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A procedure is developed for computing cross sections for the multiple ionization of atoms by the
impact of protons or other fully stripped nuclei. The ionization probability, as a function of energy and
impact parameter, P(E,b), is computed at several beam energies in the binary-encounter approximation
for a ground-state hydrogenic electron scattered by an incident proton. Scaling laws are given which
may be used to extend these results to other projectiles, other targets, and other hydrogenlike filled
atomic shells. It is shown that P(E,Q) = (o(E,r)/2mr?) for isotropic, but otherwise arbitrary,
electron-density distributions. A formulation for multiple-ionization cross sections is developed in terms
of the single-electron probabilities P(E, b) for each atomic shell, assuming that both the electrons and
the shells are mutually independent. Numerical calculations are compared to recent predictions in the
semiclassical Coulomb approximation and to recent satellite and hypersatellite x-ray data. The
discrepancies are generally within those resulting from uncertainties of 30-200% in the single-ionization
cross sections, when the ionization probability is much less than one. Then, approximating P(Eb) vs
b as a step function, the multiple-ionization cross sections are reduced to simple combinations of
single-ionization cross sections. These single-ionization cross sections may be evaluated in the
binary-encounter approximation by applying scaling laws to the usual universal curve that we tabu-
late. Multiple-ionization cross sections may thus be estimated without the aid of a computer.

I. INTRODUCTION

In the past several years there has been a re-
surgence of interest in ionization phenomena, in
part owing to advancing experimental technique
and in part owing to applications in other fields.
Considerable progress has been made in developing
approximate calculations of cross sections for the
single ionization of atoms by the impact of charged
particles, even though exact calculations have not
been done. The approximate calculations are

simple and may be applied to reasonably complex
systems. Recently there have been observations
of x-ray satellite! and hypersatellite? transitions
corresponding to multiple ionization of atoms and
molecules. Interpretations® and calculations®
which have described the atomic data have quickly
followed.

In this paper, simple formulas and tables are
compiled which may be easily used to compute
cross sections for the single ionization of atoms
by the impact of charged particles in the binary-
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encounter approximation.’~” These binary-en-
counter cross sections are then expressed in an
impact-parameter formulation; and the probability
for ionization P(E,, b) is computed for several
projectile energies E,. This representation is
extended to include multiple atomic ionization,
i.e., arbitrary numbers of electrons may be re-
moved from arbitrary atomic shells by the impact
of a proton or other fully stripped ion. Full nu-
merical calculations are compared to the recent
predictions of Hansteen and Mosebekk® as well as
to recent experimental data. Finally, the expres-
sions for multiple-ionization cross sections are
simplified so that extimates may be easily done.

A. Single-Ionization Theory

One of the earliest and most successful theories
is the Coulomb-Born theory, first worked out by
Bethe® in 1930. Simple Coulomb-Born calculations
for arbitrary atomic systems may now be easily
calculated with the tables of Merzbacher ef al.,®
using appropriate scaling laws. The dependence
of the cross section on projectile velocity scales
to the orbit velocity of the removed electron, and
the projectile charge dependence of the cross sec-
tion scales as z°.

Other quantum-mechanical formulations of the
ionization problem include the impulse approxima-
tion of Vainshtein, Presyakov, and Sobelman' and
the high-energy Glauber approximation of McGuire,
Hidalgo, Doolen, and Nuttall.!! In all of these
quantum-mechanical approximations, the projectile
velocity is assumed to be somewhat greater than
the velocity of the orbiting atomic electron that
is removed.

B. Binary-Encounter Model

Some of the most successful, if not the best
understood, calculations of atomic ionization have
been those based on the binary-encounter model.
The earliest binary-encounter calculation, rep-
resented in Fig. 1, was done by Gryzinski’?* who

E=gMy?

