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Quantum-mechanical, three-state, close-coupling calculations of the inelastic cross sections for
1 'S ~ 2'S excitation of ground-state He atoms in collision with He+ ions have been carried out for

energies between 25 and 50 eV(c.m.). Differential, partially integrated (over small angles), and total

inelastic cross sections were obtained. The calculations were performed using linear combinations of
three single-configuration, valence-bond-type electronic wave functions as the basis of a diabatic

representation. The diabatic coupling in the vicinity of the well-established 'X~+ curve crossing at
R 1.5ao was found to be small, and it was verified by comparison with the close-coupling results

that the Stueckelburg-Landau-Zener (SLZ) theory was applicable. Several SLZ model calculations were

performed using the best available adiabatic potential curves and modeling the crossing region. The

resulting differential and partially integrated (over small angles) cross sections were found to be in good

qualitative agreement with the measurements. In particular, the strange hump apparent in the

s~~0-angle cross sections versus energy curve, which was first found by Utterback, and recently

confirmed by MacVicar-Whelan and Borst, was reproduced in our calculations. The interesting nature

of the small-angle scattering is discussed, and the sensitivity of the cross section to details of the

potential curves near the crossing is examined in detail.

I. INTRODUCTION

A. Background

The basic theory of low-energy atom-atom col-
lisions has been available for many years. ' Al-
though this theory has been extended, recast, and

elaborated on frequently, ' ' its application to
most diatomic systems is still not well under-
stood. In this paper, we will address ourselves
to the problem of applying the theory to a specif-
ic system when both theoretical and experimental
data are available.

In low-energy collisions, the electronic states
of the "quasimolecule" are best represented by
perturbed stationary-state functions of some
form. ' These functions, however, will not, in gen-
eral, be eigenfunctions of the electronic Hamil-
tonian @.~'" In this case, transitions will arise
from coupling through the off-diagonal elements
of the electronic part of the Hamiltonian g as
well as the familiar nonadiabatic part of the Ham-
iltonian (sometimes referred to as momentum

coupling, or as velocity-dependent or gradient in-
teraction}, containing both spherical and angular-
dependent terms. Recently, Smith" has shown

that one can construct in a well-defined manner
a set of electronic functions which will cause the
spherical nonadiabatic terms to vanish. In this
representation, distortion due to the interaction
of molecular states is contained entirely in the
off-diagonal elements of g, which in general are

large. In order to be consistent with Smith's de-
velopment, we will call this the diabatic repre-
sentation (Lichten" has used the term "diabatic"
when referring to cases in which the off-diagonal
elements can be neglected, whereas Levine" has
called this approximation "diabatic decoupling" ).
Smith has also pointed out that one can readily
define an R-dependent unitary transformation re-
lating the diabatic electronic basis set to the well-
known adiabatic basis in which the electronic
Hamiltonian is diagonal. In the diabatic repre-
sentation, the diagonal elements combined with
the internuclear repulsion represent somewhat
unconventional molecular potential-energy curves
which are not subject to the noncrossing rule. "
In the adiabatic representation, electronic energy
curves of like symmetry and quantal description
will, of course, repel each other through config-
uration interaction, and thus avoid crossing in

the Born-Oppenheimer approximation.
It is evident from the discussion above that one

could calculate collision cross sections in either
representation as long as all important coupling
terms are retained. In cross-section calculations
one chooses a particular representation either to
help gain an intuitive understanding of the elec-
tronic motion during the collision process or,
more often, to simplify the computational diffi-
culties that develop in such problems. For exam-
ple, in a study of the inelastic 2'S- 2'P colli-
sions between metastable and ground-state helium
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atoms, Evans, Cohen, and Lane carried out the
cross-section calculations in both the diabatic and
adiabatic representations. As expected, they ob-
tained identical results. However, in the adiabat-
ic representation, it was found that the nonadia-
batic coupling was small and could usually be ne-
glected in calculating the elastic cross sections.
The collision process in this case is simply de-
scribed as one in which the orbital electrons re-
arrange themselves adiabatically so as to allow
the two atoms to follow smooth adiabatic poten-
tial-energy curves.

B. He-He' Problem

The experience gained in the He-He work sug-
gested that a study of a system known to be non-
adiabatic would further clarify the role of the di-
abatic and adiabatic potentials in describing the
collision process. The He-He' scattering prob-
lem is ideally suited for this purpose since it is
comparatively simple, and has continued to re-
ceive considerable attention in the literature.

