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There has existed a continuing dialogue concerning the proper identification of radiation forces and
momenta in dielectric media. I argue herein that a sensible and consistent picture of these forces and
momenta is available. That is, the density of electromagnetic momentum G is given by G = 8/c',
where 8 is Poynting's vector. The forces which are exerted on material objects in dielectric media are
associated with changes in both the electromagnetic and mechanical momenta of the media. In fairly
broad circumstances, such forces may be found from the rate of change in a pseudomomentum K given
by K = eG, a&here a is the dielectric constant of the medium.

I. INTRODUCTION

There has existed a continuing dialog concern-
ing the proper identification of the momentum of
electromagnetic waves in dielectric media. As
Blount' has commented, "The axgument has not,
it is true, been carried on at high volume, but
the list of disputants is very distinguished. " In

brief, the question is whether the momentum densi-
ty for electromagnetic waves in a material medium
has the form (Dx8)/4' or (ExH)/4vc. The first
form„due to Minkowski, ' has good credentials,
for all of the experimental results relating to
radiation pressures seem consistent with its con-
servation. The second form, due to Abraham,
also has good credentials, for it gives the yroyer
theoretical result with regard to the motion of the
center of mass of a system containing both matter
and radiation field, 4 and corresponds to a sym-
metric energy-momentum tensor. For a summary,
see Refs. 5 and 6.

For nearly monochromatic plane waves in a non-
dispersive medium, Blount' has commented on the
intimate connection between the Minkowski form
and the "crystal momentum" Sk associated with
elementary excitations of energy I&. Here k is
the wave vector, and & the angular frequency of
the excitation. Indeed, for the Minkowski form
the ratio of momentum density to energy density
is just k/&o. It is well known that the crystal mo-
mentum is definitely different from the true mo-
mentum which is associated relativistically with
mass transport. Abraham's form gives a ratio
of momentum density to energy density equal to
v/c, where v is the wave's group velocity. This
corresponds exactly to the relativistic ratio of
momentum to energy for material particles, as
may be seen by simply reexpressing the above
ratio as mv/mc .

In this work we demonstrate for nondispersive
dielectric media that Abraham's form, which may

be expressed as

G=5/c', (l. 1)

whexe 6 is the momentum density and 8 is Poynt-
ing's vector, does indeed represent the true mo-
mentum density of eIectromagnetic fields. %e
also discuss the circumstances under which Min-
kowski's form, which one can label "crystal mo-
mentum, " or more generally "pseudomomentum, "
and has the form

K= ~G,

may be used to compute the radiation pressure on
objects embedded in such dielectric media. Here
& is the dielectric constant of the medium. This
"radiation" pressure is actually a combination of
the ponderomotive force exerted directly by the
field in the object and the force exerted on the ob-
ject by mechanical pressures induced in the di-
electric by the presence of the field. %'e conclude
that experiment and theory are in complete accord.

II. A GASEOUS MEDIUM

The essential features of the problem are to be
found through consideration of a simple model di-
electric, namely, a gas of heavy atoms (heavy so
they do not accelerate rapidly in response to radia-
tion forces) which are weakly polarizable. The
permeability of the medium is assumed tobe dis-
yersionless, given by

(2. 1)

where N is the density of atoms, and 0. is the
atomic polarizability. This section of the yaper will
be devoted to such a medium. Later, we consider
more dense media such as liquids and solids.
Gaussian units are used throughout.