V2(r)\ "

z

p(r)/i,- :

FIG. 1. Representation of the binary-encounter model.
The incident projectile with velocity v; scatters via a
two-body Coulomb interaction from an electron with
velocity v,. The atomic electron is characterized by a
density distribution p(v,r)) .

used the model to compute atomic charge exchange
and excitation, as well as ionization. These cross
sections g(E,) were calculated from an approximate
expression for the two-body Coulomb-scattering
cross section o(v;, v, M, m) = 0(v;, v,) for particles
of velocities ¥, and ¥,, isotropically averaged over
the directions of the velocities. The cross section
for the scattering of atomic electrons was found
by integrating over a velocity distribution p(v,, v,)
corresponding to the velocity of the atomic elec-
tron, namely,

o(E;) =Nﬁ,°° o(vy, va, M, m) p(vy, vo)dmvidy,, (1)

where N is the number of atomic electrons involved
in the scattering, and $mvd=|U|, where U is the
electron binding energy. The normalization of

p(v,, 1) is given by

Js 4nv2p(vy, vy)duv, =1. (2)

In this calculation, p(v,, v,) does not change as the
projectile passes through the atom (static approx-
imation), and correlations between the atomic
electrons are ignored.

The two-body Coulomb cross section was found
approximately by integrating over the cross sec-
tion per unit energy transfer, namely,

Emax dg(v;, vy, AE)
= ao\v;, Uy, L)
U(UU 'Ug) = me d;E’ dAE . (3)

The ionization, charge-exchange, and excitation
cross sections differ only in the range of energy
transfers over which one integrates. In the case
of ionization, for example, E,;, =U, where U is
the binding energy, and E_, =E,, the projectile
energy.
Using isotropic-hydrogenic density distributions

for closed shells, corresponding to

8 v3

il @

P(v;, vo) 7 (v2+v

where $mv?2=-U, Gryzinski’? was able to compute
the ionization cross section in a closed form,
namely,

o(E,) = (NZ%0,/UG(V), (5)

where N=2 for the K shell, z is the projectile
charge, and o, =7e?=6.56x10"* cm?eV?. The
term G(V) is a function of the scaled velocity
V=uv,/v,, which we give in Table I. For V>0.208,
G(V) has been expressed algebraically'? as

c(M=[v*/1+v*)Pryv?
x[(V3/1+V?) +2(1+1/a) In(2.7+ V)]
x[1-1/all1-(1/a)**¥*], (62)
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TABLE I. G(V) vs V. In the classical binary-encoun- Table 1(Continued)
ter approximation, the ionization cross section may be
found according to (V) =Nz%0,G (V)/U?, where o, = 6.56 Geriuo
%10~ cm?eV?, U is the binding energy, z is the pro- Scaled VrlJensy
jectile charge, and N is the number of electrons in the velocity Garcia Gryzinski
shell from which the electron is removed. The scaled v cv) W)
velocity V is equal to ”c/vo: where v, is the projectile
velocity and v, the velocity of the orbiting atomic elec- 1.000 0.698 0.451
tron, In principle, the Gerjuoy-Vriens-Garcia G(V) is 1'1 00 0' 687 0'454
more exact than Gryzinski’s G(V). Corrections for 1'200 0'662 0'449
Coulomb deflection have not been included. 1:300 0:626 0:439
Gerjuoy 1.400 0.585 0.425
Scaled Vriens 1.500 0.543 0,409
. s . 1.600 0.502 0.391
velocity Garcia Gryzinski 1.700 0.462 0.373
v Gv) cw) 1.800 0.426 0.355
0.100 0.000024 9 0.000026 6 1.900 0.393 0.338
0.120 0.0000997 0.000 0552
0.140 0.000282 0.000102 ;288 gggi 8.2(2);
0.160 0.000 694 0.000174 2.200 0.309 0.289
0.180 0.00146 0.000279 2.300 0.286 0:274
0.200 0.002 89 0.000426 2.400 0.266 0.260
0.220 0.004 80 0.00143 2.500 0'247 0'247
0.240 0.008 36 0.00818 2.600 0'230 0’235
0.260 0.0133 0.0187 2'700 0'215 0‘224
0.280 0.0192 0.0318 2:800 0:201 0:213
0.300 0.0273 0.0466 2.900 0.188 0.203
0.320 0.0385 0.0627
0.340 0.0519 0.0795 3.000 0.177 0.193
0.360 0.0668 0.0968 3.500 0.132 0.154
0.380 0.0842 0.114 4.000 0.102 0.125
0.400 0.104 0.132 4,500 0.0810 0.103
0.420 0.127 0.150 5.000 0.0658 0.0872
0.440 0.152 0.167 6.000 0.0459 0.0642
0.460 0.178 0.185 7.000 0.0338 0.0493
0.480 0.206 0.202 8.000 0.0259 0.0391
9.000 0.0205 0.0318
0.500 0.235 0.219 10.000 0.0166 0.0264
0.520 0.266 0.236 15.000 0.00740 0.0128
0.540 0.297 0.252 20.000 0.00416 0.007 66
0.560 0.328 0.268 25.000 0.002 66 0.005 12
0.580 0.358 0.283 30.000 0.00185 0.003 68
0.600 0.388 0.297
0.620 0.418 0.311
0.640 0.446 0.325 where
0.660 0.474 0.337
0.680 0.500 0.349 a=4v31+1/V). (6b)
0.700 0.524 0.360 . .
0.720 0.547 0.371 For V<0.206, G(V) is approximately given by
0.740 0.568 0.381
0.760 0.588 0.390 G(M=#£ve. (6c)
0.780 0.606 0.399
0.800 0.622 0.406 In 1964 Stabler®® found an exact expression for
0.820 0.636 0.414 o(v,, v,) for particles of equal mass. In 1966 both
0.840 0.649 0.420 Gerjuoy® and Vriens® independently derived exact
0.860 0.660 0.426 expressions for arbitrary masses M and m. The
0.880 0.669 0.431 classical two-body cross sections obtained depend-
0.900 0.677 0.436 ed on M/m, i.e., o(v;, v;)~0(v;, v, M/m). A num-
0.920 0.683 0.440 ber of calculations, notably those of Garcia,’
g:g‘;g g‘ggg g:iii followed, and it was found that for M > m, the
0.980 0.694 0.449 ionization cross section could be cast into the form