The possible nonadiabatic nature of the lowest
'Z+ potential curve of He-He+ was first suggested
by Lichten. " Marchi and Smith' affirmed his
conclusion when they were able to reproduce the
magnitude and many aspects of the structure in
the elastic differential cross sections observed
by Lorents and Aberth" using an adiabatic 'Z+„

potential curve" and a reasonable guess for the
diabatic-decoupled 'Z~+ repulsive curve. " In a
later study, Smith et al."were able to identify
perturbations in the elastic differential cross sec-
tion with a particular crossing of the lowest 'Z~+

curve and the next-highest 'Z~ curve. They ob-
tained from their study a value of 1.73ao for the
radial separation at the crossing.

A number of ab initio calculations of the ground
and excited 'Z~+ states of He-He+ have been car-
ried out in the last ten years. "" They all re-
ported a close approach, or "weakly avoided
crossing, "of the two lowest adiabatic 'Z~ curves
in the vicinity of R = 1.5ao. The multiconfiguration
calculations have revealed, in addition, a whole
series of avoided crossings occurring between the
higher Z~ potential-energy cux ves.

The inelastic effects identified by Marchi and
Smith' and the avoided crossings found in the
ab initio' potential calculations suggested that the
inelastic cross sections for 1'S-2'S transitions
could be significant. The early measurements of
Utterback" had already suggested that this was
the case, and in fact provided early experimental
evidence that such an inelastic cross section
could be large in the vicinity of threshold. It had
been believed by many researchers that the Mas-

sey energy criterion was generally applicable,
and hence that energies far above threshold would
be required for excitation. The work of Novick
and his collaborators at Columbia further empha-
sized the danger of improper application of the
Massey criterion and emphasized the importance
of "pseudocrossings" of the potential-energy
curves. " The importance of the 1'S-2'S cross
section near threshold has now been further con-
firmed by both experiment ' 7' and theory.

In this paper, we will give the results of an
ab initio calculation of the three lowest 'Z~+ mo-
lecular potential-energy curves of He-He+ and
close-coupling calculations of the 1'S-2'S in-
elastic cross section. In the diabatic representa-
tion, the diagonal elements of H, (the diabatic-
decoupled potential) were found to exhibit two
crossings. In order to study the effect of these
crossings on the inelastic trajectories, we car-
ried out a close-coupling calculation of the differ-
ential and total cross sections for all possible
inelastic transitions within the three-state model.
In addition, the Stueckelburg-Landau-Zener"
(SLZ) semiclassical approximation was applied,
using the diabatic matrix elements derived from
the two lowest adiabatic 'Z~+ curves in calculating
the differential and total cross section for 'Z~+

(1'$-,2'S) transitions. The agreement found be-
tween the close coupling and the SLZ results
shows that the effective coupling between the two
lowest electronic states is confined to a narrow
range of internuclear separation A, and that the
coupling is relatively weak. Reassured then, of
the validity of the semiclassical approximation
for this particular application, we have applied
the SLZ method and the two-state model, using
the more accurate ab initio potentials calculated
by Michels" and Bardsley. " The SLZ differen-
tial and total inelastic cross sections are com-
pared to the most recent experiments, and are
shown to be in semiquantitative agreement. The
sensitivity of small-angle scattering to the nature
of the potentials in the crossing region has been
explored by calculating the partially integrated
(8 & 5 lab), and differential cross section using
several different potential models.

H. THEORY

A. General Problem

The general formulation of the low-energy
atom-atom collision problem has already been
described in some detail by Smith" and discussed
and applied by Evans et aE. We will present only
highlights of the theory, emphasizing those equa-
tions essential to our work.

Using the perturbed-stationary-state approxi-
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T=(1/2y, ) [-1V„'+~S+(I/R') S„], (3)

where the second term represents momentum, or
velocity-dependent, coupling between states of
like spin, symmetry, and angular momentum,
and is spherically symmetric. The third term,
which possesses angular dependence, couples
states which have the same symmetry and spin
but which differ in the value of the angular mo-
mentum. Since our main concern in this paper
is the effect of 'Z~ avoided crossings on the in-
elastic cross section, Sz will be ignored. The
term ~S may also be neglected for reasons given
in Sec. IIB.

B. Potential-Energy Matrix Elements and Curves

Potential-energy matrix elements of the type
required in Eq. (2) must be calculated before at-
tempting to solve the quantum-mechanical scat-
tering equations. The procedure we have used
is essentially that developed by the molecular
physics group at the University of Texas.

In our close-coupling approximation the wave
function in Eq. (1) is truncated to include only the
three lowest 'Z~+ states of the He-He+ system.
While our interest is mainly in the diabatic cross-
ing of the two lowest 'Z~ states, the third-lowest
state is included for several reasons: (i) extreme
sensitivity of the position of the lowest crossing
to the presence of higher 'Z~ states in the expan-
sion, (ii) the possibility of observing both diabatic
and adiabatic behavior in the same theoretical
study, and (iii) astrophysical interests in low-
energy 'Z,' (2'S-2'S) transitions.

