, whereas the "stochastic
resonance" can occur for any exicting frequency
and is sharply localized in space. Since our
results are based on the one-dimensional
stochastic Helmholtz equation, "we expect that
the theory of stochastic resonance will find
applications in many fields such as elastic,
seismic, optical wave propagation in heteroge-
neous media, disordered crystals, polymeres.

Now, we mention a few open problems. As

already noticed, the stochastic resonance can
occur for any monochromatic excitation. What
happens if the excitation is not monochromatic?
A preliminary investigation indicates that, if the
medium is made of a large number of independent
pieces (or extends over a large number of correla-
tion lengths}, the position of the resonances are
extremely sensitive to the exciting frequency,
probably because small variation in the exciting
frequency induces large variation of the impedance
far from the end x = I . As a consequence, when
the excitation has a finite bandwidth, the resonances
may be smoothed out. This point requires further
investigation.

For practical purposes (e.g. in engineering ap-
plications}, it would be useful to have empirical
formulas for the probability that the amplitude
exceeds the exciting one by a given factor, as
a function of the parameters of the medium,
frequency and bandwidth of the excitation.

Finally, it would be interesting to know if
stochastic resonances do also occur in two or
three dimensional random media.
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