One apparently common misconception which
clouds thinking on this problem is that if a pulse
of radiation is well within a medium, one need
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not be concerned with the mechanical properties
of the medium. Let us immediately dispose of
this idea, and at the same time provide a proof of
(1. 1) to first order in &- 1, which is sufficient to
distinguish between the two foxms for the momen-
turn. Consider a short plane-wave pulse of radia-
tion traveling thxough the gas, as illustrated in
Fig. l. In the presence of the radiation field,
forces are exerted on the atoms. In a dilute medi-
um, this "ponderomotive" force is simply the
Lorentz force

nE„=B„=g(t -nz/c), (2. 5)

where n is the refractive index

n= &
~ =(1+4mNa) i =1+2mHz, (2. 6)

and f is an arbitxary function of its argument.
The force per unit volume exerted on the gas
atoms is [from (2. 3) and (2. 5)]

-Nu sg'
F =Nf~t, =z (2. V)

field, then the fields of the pulse have the form

(2. 2)

where p is the dipole moment of the atom. Taking
p= &E, and neglecting the distan. ce traveled by the
atoms during the pulse, we can rewrite (2. 2) as

(....=.((E.v)E, -' —".8) . (a. s)

For future reference, note that using the identity

where z is the unit vector in the z direction.
Hence the mechanicaI momentum density M of

the gas is given by

M(z, f)= J F(s, t')dt'=s /la/2ne)$ . (2. 8)

Note that this mechanical momentum travels with
the pulse. No momentum is left in the gas after
the pulse has passed. Since the momentum 6
[see (1. 1)] is given by

and Mmovell's equation

j. &8
curl E+——=0,

e &t

1 36=—(Ex B)=g4' 4mnc

we have

M= 2mNa6= (n —1}6 .

(2. 9}

(2. 10}

we can rewrite (2. 3) in the form

(2 4)

RADIATION
PULSE ENVELOPE

--= FORCE

ffdt ~ 0

VELOCITY

If z is taken as the direction of travel of the pulse,
and x as the direction of polarization of its electric

Thus the mechanical momentum of the atoms in
the pulse is proportional to I —1 and may not be
ignored.

We are now in a position to show that 6 is the
electromagnetic momentum in the medium as well
as in the vacuum. In the vacuum, the ratio of
momentum density to energy density U in a z-di-
rected plane wave is

(6/U), ~= 2/c, (2. 11)

where z is the z-directed unit vector. A pulse,
originally in vacuum, can enter the medium con-
sidered here with negligible reflection. That is,
the power reflection coefficient is [(n —1)/(n+ 1)]
even for an abrupt boundary, and hence is of
second order of smallness. Hence the total ener-
gy of the pulse is conserved. In. addition, total
momentum is conserved on the passage of the
pulse into the medium, because the net impulse
given to each atom by the pulse is zero. Hence
the ratio of total momentum density to total ener-
gy density must be consex"ved. The additional
kinetic energy of the atoms due to the presence
of the pulse is negligible, and thus the total ener-
gy density in the medium is

FORCE

FIG. l. A plane-vrave pulse passing through a gas of
atoms. The force on a representative gas atom is illus-
trated.

Using (2. 11), the total momentum density must
then be
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(total momentum density) =zg /4' =nG, (2. 18)

where we have used {2.9). But now from (2. 10),

nQ= M+ 6, (2. 14)

and since M is the mechanical momentum density
of the gas, it follows that 6 is the electromagnetic
momentum density.

This result supports the strong arguments based
on the relativistic relation between momentum den-
sity and energy flow which favor (l. 1) as the proper
result for electromagnetic momentum density in a
material medium. An argument similax to the
above has been given by Haus.

One point in regard to the above discussion is
worthy of emphasis. If under the conditions as-
sumed, namely, with negligible motion of the
atoms during the pulse, the pulse passes through
a thin transparent membrance from vacuum to the
gaseous medium, no force is exerted on the mem-
brane. The gas near the membrane is left es-
sentially undisturbed as the pulse passes, since
as we have pointed out above the total impulse
given to any particular atom by the pulse is zero.
This would appear to violate the pseudomomentum
concept, for inthis case itis the total true momentum
fnGdz which is conserved rather than the pseudo-
momentum f &Gdz. We shall return to this point
later. However, it illustrates that the pseudomo-
mentum concept is no) universal.