We have chosen to construct a basis set using
single-configuration valence-bond functions. The

mation, the total wave function may be expanded
in the usual way as

4 (R, r) =Q E» (R) }I»(R, r),
k

where }|»(R, r ) is a member of a complete set of
orthonormal electronic functions, R is the rela-
tive internuclear separation, and r labels the in-
ternal electron coordinate. Substituting 4'(R, r)
into Schrodinger' s equation for the di-atom, mul-
tiplying by 4'*(R, r ) and integrating over all elec-
tron coordinates, the problem is reduced to the
solution of a set of coupled equations given by

(T+U 1E)F(R}=0, (2)

where U is the familiar potential-energy matrix
(atomic units are used throughout). By writing
the nuclear momentum operator in a rotating sys-
tem, ' the nuclear kinetic-energy matrix may be
written as

+ d„~ (ls» 2s» —ls» 2s» )1s, ~
+ (a—b),

g = ]ls»2s»ls )
+ (is»2s»ls

-2] ls»2s»ls, ( +(a—b),

g, =d„~(is, ls,' —ls, ls,'}ls,
~

(4)

+d„((ls»2s» —ls, 2s, )ls, ~
+(a—b), (6)

where 1s, and 1s„respectively, denote spin-up
and spin-down Slater orbitals centered on nucleus
a, the prime on 1s~ denotes an orbital exponent
allowed to vary independently from that in 1s„
and where the vertical bars denote Slater determi-
nants formed in the usual manner. ' The constant
coefficients d, ~ were chosen so that g, and g ad-
equately represented the 1'S and 2'S separated-
@tom states, respectively, in the limit 8- ~. The
matrix of d coefficients is given by

1.02214 -0.06189
-0.35818 1.08130

There is, of course, no mixing of g, and p, or g
and g» in the limit R- ~ since they represent or-
thogonal spin states.

At intermediate internuclear separations the Pq

are taken as basis functions for the calculation of
wave functions for the first three 'Z~+ adiabatic
states of He, '. Thus for the kth state (k =1, 2, 3}
we write

)4 = Q C»qgy,

where the superscript a is appended to remind us
that these are approximations to the adiabatic
electronic wave functions (in contrast to dhabatic
electronic wave functions to be defined later). The
linear variational coefficients Ck~ satisfy the trun-
cated secular equation

3

Q C»~(H)~-S(~E»)=0, i=1, 2, 3

for each root E» (k = 1, 2, 3), where H&~ and S&~ are
the matrix element of the electronic Hamiltonian
H, and the overlap integral, respectively, in the
basis gq. A complete variation of the orbital ex-
ponents in the Slater-type orbitals was carried
out at each internuclear separation so as to min-
imize the highest root [i.e., the root which corre-
lates with E(2'S) +E(1'S) in the limit R- ~]. For

proper choices for the basis functions g, are prop-
erly symmetrized eigenfunctions of the operators
(5,+5»)' and 5~ +5»„where a and b label the
separated atoms. The symmetrized basis func-
tions may be taken to be

y, = d„~ (ls, ls,'- ls, is,')is,
~
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~' =A(R)g(R), (7)

example, the seParated a&-om (actually R = 20a,)
energies obtained in this way for the states He+

+He(2'S), He'+He(2'S), and He'+He(1'S) are, re-
spectively, -4.1425, -4.1718, and -4.8276 (all in
a.u. ). [The nonlinear variational parameters in the
atomic orbital exponents took on the limiting
(R- ~) values g„=1.97675, g„, = 1.28991, and

&„=0.53596, where & occurs as e t" .] In com-
pariso~ with the corresponding observed energies
of -4.1461, -4.1754, and -4.9037, our results do
not appear to be very accurate. However, our
principal interest is in the nature of the inelastic
collision and thus in properties of these wave
functions other than the energy. There is no as-
surance that another significant figure in separat-
ed-atom energy would result in "better" wave
functions for use in the collision problem. Hence,
we were satisfied to proceed with these more
modest electronic functions, keeping in mind that
Precise determinations of the cross sections
would not be possible.