of Eq. (5), with G(V) given by Vriens® for V>3 as
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where
c=V-1V, b=(1+cH™t, a=(1+V?":. (Tb)

We present the Gerjuoy-Vriens-Garcia G(V) over
a large range of V in Table 1.

Since the quantity U%c(E;)/Nz* does not vary with
target or projectile, this quantity is referred to
as a “universal curve.” The agreement with ex-
periments for the K-shell ionization of atomic
electrons by the impact of protons is generally
within a factor of 2, and the energy dependence
E, reflects the data very well.

The ionization cross section maximizes as the
velocity of the projectile approaches the velocity
of the atomic electron, i.e., near V=1, Since the
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FIG. 2. Energy for maximum ionization for various
targets. Both the cross section and probability for ioni-
zation peak when the velocity of the projectile and veloc-
ity of the atomic electron are nearly the same. The pro-
jectile energy required for maximum ionization is plotted
for both K- and L-shell electrons for atoms from Z =10
to Z =60.

0.0l

r

orbit velocity varies from atom to atom, the beam
energy required for maximum ionization varies
with the atomic nuclear charge Z, as is shown

for K and L shells in Fig. 2.

Thomas and Garcia have derived a correction
to o(E;) corresponding to the Coulomb deflection
of the projectile by the atomic nucleus. The cor-
rection is less than 1% for U/E;s 10~® and V= 0.5.
Experimental deviations from the z? projectile
dependence predicted by the Born and binary-en-
counter approximations have been observed, 1°:1¢
and a number of explanations®'!” have been pro-
posed.

II. IMPACT-PARAMETER FORMULATION

It is common to consider the scattering of par-
ticles as a function of impact parameter 5 and to
express the total cross section as an integral over
impact parameters, namely,

o(E,) =N [} 27bP(E,, b)db. (8)

Here P(E,, b) is the scattering probability per elec-
tron in a given shell, N is the number of partici-
pating electrons, and R is the distance at which
P(E,, b) goes to zero.

In order to express ¢(E,) in the form of Eq. (8),
we begin with the expression defined by the binary-
encounter approximation, namely,

o(E))=N f dAE f d*v,p(¥,)

deA—oE(v“?’, %’AE> ’ (9)
where (do/dAE)(v;, %, M/m,AE) corresponds to the
two-body Coulomb cross section per unit energy
transfer effectively® averaged over the direction of

¥,. Wenow assume a relationship between the velocity
¥, and position T of the atomic electron. Classical-
ly, this is easily done using conservation of ener-
gy, namely,

tmvi -z /r=U=-3mvd. (10)
Solving for v,(r) we have,
va(7)/ v =[(2a/7) - 1172, (11)
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where a is the orbital radius of the atomic elec-
tron. For a K-shell electron in hydrogen a=a,
=0.529%x107® ¢m is the Bohr radius.