Let us now imagine that the pulse, in the gaseous
medium, is reflected at normal incidence from a
perfectly conducting plane at z = 0, and compute the
impulse of radiation pressure on the conductor. %e
shall do this by finding the total momentum change
of the field and the atoms, For finding the total
force on the atoms, tne form (2. 4) is most useful.
During the reflection process when the incident
and reflected waves overlap, the detailed depen-
dence of the forces on distance from the conductor
is complicated, but we can integrate (2. 4) over
the whole volume of gas rather easily. %e obtain
for the force

(2. 15)

The gradient term of (2. 4) does not contribute be-
cause E is zero at the surface of the conductor.
Thus the total impulse @ given to the gas atoms
during the reflection process is

tt=f cy dt

0J Gdzl after redoouou

l fGdzlbefom rsnaetloa j
=-(a —1)a(f Gdz),

MEM8RANF

VACUUM
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FORCE~

PORCE
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~EQUILIBRIUM PRESSURE ct E
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where we have used (2. 9) and (2. 6); the symbol &
staods for the change of. '*

Only half of this im-
pulse is necessary to reverse the mechanical mo-
mentum which accompanies the pulse. The other
half remains as a net backward impulse to atoms
near the conductor.

Now we can apply the conservation of momentum
to find the impulse that the conductor receives.
The sum of the mechanical impulse given to the
gas, the electromagnetic momentum change, and
the impulse to the conductor must be zero. Since
&(fGdz) is the change in the electromagnetic mo-
mentum, we see indeed that the impulse given to
the conductor is

tt, „=-t(f eGdz)= t(f -Kdz). (2. 1V)

One can find the result (2. 1V) by directly evaluat-
ing the Lorentz force e Jx3 on the surface cur-
rent of the conductor, but we wished to show how
it follows from conservation-of-momentum con-
siderations. In this case, we see that the force
may be evaluated directly from the change in the
pseudomomentum K, without the necessity for eval-
uating the impulse given to the atoms.

Let us now return to consider the entry of the
pulse into the gas through the thin transparent mem-
brane. To find application of the yseudomomentum
here, we must examine a different situation, as
illustrated in Fig. 2. Bather than a plane wave,
we consider a beam of radiation of finite cross
section. And rather than a pulse we consider a
continuous wave. These changes make the gradient
term in the force equation (2.4) the only one of
importance, and they require that one consider
motion of the gas atoms. As before, we can ne-
glect the small reflection of radiation at the mem-
brane. But because the atoms experience a trans-

(2. 16)
FIG. 2. A beam of radiation continuously passing a

vacuum-gas interface.
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verse force (in the x-y plane) inward toward the
center of the beam, they are pulled in until the gas
pressure is increased there. The equilibrium
pressure P is simply

(2. 18)

so that the average outward force due to the pres-
sure gradient (- grad P) balances the inward force
due to the field gradient. The additional pressure
in the beam must be contained by the membrane,
which therefore experiences an increased push out-
ward from the medium toward the vacuum. We
now need to express that force in terms of the wave
momentum. If the beam is many wavelengths in
width so that it is very like a plane wave, we can
apply nE„=E„adnG= Ex@/4' as in (2. 5) and (2. 9).
The force per unit area on the membrane owing to
the increased gas pressure in the beam is there-
fore equal to

~ ~0~&

e& ay
(S. 1)

where E& is the ith component of the volume force
on the material medium, 6& is the ith component
of 6, and a,~ is the (i, h) component of the stress
tensor o, which for the case of fluid dielectrics
is 10

E st Egq
P«5 — + Pffft «go+k g~ ffS gp 4m

hence our considerations apply to "low" frequencies.
We shall show that the concept of a "true" elec-
tromagnetic momentum density 6 [(1.1)] is quite
consistent with fox ce computations based on the
rate change of the pseudomomentum K [(1.2)], and

that there is no contradictory experimental evi-
dence.