Since the nonlinear parameters contained in the
g~ were varied at each internuclear separation R,
the basis functions g, take on a weak R depen-
dence. The basis functions may be made ortho-
normal via a linear transformation

U)~= V(~ +Eg (~)5)~ = [H(~ +(4/R)5gg]

= fX~*(rf.+4/R)X&dr (8)

where H, is the electronic Hamiltonian and where
the E; (~) are the separated-atom limits of the
electronic energies. Thus, we have E,(~) =

E(1'S), E, =E(2'S), and E, =E(2'S), relative to
ground-state He . The weak R dependence pres-
ent in g and A allows a finite momentum coupling
through the second term in Eq. (3). However,
since the variation of the nonlinear parameters
with R was found to be small in the regions of R
where crossings occurred, this weak momentum
coupling was neglected. The functions which
make up y in Eq. (7) thus qualify as a limited
basis set of purely diabatic wave functions, hence
the use of the superscript d. These functions are,
of course, related to those of the adiabatic repre-
sentation by an R-dependent unitary transforma-
tion of the form

where the matrix A contains overlap integrals and
is easily determined, and where the three basis
functions are treated as elements of a column ma-
trix g. The superscript d will be discussed below.
The potential-matrix elements, including nuclear
repulsion, are defined for the basis given in Eq.
(7) by

-3.5

-4.0

y'(R) =C(R)-'y'(R),

where the potential-energy matrix in Eq. (8) is
diagonalized by the same transformation, viz.

(9)

U'= V'+E(~) =C '(R)[V'+E(~)]C(R) (10)

o -45- (a) 0.3- 4
V21

-3.5
0.2

O. I

-4.0

-4.5
I.O

03

(b)
I

I.5 2.0 2.5 3.0 3.5 4.0
R(a )

C9
K

UJ

-0. I POTENTIAL COUPLING

MATRIX ELEMENTS V) j ( R )
DIABATIC REPRESENTATION

FIG. 1. The three lowest 2Z~+ potential-energy curves
of He-He+, calculated using three valence-bond single-
configuration basis functions. (a) Calculated adiabatic
curves. U;, i =1, 2, and 3; dashed line —approximate
crossing curves; 0, points on the empirical curves
(Marchi and Smith); (b) calculated diabatic curves U&"&,

i=1, 2, and3.
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FIG. 2. Diabatic potential-energy coupling matrix
elements between the three lowest Z~ electronic
states of He -He.
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8r, u =4[8,(I, E) +8~(/, E}]
where

6, =-,'[6,(l, E)+8,(l, E)]

(14)

(16)6~ = ~[6,(f, E, r, )-8,(l, E, r, }].
The functions 6, , (l, E) are related to the well-
known JWKB phase shift by

6(l, E)=2
8'g

g

whereas the 6, , (l, E, r, ) are special deflection
functions defined by

8, (I, E, r, .) = -21 J '
kr

' -ur r (R)

(~ +-')'
g2

i = I, 2(1'I)

we have calculated inelastic cross sections for
all possible transitions between the three lowest
'Z~ states of He-He+. The total and partial-wave
cross sections for 'Z~(1rS-2'S) transitions at
E=40 eV are given in Fig. 4. The differential
cross section for the same transition and energy
is given in Fig. 5. Laboratory measurements of
these cross sections are obtained by measuring
charge-exchanged He(2'S) at an angle 8. The
low-frequency oscillations are a result of inter-
ference between the two possible inelastic scat-
tering paths given in Fig. 3; the higher-frequency
oscillations are due to the nuclear symmetry cf
the diatomic system. It is interesting to note that
for 0, ~ 25'or 7 &1000eVdeg the inelastic
scattering is negligible. This observation can be
explained in terms of the classical deflection
function 8, which for the three-state potentials
is simply equal to the scattering angle e. Olsen
and Smith" have defined for the two possible ine-
lastic-scattering paths the deflection functions

where r, is the radius of the crossing, r is the
zero of the integrand, and where

fr'r = 2ir[Er -Er (")],
ur r (R) = 2 ir[Ur r (R}—Er (~)] = 2 p, Vr r (R).

The function O~ reflects the inelastic contribution
to the total deflection function resulting from
trajectories determined by the potential curves
inside the point of curve crossing r;. The deflec-
tion function 8«, which will always be smaller
than 8&, will reach a minimum at l values which

correspond to turning points just inside r, . Using
the diabatic crossing potentials given in Fig. 1(a),
we found that the elastic contribution 8, to the
deflection function at l =88 is 45'for E=40 eV.
The magnitude of the inelastic contribution e~ will
depend, through Eqs. (16) and (17}, only on the
difference between U» and U». Since in Fig. 5

there is no contribution to the cross section below
25', we assume that this difference is not large
enough to cause scattering at smaller angles. For
this particular set of crossing potentials, one can
say, qualitatively, that inelastic scattering occurs
at internuclear separations too near the scattering
center to result in only small changes in trajec-
tory.