We assume that the ionization cross section is
strongly peaked when the projectile and target are
close together, *® so that ¥ corresponds to both
the position of the electron and projectile in the
following development. Further assuming that
p(¥,(F)) is isotropic in ¥, at each T, we write
Eq. (9) as

o(E,)=N f dAE f drdnrip(r)

X fad—Ao—E-(’D‘, 'Uz('r),M/m; AE, 9,)dt,, (12)
and consider a projectile with a well-defined im-
pact parameter incident on an isotropic electron
cloud, as depicted in Fig. 1. At any given point
in an isotropic electron cloud the result of inte-
grating over 9, does not depend® on the direction
of the projectile velocity #; but only on the mag-
nitude of ¥, and V,. Assuming v, is constant,

the only variation of the integration over 9, is the
v, dependence, established by Gerjuoy.® Since v,
depends only on » (and not #), we may use Ger-
juoy’s results for do/dAE(v,, v,(r), AE) and write,

c(E,)=Nfdr (41rr’p(r) fd(AE)(—id—AO-E

w0y, 037, M/m, AE)) . (13)

The term in large parentheses is an isotropic func-
tion of . Consequently, we write

o(E,) =Nfd3'rp(r)a(v,, ve(7), M/m)

(R2-p2)1/2
=5 dv21 o gy 42 p (8" +21 1

X o(v,, v([8% +2%]M%), M/m) , (14)

where the integrand is zero for »>R. We now
identify

2_,211/2
P(E“b)=2f°(R 2 ) p([bz +zz]1/a)

xo(vy, v, (0% +2*]*/%), M/m)dz (15)

as the scattering probability. It immediately fol-
lows that the probability at zero-impact parameter
is given by

P(E,, 0) =(o(v;, v3(r), M/m)/277%) . (16)

Our expression for P(E,,0) has a simple physical
interpretation, namely, that P(E,, b) corresponds
to the average value of the cross-sectional area
for ionization divided by twice the projected area
of the target electron. For b+ 0, P(E,, b) is pro-
portional to the density of the electron cloud seen
by the projectile weighted by the ionization cross

section appropriate to v,(»). The total cross sec-
tion o(E,) is, of course, identical to that computed
from Eq. (1). Furthermore, the shape of P(E,, b)
as a function of 5 is in agreement with results
based on the semiclassical approximation.®

It is important to note that our expression for
P(E,, b) is not unique, since neither ¥,(¥) nor p(r)
is uniquely defined, for example. For a given
atomic target one could choose p(r) = [¥(r) [ or
p(vy(7)) = ¥ (v,) P. Fortunately, for hydrogenic
density distributions, both density disiributions
lead to P(E;, b) that are identical at =0, and sim-
ilar elsewhere.

A. Results for Hydrogenic Density Distributions

The density distribution corresponding to identi-
cal electrons in a filled hydrogenic shell follows
from Eq. (4) and (10), namely,

p(v N =[(2a/7) - 1]*/21a®, 7 <2a,
-0, r>2. (1)

The scattering probability may now be expressed,
using Eq. (10), as,

(4a2-py}/2
- v(r)
P(E,, b) L s

o(vy, vy(r), M/m) dz

X at a’ (18)
where » =(b% +2%)2, v,(7) is given by Eq. (11), v,
is the rms velocity and a the scaled Bohr radius
of the atomic electron. For M/m>10° and E,;/U=
76, P(E,, b) is essentially independent of M, i.e.,
P(E,, b)=P(V,b), where V=uv,/v, is the scaled
velocity. For example, at E;/U=10° and M =
1840m, increasing M by a factor of 4 changes
P(E,, b) by less than 1%,

There are several useful scaling laws for filled
shell hydrogenic distributions which we now con-
sider:

(i) Projectile scaling

P,(V,b)=2*P,.,(V,b). (19)

Since P(V, b) does not depend on the mass of the
projectile, only the 22 charge dependence contrib-
utes at fixed V.

(ii) Target scaling

P, (V,8)=Z"2P,_,(V,b). (20)

Here Z is the effective nuclear charge seen by

the projectile at the point of impact with the atomic
electron. Note that V=uv,;/v, changes with Z due

to the change in the target binding energy. There-
fore for fixed V different projectile velocities are
required. In practice, one first computes V cor-
responding to the target of interest, one then com-
putes P,_,(V,b) (or uses Fig. 3), and one then
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scales by multiplying P,_,(V, ) by Z~%. An ex-
ample is worked out in Sec. III.
(iii) Level scaling

P(V,b/a,) =P,-,(V,b/a,). (21)

Here a, is the radius of the nth atomic level.
These scaling laws may be quickly confirmed by
using either the Gerjuoy® or Vriens’ expression
for o(v,, v, M/m), along with the scaling rules,
a~-nta/Z, vy~ v,Z/n for hydrogenic electrons.