For the "low-fx'equency" case, Landau and Lif-
shitz give the fox ce-momentum x elation in the form

where 5 is the electromagnetic momentum in the
medium. This force is equal to the rate of change
of the pseudomomentum K as the beam passes
thxu the membrane, as we shall immediately show.
The momentum density 6 is continuous across the
membrane by virtue of its connection (1.1) with

the energy flow and our neglect of the reflection.
Thus, gseudomomentum leaves the vacuum at a
rate cG, and appears inthe medium at a rate
(c/n)eG=ncG The inc.rease in pseudomomentum

(n —1)cG balances the force (2. 19) to first order
in &- I, the accuracy our present considerations
allow. If the reflection is taken into account, the
pseudomomentum balance becomes exact. How-

ever, there are other effects of order (e- 1)~

which we have ignored, and which we will treat
in Sec. III.

This completes the discussion of the gas case.
We have established that to first order in a- 1,
the quantity 6= 5/c is the momentum density of
electromagnetic waves in a material medium. The
pseudomomentum density &G is useful for force
calculations, but this result is not universal; the
calculated forces are combinations of radiation
and mechanical pressures. Section III will general-
ize these results.

IH. GENERALIZATION

We shall now try to give these ideas a more
general flavor. For simplicity, we shall restrict
our attention to isotropic dielectrics, and will as-
sume a magnetic permeability of unity, so that
H= B. We will also continue to neglect dispersion,

8 B]Bq——«~+
Sm 4m

(3.2)

(S.8)

it is instructive to compare (S.3) with the force
that the macroscopic field exerts on the atoms of
the fluid. Using (2. 2) and the relations

F ~ =ÃF„, and 4vNp= (e- 1)E,
one can arrive at a relation similar to (2. 4},
namely,

(Z' sG
F =(e-1) grad~ —+

S(8m

Using (3.4), (3.3) may be expressed as

(8.4)

F = Fmg~~ —grad P

+grad
8 p (8. 5)

The quantity F is the force exerted on the
dipoles by the macroscopic field. The third term

In (3. 2), the quantity P is the pressure that would

exist in the fluid in the absence of the fieM, but
at the ambient conditions of density and tempera-
ture as they are in the px'esence of the field. Al-

so, p is the mass density of the fluid, and it is
assumed that E is a known function of p„and tem-
perature. Substituting {3.2) into {8.1) and making
use of Maxwell's equations, one arrives at the
force equation for fluids, namely, "

E2 827
F = - grad P -—grad &+ grad p„

8m
"

&p 8x
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88 E8
grad p= gradl p ——grad e (3.7)

&p Sm Sm

in the vicinity of S. This is the same equation
that fluids satisfy in an electrostatic field. "Again,
the relation (3.7) tells us that either E = 0 on S,
or that we must have a steady state, so that the
pressure in the fluid has a chance to reach its
equilibrium value (3.7}. If the term E grade is
sufficiently small to be ignored (this is true for
all the experiments), then (3.7) yields for the
pressure on S the value [compare with (2. 18))

FIG. 3. Geometry of an object in a volume V surround-
ed by a closed surface 8. 8 the support is present, it is
assumed that the radiation does not exert any apprecia-
ble force directly on the support.

of (3. 5) exists because the microscopic field in the
medium is not the same as the macroscopic field,
and the fluctuations of the microscopic field are
correlated with the charge fluctuations. This term
is of second order in &- 1, and is a result of the
dipole-dipole forces in the medium. It becomes
negligible for dilute media such as discussed above
in Sec. II. Being of the form of a gradient, it
disappears when integxated over the ~hole space
containing the fields. This is a symptom of forces
which are balanced simultaneously by equal and
opposite forces elsewhere.

If 6 is truly the electromagnetic momentum
density, as is implicit in (3. 1), then under what
circumstances do we arrive at the usefulness of
the pseudomomentum K= &G for force calculations'
Integrating (3. 1) over a finite region of space V
surrounded by a closed surface 8 yields

(s')
P.= p. , 18

—I+ (con«).
&p (Svr ] (3.8)

If we put this result in (3. 3), we find that o,~ on
8 depends on the medium only through its dielectric
constant, being given by

v„,~=
4 (eE)E„+E)E~) 8(-eE +8 ) 5)~, (3.9)
1 a a

and it is this tensor that determines the total force
on V according to (3.6}. Note that the total force
on V has two important components, namely, the
ponderomotive force exerted directly by the fieM
on the object within V, and the force transmitted
through S by the pressure (3.8) in the fluid.