Inelastic 'Z~(1'S, 2'S-2'S) transitions are in-
hibited by the strong repulsion between the
'Z,'(2 'S) and 'Z,'(2 'S) adiabatic potential curves as
shown in Fig. 1. As a result, elastic scattering
in the region of the outer diabatic crossing at
R = 1.70ao is adequately described by the adiabatic
decoupled potential, as demonstrated in Fig. 6.
The cross section for 'Z~+(2'S-2'S) transitions
in the energy range 30 to 40 eV is of the order
10 "cm'. The 'Z~+(2'S- 2'S) was too small to be
calculated accurately even in this three-state ap-
proximation.

B. Semiclassical Calculation

The close approach of the two lowest 2Z~+ adia-
batic potentials shown in Fig. 1(a), and the abrupt

I I

E
~) CJ

O
I I
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C

0)
E
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5.0-
40-
3.0-
2.0-
1.0-

E = 40 eV (c.fyt)

3-STATE CLOSE COLPLING

4 ~'I,
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r = E8~ ~ [sv deg]
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(4 0

O
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N 4 .

b

E = 40eV (c.mJ
3-STATE CLOSE COUPUNS
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~33(R = 1.57 oo)

125 135 145 155

J»(R = 1.96a, )

FIG. 5. The differential cross section p vs & for the
2Z~+ (1~$ 238) transition at E =40 eV (c.m. ), calculated
using the three-state close-coupling method. (0,~ is
the center-of-mass scattering angle. )

FIG. 6. Elastic partial-wave cross sections for
Z (2 S) scattering. The calculation is carried out

only for values of l associated with turning points in
the region of the outermost curve crossing in Fig. 1(b).
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cutoff of o2', at i= 97(R=—1.50a,) in Fig. 4, strong-
ly suggest a weak-coupling situation in which
transitions occur only in a narrow region about
the crossing. These are just the assumptions
made in deriving the SLZ semiclassical approx-
imation. " The SLZ total inelastic-scattering
cross section for transitions from state one to
state two is given by'

o 2",~=(w/A', )Z,(21+1)IS ' I',

where

where the prime denotes differentiation with re-
spect to 8 and where

(1+1)2 1/2
v, = 1 2g[E -E,(~)]-u„(R)—,' . (19}

The probability of a single crossing is P„and
hence 2P, (1—P, ) is the total probability for a
transition from state one to state two. The pa-
rameter y, is an l-dependent correction to the
phase factor

5 = J' '
g' 'dr' —f ' g' ' dr'

F

where

g2=2(f1+f2)+[(f1-f2) +4u']' ',

with

of this paper. The differential cross section is
defined by Etl. (12}.

In finding P, , we set u„(R) =F(2p, V»), where F
is a scale factor used to ensure that the energy
separation of the adiabatic 2Z2+(1'S} and 'Z2+(22S)

potential curves at the crossing is 0.0584 a.u.,
i.e., the same as in the three-state close-coupling
calculation. The diagonal elements Uzz and Ugg

are approximated by smoothly joining the adiabat-
ic potentials 'Z,'(1 'S; R &R,) with 'Z,'(2 S;R &R,)
and 2Z2(22S;R&R, ) with 'Z (21'S;R &R,). The
resulting approximate diabatic, crossing poten-
tial-energy curves are plotted in Fig. 1(a) as dot-
ted lines. Had we performed a two-configuration
potential-energy calculation, using only the two
lowest 'Z~+ states, the coupling matrix element
and the diabatic potentials would have been direct-
ly determined within the two-state model; how-
ever, the avoided crossing at R = 1.41a„which
is very sensitive to the presence of the higher
'Z~ states, would have been very poorly repre-
sented. In fact, as we shall show below, three
configurations are still not enough to adequately
define the details of these potentials in the impor-
tant region near the crossing.

In Fig. 4 the partial-wave SLZ 1'S- 2'S cross
sections are compared with those resulting from
the three-state close-coupling calculation at E =

40 eV. The differential 1'S-2'S cross sections
are compared in Figs. 5 and V. Considering the
approximate nature of the diabatic potentials, the
agreement is quite good. These results reinforce
our assumptions about the characteristics of the
crossing, and suggest that a semiclassical calcu-

f1 ~ 2 ~1, 2 11,22 (l + 2)'I»'.