The results of calculations of P(V, ) for protons
on hydrogen are shown in Fig. 3. As a function of
b, P(V,b) is flat near the origin and is monoton-
ically decreasing. Near V=1, the probability
P(Vv,0) is greater than 1, suggesting that this cal-
culation overestimates P(V,5). The proton-hydro-
gen ionization cross section obtained from the
binary-encounter calculation itself is a factor of
1.85 times greater than the experiment at V=1.
This overestimate is, in part, due to the fact that
the influence of the projectile on the binding ener-
gy of the electron has been ignored. If the increase
in this binding energy were included, the probabil-
ity would decrease. This effect is overestimated
by assuming that the projectile is united with the
atomic nucleus when ionization occurs, so that

U-U(1+z/Z)2. (22)

P(b,v) vs b

~—v=1.5

0.4

0.2

FIG. 3. Ionization probability P(V,b) vs b at various
scaled velocities V. The scaled velocity V is equal to
vy vy, where v; is the velocity of the incident projectile,
and v is the orbit velocity of the atomic electron. The
impact parameter b is measured in units of the radius
a of the orbiting electrons.

In proton-hydrogenionizationatv=1.0, P(V, b)is
reduced by a factor of 4. Only when z/Z <« 1 does
this effect become negligible. It is also interesting
to note, from Fig. 3, that P(V,0) peaks at V~1.5
whereas the cross section itself peaks near V=1.0.

III. MULTIPLE IONIZATION

As early as 1927 calculations of double-ioniza-
tion? cross sections by charged-particle impact
were being done?! in the Born approximation, and
compared to experimeni:.22 Little additional work
was done until the 60’s when Mittleman?® performed
calculations with an impulse approximation, and '
Russek®® introduced a statistical model. In 1965
Gryzinski®® first computed double-ionization cross
sections from probabilities estimated using the
binary-encounter model.

Recently a number of authors®:* have indepen-
dently proposed the use of a binomial distribution
of probabilities for the multiple ionization of one
K- and nL-shell electrons in a single-target atom
(n=0,1,2,3,4,5,6,7, or 8). Experimentally one
finds that under high resolution the Ka x-ray line
splits into a number of satellite lines,' correspond-
ing to

Ok =)0 nL - (23)

Since the energies of the satellite x rays observed
correspond to levels of atoms with » electrons
missing in the L shell (in addition to a single
K-shell vacancy), o, ., is taken to be the cross
section for removing one K- and n L-shell elec-
trons. In terms of probabilities P, and P, for K-
and L-shell ionization,?® we may express this
idea by writing

Py =Px[PL +(1 —PL)]B

=P <ﬁ)Pg(1 -P),

n=0

where (%) is the binomial coefficient. It is assumed
that P2« Py« 1. It is now evident that

T B =2 [, 2m0Be(,,0) (2) PriEs 0

x[(1-P,(E;,b)]*"db (24)

corresponds to the cross section for removing one
K- and n L-shell electrons. Since interference
terms are ignored, the calculation is classical.

A. Full Results

Calculations of cross sections for multiple K, L
ionization in copper produced by the impact of a
proton are presented in Fig. 4. Below 5 MeV our
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results are in reasonable agreement with those

of Hansteen and Mosebekk, * although it is apparent
(e.g., at 5 MeV) that a difference in P, can pro-
duce an avalanche of difference in going to succes-
sively higher states of L-shell ionization. The
striking discrepancy at 10 MeV is primarily due
to the difference in total L-shell ionization cross
sections predicted by the two theories (1.3x10°1°

TABLE II. Double to single ionization cross-section
ratios for 0.8-MeV protons on atoms near Z=20. The
experimental (Ref. 27) values include statistical fluores-
cence-yield corrections for each state of atomic ioniza-
tion (0.8 MeV p +atom).