The stress tensor (3.9) may be associated with
the pseudomomentum K in the following way. In
the absence of free charges and currents it satis-
fies the equation

K 1
div O' = ———E Ve

&t Sm
(3. 10)

whex'e div u, is a vector whose components are

FdV+ — GdV= 0' ndS,
8

(3.6) (div e, )g =Z
~&a

whez'e n is the outward unit normal on the surface.
Now suppose that an object is immersed in dielec-
tx ic fluid, except that it may be attached by some
supports, as shown in Fig. 3. The fluid need not
be of uniform composition. We draw the surface
S outside of the object (perhaps just outside). The
condition that makes the pseudomomentum useful
is that F = 0 in the fluid on 8. Let us see how this
happens.

The condition F= 0 on 8 may be examined through
(3.3). It implies that SC/St= 0 on S, which can
happen either for a steady-state situation, or if
6= 0 on 8 by virtue of the conditions of the prob-
lem. This latter situation occurs, for example,
for reflection at normal incidence from a good
conductor, so that E =- 0 just outside the conductor.
In addition, the condition F= 0 requires that the
pxessure in the fluid satisfy the relation

0 -gdS=-—e
~Jg ~ outside S

(3.11)

In (3. 11), the minus sign on the right-hand side
appears because n has been defined as the outsoc&'d
normal on S. From (3.6) we see that if F= 0 and
E Ve = 0 on and outside of S, then the sum of the
total force exerted on the interior of 8 plus the
rate of increase of true electromagnetic momen-
tum within 8 equals a negative rate of change of
pseudomomentum outside of 8. The total force
jEdV equals the rate of change of mechanical mo-
mentum within V, or in case the object within V
is supported, equals the force exerted on the sup-
ports.

If we imagine that, outside 8, the condition E Vc
= 0 continues to apply everywhere, and the dielectric
contains the total fieM, then we obtain
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IV. DISCUSSION AND RELATION TO EXPERIMENT

The relation (1.1) between momentum density
and energy transport may be understood from the
following argument. A pulse of electromagnetic
waves, traveling with group velocity v~ and having

energy density U, transports energy at a rate
S= Uv, . Using the relativistic relation between

mass and energy, U=mc', where m is the equiva-
lent mass density, we find that 5= mvp, and

finally since the equivalent mass density times the

group velocity is the momentum density G, we
find S= Gc, which is identical with (l. 1}. The
same relation applies to momentum and energy
transport of material particles if we use the rela-
tivistic formulas E = mc and p = mv. However, if
an excitation including both mechanical and elec-
tromagnetic momenta travels through a material
medium, the same relation does not apply to the
total transport of free energy [replacing 5 in (1.1)]
and the total momentum density [replacing Gin
(1.1)]. This is clear from the example of the
plane-wave pulse analyzed in Sec. II, wherein the
transport of free energy and only the electromag-
netic part of the total momentum density satisfied
(1.1).

When we consider experiments giving evidence of
radiation pressures, it appears that they all satis-
fy the conditions necessary to the validity of the
pseudomomentum concept. A review of early ex-
periments is given by Jones and Richards' in a
paper in which they report some careful work
showing that the ratio of the radiation pressure,
on a metallic reflector immersed in a variety of