According to Thorson and Boorstein, '4 and Olsen
and-Smith, "the phase correction y, has the fol-
lowing properties: y,- —~m as l-l„and y, -0
as l- 0. We have assumed y, to be a small correc-
tion, and therefore neglected it for the purposes
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I I 2 2 I I
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I --- —EXTRAPOLATED--- APPROXIMATE
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PIG. 7. The differential cross section p vs & for the
Z+ (1 S 23S) transition at E =40 eV (c.m. ), calculated

using the SLZ method (cf. Fig. 5).
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FIG. 8. Model ~Z~+ potential curves based on the
ab initio calculations of Michels (Ref. 21), Bardsley
(Ref. 23), and Evans and Lane (Ref. 24).
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FIG. 9. SLZ differential
cross section p vs & for the

Z~+ (1 S 2 S) transition
at E = 50 eV (c.m. ), calcu-
lated using model poten-
tials given in Fig. 8. The
dotted line represents the
most recent experimental
measurements of Lorents
(Ref. 28) (cf. Figs. 5 and 7).

lation based on the SLZ approximation may be
particularly well suited to this problem.

C. Model Calculation

A comparison of the three-configuration poten-
tials with the multiconfiguration potentials calcu-
lated by Michels" and Bardsley, "shows that the
crossing region (0.25a, sA s 1.75a,) for the two

lowest 'Z~+ states is extremely sensitive to the
presence of higher states of the same spin, sym-
metry, and angular momentum in the wave func-
tion. Since the scattering from this region occurs
mainly at low angles, the total cross section
should be a rather insensitive test of the accuracy
of the adiabatic potentials. In this respect,
small-angle-scattering data would be very useful
in establishing the correct details of the potential
curves in the crossing region. In this section, we
construct a set of model potentials based on the
best available ab initio calculations, and by com-
paring calculated differential cross section at
small angles with experimental small-angle-
scattering data, test the validity of our choices.
The potentials used are those of Michels, "mod-
ified so that the magnitude of potential coupling
(separation of the two 'Z~+ adiabatic curves) at the
crossing radius is approximately equal to that
obtained by Bardsley" (2 V» = 0.055 a.u. ) and
Evans and Lane" (2 V» = 0.0584 a.u.). The dia-
batic potentials, required in the SLZ calculation,
are constructed by joining the appropriate adia-
batic curves in the strong-coupling region to ob-
tain the curve crossing. The model potentials in
both representations are illustrated in Fig. 8.

The differential cross section calculated at 50
eV, using the model potentials, is given in Fig. 9.
The structure is a combination of low-frequency
path interference and high-frequency nuclear-
symmetry oscillations. Comparison with the ex-

perimental measurements of Lorents et al,."
shows that the magnitude of the theoretical cross
sections is too small but that the predicted fre-
quency of the interference oscillations is quite
good. The resolution of the experiment is too
low to see the nuclear-symmetry structure at
50 eV." Unlike the three-state calculations of
the differential cross section given in Fig. 5, a
significant contribution to the cross section
comes from small-angle scattering (g~ & 25).
From a careful examination of the approximate
diabatic curves in Figs. I and 8, it is evident
that the presence of the higher 'Z~+ states in the
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FIG. 10. Total 1~S 23S cross sections: 0, two-state
close-coupling (Olson, Ref. 29); 0, three-state close-
coupling (this work); dotted line, SLZ approximation
(this work). Experimental small-angle (0' to 5' lab. )
cross sections: dashed line, Utterback (Ref. 25); solid
line, McVicar-Whelan and Borst (Ref. 27). Theoretical
partially integrated (0 to 5 lab. ) cross sections: L,
two-state (Olson, Ref. 24); dot-dashed line, three-state
(this work).
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more accurate potential-curve calculations re-
sults in a deeper potential mell inside the cross-
ing, giving rise to a larger energy difference be-
tween U„and U» in this region. A smaller de-
flection angle 01& then results owing to a decrease
in the average elastic scattering angle 8, .and an
increase in e~.

The total inelastic cross section for 'Z~(1'8
2'8) transitions is given in Fig. 10. The cross

sections measured by Utterback" and by Mc-
Vicar-%helan and Horst" include scattering only
into a half-angle of about 5' lab. in the forward
direction. In order to compare with these ex-
periments, a partially integrated cross section
is obtained by integrating the theoretical differ-
ential cross section out to 5' in the lab. system.
The partially integrated cross section plotted in
Fig. 10 is too small, but it supports the ex-
perimental prediction of a peak in the vicinity
of 30 eV. If the excitation threshold energy,
which is determined by the hump in the model
'Z~ (2'8) potential curve, were lowered by 1.7 eV
to agree with the experimental threshold energy
of about 22.5 eV, "the peak in the theoretical
cross section would occur at approximately the
same energy as that predicted by experiment.
Also included in Fig. 10 are the results of model
calculations carried out by Olson. "