O1x,18/O1k,0L
Target
atom Expt. Theory
Ca 0.095 0.097
Sc 0.087 0.083
Ti 0.076 0.071
v 0.044 0.058
Cr 0.032 0.048
Mn 0.022 0.043
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FIG. 5. Coulomb ionization cross sections vs energy
for a + Al computed in the classical binary-encounter
approximation.

cm® vs 0.25x107* cm?). Data for Ly, ionization
of Cu by protons from 0.4 to 1.8 MeV tend to sup-
port® the higher values calculated by the binary-
encounter model.

Next we compare with experiment. In Table II
we present the ratio of o, ,; /0,4 o for 0.8 -MeV
protons®® incident on targets from Z =20 to Z =25.
Predictions for the multiple ionization of aluminum
by « particle impact over a wide energy range are
presented in Fig. 5. In Table III, these results

TABLE III. Multiple-ionization cross-section ratios
for o particles on aluminum at several energies. The
experimental (Ref. 28) values include statistical fluores-
cence-yield corrections for each state of atomic ioniza-
tion (o +A1).

Energy Oik 1L Oik,oL O1k,3L
(MeV) O1k,0L O1k,1L O1k,2L

Expt. Theory Expt. Theory Expt. Theory

3.0 1.15 1.70 0.28 0.74 0.14 0.42
2.4 1.50 1.72 0.35 0.75 0.12 0.43
2.0 1.65 1.75 0.41 0.76 0.13 0.44
1.6 1.91 1.73 0.51 0.76 0.18 0.43
1.0 2.25 1.57 0.57 0.68 0.15 0.39
0.8 2.09 1.42 0.53 0.62 0.19 0.35
0.5 1.39 1.08 0.40 0.47 0.11 0.27
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are compared to data®” recently taken at several
energies about 1 MeV. The relative intensities
given will be in better agreement than absolute
cross sections since the theoretical error in P,

is cumulative. From Tables II and III we see that
our average value of P; is typically within a factor
of 2 above experiment. This is comparable to the
accuracy typically found is comparing total exper-
imental and theoretical K- and L-shell cross sec-
tions. Our error may in part be due to ignoring
the influence of the projectile on the binding ener-
gies of the atomic electrons, and in part due to
the influence of L-shell vacancies on the binding
energies (both effects tend to raise the effective
nuclear charge and lower P).

A number of hypersatellite transitions (double
K-shell vacancy) have also been observed® in atoms
near Z =20 undcr the impact of 30 -MeV oxygen
ions. Arbitrarilv choosing the effective charge
(+6) of 30 -MeV oxygen ions rather than the nuclear
charge (+8), we computed the cross sections for
the hypersatellite transitions, as well as the sat-
ellite transitions, in calcium. The relative inten-
sities are compared to experiment in Table IV.
The poor agreement in the intensity distributions
is due to the fact that the intensity ratio goes as
P,/(1-P,), B, (the average value of P;) is near
unity, and P, is a factor of 2 too large.

In theory the relative intensity distribution of the
hypersatellite peaks closely resembles the distri-
bution of the satellite peaks. This similarity,
which is independent of the normalization of P, or
Py, has been evident for all targets and all pro-
jectiles at all energies which we have considered
in this paper. The absence of this similarity in
the data may be due to experimental background
and possible misidentification of the hypersatellite
peaks.

B. Approximate Results
1. Gryzinski and Kessel Models

Gryzinski'® has computed the average ionization
probability per electron in a very simple way by
dividing the ionization cross section per electron
by 4772, where 7 is the mean distance between
electrons, i.e.,

P(E,) =0(E;)/417N. (25)

In other words, the probability for ionizing a single
L-shell electron is simply equal to the area of the
L-shell ionization cross section per electron di-
vided by the surface area of the total sphere at
distance 7 from the previous collision, illustrated
in Fig. 6. Since the projectile crosses the sphere
twice, the total probability is twice the value given
by Eq. (25).

TABLE IV. Multiple-ionization cross-section ratios
for 30-MeV oxygen on calcium, Some of the experimen-
tal values (Ref. 2) include statistical fluorescence-yield
corrections for each state of atomic ionization (30 MeV
O +Ca).