liquid dielectrics, to the radiation pressure on

the same metallic reflector in air, was accurately
proportional to the refractive index n of the liquid.
The indices of the liquids used ranged from 1.33
(water) to l. 61 (carbon disulphide), and the ac-
curacy of the measurements was estimated as
about + 1.3%. They used a tungsten lamp run at
30 W as their radiation source, and estimated that
about 10 ~ of the emitted light was used. The time
constants used in the detection system were of the
order of tenths of seconds. Some very recent ex-
periments by Ashkin and Dziedzic ' using an argon-
ion laser source investigated the pressure on solid
dielectric spheres immersed in liquid, and the
pressure on a liquid-air interface owing to the
passage of a beam of radiation. The experiments
on spheres have not yet been extended to include
a careful study of the dependence of the radiation
pressure on the index of the liquid. The experi-
ments on the liquid-air interface gave convincing
evidence of a force on the interface outward from
the liquid where the laser beam intersected the
surface. The force did not depend strongly on

whether the laser was directed at the interface
from the air or from the liquid. These experi-
mental results are all in accord with expectations
derived from analysis of pseudomomentum
changes, or correspondingly from use of the stress
tensor (3.9} in the force equation (3.6). In Sec.
III, we have discussed the conditions under which
these results are to be expected, namely, that
E Vc be negligible in the vicinity of a surface sur-
rounding the object of interest, and that the pres-
sure in the fluid has a chance to reach its equilib-
rium value (3.8). For an object surrounded uni-

formly by the dielectric, the surface can be drawn

just outside the object, and then VE= 0 on and out-
side the surface. The time v that the pressure
takes to reach equilibrium is of the order of the
dimension of the object divided by the sound veloc-
ity, or r=l/v, . If /=0. 1 cm, and v, -10' cm/sec,
the time constant comes out around 10 ~ sec. For
radiation normally incident on a good metallic
reflector, the equilibrium pressure in the liquid
is unchanged at the surface because E2= 0. Thus
for the Jones and Richards's experiments, even
though the time constant was of the order of tenths
of seconds, it did not matter; the same result
would be found independent of the length of the
pulse, in accord with the discussion of Sec. II.
Ashkin's experiments on spheres were done with
the laser operating cw, which obviously satisfies
the time- constant requirement for equilibrium
pressure in the liquid. The total force on the
sphere results both from the ponderomotive force
and the increased mechanical pressure of the liquid
where the light intensity is large, and is predicted
to be directly proportional to the rate of pseudo-
momentum change that scattering from the sphere
produces.

Finally, we consider Ashkin and Dziedzic's ex-
periments concerning the forces on liquid-air in-
terfaces. Here they used moderately high-inten-
sity pulses (1 kW) of about 50- nsec duration, fo-
cused to a small spot only a few wavelengths in
diameter. The intensity and small spot were neces-
sary to obtain a measurable effect. An outward
motion of the liquid surface was observed, occur-
ring mostly after the peak of the pulse had passed.
This experiment is similar to the thought experi-
ment at the end of Sec. II, but we must here con-
sider the dynamics of the experimental situation.
With a spot radius of about 10 4 cm, and sound
velocity about 10' cm/sec, one may estimate that
the mechanical pressure in the liquid does have
enough time to approach equilibrium during the
5x10 -sec pulse. Thus an outward force is ex-
pected which results in an outward bulge on the
surface where the beam passes. Again the out-
ward force is consistent with the rate of pseudo-
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b,z = (z - l)Sr/p„c', (4 1)

where S and v are the intensity and duration of the
pulse, and p is again the mass density of the fluid.
Assuming an intensity of 10"W/cm, a pulse dura-
tion of 10 sec, &- 2, and p - 1, one finds &z
-10 cm. This would surely be impossible to
observe.

If we use the Clausius-Mossotti expression
for z, the gradient terms of (3. 3) give rise to in-
ward forces around the periphery of the pulse and
at the surface of the liquid. They therefore com-
press the liquid, and this effect should initially
result in a small depression of the liquid surface.
The surface pressure f due to these gradient terms,
the second and third terms of (3.3), is roughly

f =8 (z —1) S/& . (4. 2)

If such a pressure were applied over the surface
of a volume of linear dimensions roughly equal to
the transverse dimension zo of the pulse, the re-
sulting compression of the liquid would result in
an inward motion of the surface of approximately

Az=~m (z 1)~(S/c)m—x, (4. 3)

where x is the compressibility of the liquid. Such
a compression would occur during approximately
the time it takes sound to travel a distance zo, after
which the outward impulse discussed below would
take over.