An explanation of the peak in the partially inte-
grated inelastic cross section [0 ~ 8 ~ 5'I(lab. )j has
been put forward by Olson. " Again, discussing
the problem in terms of the inelastic deflection
function, it can be shown that at very lom energies
(E s 40 eV) a large difference between U„and IJ22

will result in a negative deflection function ( an
attraction instead of a repulsion}. In this case,
the small-angle scattering receives contributions
from both positive and negative branches of 8» .
At higher energies the negative branch is mashed
out by the centrifugal-force term in the effective
potential. The resultant increase in the small-
angle scattering is accompanied by additional os-
cillation in the differential cross section due to
the interference of the positive and negative
branches of the deflection function. Olson'9 has
referred to this effect as the inelastic analog of
elastic rainbom scattering. Structure found in
the partially integrated inelastic SLZ cross sec-
tion in the energy range 30-40 eV (Fig. 11) is
probably due to interference of the rainbow-scat-
tering oscillations with those due to the nuclear
symmetry.

In the experiment of Utterback, "a beam con-
taining both rnetastable and ground-state helium
atoms mas produced by the charge exchanging of
He' ions in a beam with He. The beam was then
allowed to impact on molecular hydrogen, and the
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PIG. 11. Total 1~8~238 cross sections in SLZ approx-
imation using potential curves of (a) Michels, (b) model
(this work), (c) Bardsley. Experimental small-angle
(0' to 5 lab) cross sections: (d) Utterback (Ref. 25),
(e) McVicar-Whelan and Borst (Ref. 27) . Theoretical
SLZ partially integrated (0' to 5 lab) cross sections
using potential curves of (f) Michels (Ref. 27.), (g) mcxtel
(this work), (h) Bardsley (Ref. 23).

ionization cross section, (i.e., total cross section
for production of negative charge) was measured.
By also measuring the ionization cross section for
fast 8, molecules impacting on helium atoms, and
then taking the difference between the ionization-
cross-section curves for He-He, and H, -He in the
c.m. system, Utterback obtained a curve propor-
tional to the cross section for the 2'8 excitation
process, where he assumed that the Penning ion-
ization cross section for He*-H, collisions is not a
strong function of energy. Utterback arbitrarily
raised the H, -He curve 30% in order to make it
agree with the He-H, curve at higher impact ener-
gies. The effect of this correction is to force the
cross section for 'Q~(1'8- 2'8) transitions to
zero for energies ~50 eV center of mass. Since
there is no reason for the cross section to go to
zero in this energy range, we have neglected the
30% increase in the He-H, curve in obtaining the
curve plotted in Fig. 10. The reasonable agree-
ment in the slopes of the experimental and theo-
retical cross sections supports the assumption of
a slowly varying Penning ionization cross section
within the energy range covered. The absolute
value of Utterback's cross section, as given in
Fig. 10, shou1d be viewed as uncertain by as much
as a factor of 2."'" As given, it assumes the
Penning ionization cross section for He(2'8} on H,
to be of the order 2 x10 "cm', which is compa-
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will have a maximum in the partial-wave range
0& l& I, if the argument of the exponent in Eq. (18)
is neither too small nor too large, and that this
maximum will shift to larger / as the kinetic ener-
gy increases. Also, recalling that each yartial-
wave angular momentum ean be associated in the
classical limit with a specific scattering angle
(roughly, large I- small 8), we have plotted in

Fig. 12 the partial-wave probability using both
Michels's unmoChfied potentials and the model po-
tentials at E =29 eV. In the case of the model po-
tentials, the peak in the yartial-wave transition
probability is already located at a large value of
/ quite near /, . Hence, a further increase in the
energy results in only a small change in the mag-
nitude of the partial-wave transition probability
for /age values of /, and hence a small change in
the inelastic scattering at small angles. In con-
trast, the partial-mave transition probability cal-
culated by using Miehels's potentials peaks at /=0
for E =29 eV. %e found that a moderate increase
in the energy to 40 eV results in a large shift of

I
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0.2-
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lh
E = 29eV (c.m)
——MICHFLS

MODEL POTENT/ALS

I

20
I

40

't

\

~
&(
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FIG. 12, SLZ total probability of transition from
2Z+ (1~S) to 2Z~+ (2 SS) as a function of l at 29 eV (c.m.).