For values of w - 0. 5 cm, S= 10 W/cm, z= 2,
and typical liquid compressibility in the range
10 '0- 10 "cm /dyn, the value of &z comes out
to be 10 to 10 cm. Such a compression might
be measured, but in any event results from elec-
trostriction rather than anything having to dowith
electromagnetic momentum.

momentum change. Note that we can draw the
surface S to contain the spot of intersection of the
beam with the surface. Outside S there is no field
at the liquid surface, so again the condition E Vc
=0 is satisfied outside of S.

It is of interest to think of doing a similar ex-
periment with a radiation pulse sufficiently short
that the liquid pressure cannot equilibrate. If the
pulse were 10 sec in duration, for example, might
one then observe effects relating to the true elec-
tromagnetic momentum of the pulse'P The answer,
it would appear, is no. Figure 4 illustrates a
short pulse crossing a liquid-air interface. Let
us consider the various possible effects of the
force (3. 3). The last term (z- 1)&5/Sf integrates
to zero over the complete duration of the pulse,
but results in a small displacement of the atoms
in the direction of propagation of the pulse. This
displacement 4z is approximately

g RADIATION PULSE

AIR

, S ~INTERFACE

EGRATION

ULSE

FIG. 4. Radiation pulse passing an air-liquid inter-
face. A reflected pulse is actually present but is not
illustrated.

Having dealt with the displacement and compres-
sion effects, there is a final effect resulting from
the net impulse given to the liquid by the passage
of the pulse. E we now think of the liquid as in-
compressible, it is clear that if the liquid is to
move at one point the displaced liquid must go
somewhere. If we chose some path, such as a-b-c
in Fig. 4, the liquid can move along this path since
it starts and ends outside the surface. If we inte-
grate the force along the path, i.e. , find j FBl,
and then integrate this result over the duration of
the pulse, we see that the net impulse along any
such path has a magnitude

where E, is the field at the surface at point b, and
that it is directed so as to push the fluid out at
the surface where the pulse passes. The motion
resulting from this impulse is that observed by
Ashkin and Dziedzic, and according to the above
discussion, is the dominant effect to be expected
in any similar experiment.

I conclude that theory and experiment are in
complete accord, but that laboratory experiments
designed to demonstrate the nature of the true
electromagnetic momentum in. dielectric media
may not be feasible.
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Previous Hylleraas calculations of K = & QHQ & for the lowest 'P autoionization state of helium are here
supplemented by calculations of the shift (h,), width (I ), and shape parameter (q) using a (ls, 2p)
pseudostate nonresonant continuum function. The function is constructed to e»~enate the dominant (2s, 2p)
configuration of the autoionization state, while at the same time containing three variationally determined
radial functions. Both 5 and q are also shown to contain contributions from the discrete part of the
nonresonant spectrum, although quantitatively that contribution is found to be small. Final results change
previous polarized-orbital results minimally, which means that the resonance position, C = E + 6,
continues to be on the edge of the experimental error, and q remains somewhat outside the experimental
result. Further relativistic corrections are briefly discussed, but a simple argument indicates that they are not
likely to explain the differences with experiment. It is concluded that more-accurate experiments should be
carried out.

I. INTRODUCTION AND FORMULAS

As has been previously emphasized, ' the photo-
"excitation" of the autoionization states of He
afford a unique testing ground for precision checks
of the continuum solutions of the Schr5dinger equa-
tion. The basic parameters that are compared
with experiment are the energy E, width I', and
photoabsorption shape parameter q. The energy

of the resonance is usually written' (rydberg units
are used throughout)

E= g+b, . (1.1)

h is the result of a well-defined projection-oper-
ator variational calculation

(eqaqe)
(eW&

which we shall not discuss further except to repeat