rable with thermal measurements. s' "
In order to demonstrate graphicaQy the sensitiv-

ity of small-angle scattering to the detailed nature
of the electronic potentials near the crossing, me
have calculated the partially integrated SLZ cross
section using the unmodified potentials of both
Bardsley33 and Michels" in the energy range 28-
50 eV. The cross section corresponding to Michel's
potentials is especially interesting, since the only
essential difference between these and the model
potentials given in Fig. 8 is the strength of cou-
pling, which primarily affects the probability of
crossing P, . It is seen in Fig. 11 that the struc-
ture observed in the model cross section has dis-
appeared, and that the slope is changed significant-
ly. It can be shown that the partial-wave transition
probability

the peak to large values of /. Thus at 40 eV, the
peak occux s at / =75, where for this case /,
=102. This strong energy dependence of the par-
tial-wave transition probability in the region of
the crossing is reflected in the partially integrat-
ed inelastic cross section as an increase in slope,
particularly in the energy range 29-40 eV. In the
case of Hardsley's potentials, one could show that
the enhanced peak and change in slope is due to the
combination of a somewhat different over-all form
of the potentials and a different coupling (at the
crossing), and hence partial-wave probability of
transition.

To investigate the influence of the hump in the
'Z,'(2'S) potential on the scattering process, the
diffex'ence between the maximum and the minimum
of the upper 'Z,' potential curve was varied. In
order to simplify the complicated structure in the
differential cross sections, both even and odd par-
tial waves were included in the sum, thus eliminat-
ing the high-frequency nuclear-symmetry oscilla-
tions. As shown in Fig. 1$, an increase in the
depth of the potential results in appreciable inelas-
tic scattering at progressively smaller angles.
Scattering at large angles is relatively unaffected
by these changes since the main contribution is
from partial maves / associated with turning points
well inside the crossing. In Fig. 18(c), inelastic
rainbow interference is clearly visible on the first
major peak. This phenomenon is associated with
high potential barriers where both positive and
negative bx anches of the deflection function are
possible.
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FIG. 13. Inelastic differential cross sections for
2Z + (1 S 238) transition at 40 ev (c.m.). Cases (a)
and (c) represent variations in the hump of the 2Z~ (238)
model potential: (a) dashed line, shaQower well and
lower maximum; (c) dotted line, deeper well and higher
maximum.

IV. SUMMARY AND CONCLUSIONS

In the above work, we have presented results of
a three-state cb initio calculation of the three lom-
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est 'Z; electronic states of He, '. Two potential-
curve crossings occur in the diabatic representa-
tion,' however, only the inner crossing at R =—1.5a
gives rise to a significant transition probability.
Comparison with other more sophisticated multi-
state ab initio calculations of these potential curves
has made it clear that the nature of this inner
crossing is quite sensitive to the presence of high-
er 'Z,' states. """The three-state close-cou-
pling calculations resulted in inelastic cross sec-
tions of the order 10 "cm' for 'Z'(1'S- 2'S) and
10 '~ cm' for 'Z,'(2'S- 2'S). The differential in-
elastic cross section calculated at E =40 eV (c.m. )
was found to possess structure due to inelastic-
scattering path interference and to nuclear sym-
metry. The contribution to the inelastic cross
section from scattering angles 8, «25' was found
to be negligible. This is due both to the lack of a
deep potential well in the upper curve near the
crossing and to the nearness of the crossing to the
repulsive barrier. Because the coupling between
the 'Z,'(1'S) and the 'Z, (2'S) electronic states is
confined to a narrow range of values of the inter-
nuclear separations near the crossing, we were
able to use the semiclassical SLZ approximation
in calculating the inelastic cross section. Reason-
able agreement between the SLZ cross sections
and those found using the three-state close-cou-
pling formulation assured us of the validity of this
approximation.

Because of the apparent sensitivity of the inelas-
tic cross section to the detailed nature of the po-

tential curves in the crossing region, we also con-
structed model potentials based on ab initio calcu-
lations of Bardsley, "Michels, "and Evans and
Lane. '4 Using these model potentials, we calcu-
lated the total and differential 'Z,'(1'S- 2'S) SLZ
inelastic cross sections for several energies be-
tween 29 and 60 eV (c.m. ). The differential cross
section at 40 eV (c.m. ) is in qualitative agreement
with the experimental results of Lorents. " In par-
ticular, it contains significant contributions from
scattering angles below 25'. Comparison of the
partially integrated inelastic cross section with
the measurements of Utterback'5 and MacVicar-
Whelan and Borst ' supports the experimental pre-
diction of a peak in the cross section in the vicin-
ity of 30 eV (c.m. ). The slopes of partially inte-
grated cross sections calculated by the SLZ meth-
od are in good agreement with the measurements.
This lends support to the assumption of a slowly
varying Penning ionization cross section for
He*-H, collisions for energies up to 60 eV. Addi-
tional model calculations have revealed that the
slope and magnitude of the small-angle inelastic
cross section as well as the interference struc-
ture depend strongly on the detailed nature of the
'Z,' potentials near the crossing.
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