Onk AL Omgor  On3L  Inkal Omsp P
P P L

Oor Okl Onx2L Omx3L Onk4L

Satellite (n =1)

Experiment 3.10 1.52 0.82 0.41 0.58  0.28

Theory 7.23 3.17 1.81 1.13 0.72  0.47

Hypersatellite (r =2)

Experiment . 2.5 1.2

Theory 7.29 3.19 1.82 1.14 0.73  0.47
Experiment Theory

2K, total

1K, total $0.007 0.022

Unfortunately, this approach does not work very
well when used to compute P(E,, b). Gryzinski’s
assumption is that o(v;, v,, M/m) is more or less
independent of v,, and therefore from Egs. (1) and
(2) is equal to o(E,;)/N. In order to test this as-
sumption, we computed P(E, b) from Eq. (18)
using this assumption and compared it to the more
exact result where o(v;, v, M/m) varies with v,.
The results are shown in Fig. 7. The shapes are
quite different, expecially near 5 =0. Further-
more, the Gryzinski result is a factor of 2 too
large at 5 =0.

A more reasonable approximation is that credit-
ed to Kessel, *® where P(E,, b) is represented by
a step function, namely,

P(E,,b)= P,(E;), b<R,

=0 b>R. 27)

For the ionization of 1K,nL atomic electrons, this
seems quite reasonable since P(E,, b) is quite flat
near b =0. In the region near =0, where Py (E;, b)
is nonzero, P,(E,,b) is flat, so that only the value
of P,(E,,b) near b=0 is important. Using the
Kessel model in Eq. (8), we have,

Py(E,) = %)?/'JX- (28)

It is interesting to note from Fig. 3 that near
V=1 it is quite reasonable to take R = (v2)a. Con-

FIG. 6. Gryzinski’s probability estimate. The proba-
bility for ionization is equal to the ionization cross
section divided by the total area of the sphere. Since
the projectile crosses the sphere twice, this estimate
should be doubled.
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sequently, the Kessel model gives the same aver-
age value of P,(E,) as Gryzinski, using 7 equal

to a. As the projectile velocity goes further from
the orbit velocity of the atomic electron (i.e., as
V goes further from unity), the value of R de-
creases.

2. Multiple-Ionization Recipes

In this section we give a procedure for computing
cross sections for the multiple ionization of atoms
by the impact of fully stripped ions. This pro-
cedure may be applied without the use of a com-
puter using the graphs and tables contained herein.

We begin by assuming that each electron shell
of the atom is independent, and by expanding the
total probability for all processes, namely,

1=[P, +{(1 - P)P[P, +(1 - P)*
X[Py+(1=-PyIe...[P, +(1 - P,)]¥7,

=H[P1+(1_P1)]N’- (29)

Here P, is the probability per electron for ioniza-
tion in the I'th shell and N, are the number of elec-
trons in the I'th shell. Expanding in binomial co-
efficients, (,7';), we identify

On nL,nM,...,n0 = fdb 27 (Zf) Px(1 - Py)"x="

X <NL> PI:'L(].—PL)NL_"L
ng

x (2’ "> PJu(1 - P)"u "y

X0 (NJ> PR(L-PYo  (30)

s
as the cross section for removing », K-shell elec-
trons, n; L-shell electrons, n, M-shell elec-
trons,..., and n; J-shell electrons.

The probabilities P,(E,, b) may now be computed
in either the semiclassical approximation,* or in
the binary-encounter model® using Eq. (15). If the
isotropic hydrogenic density distribution for a
closed-electron shell is used, then P(E;, b) may
be computed from Eq. (16) for one case and the
scaling laws [Eqgs. (14-21)] may be used to gener-
ate the other cases. The influence of the projectile
charge may be overestimated using Eq. (22) to in-
crease the binding energy of the atomic electrons.

The simplest estimate of the multiple ionization
probabilities is found by taking

PE, = ZEUN g

=0, b>R. (31)
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3r P(V,b) vs. b
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FIG. 7. P(V,b) vs b. The dashed curve corresponds
to Gryzinski’s estimate where the two-body Coulomb
cross section o(vy,v,) is approximated by the average
ionization cross section o(v;). The solid curve repre-
sents a more exact calculation, where o(v;,v,) is inte-
grated with a hydrogenic density distribution p ;). In
both cases the total cross section is the same.

2 4 6 8

Here R< (V2)a, where a is the orbital radius of
the electron; the equality sign holds when the pro-
jectile velocity is close to the orbit velocity of the
atomic electron being ionized, i.e., the scaled
velocity, V=v,./v.p i near unity. For V not
near unity, R may be estimated from Fig. 3.

The cross section ¢(E,)/N may be easily eval-
uated from Eq. (5). The G(V) functions for both
Gryzinski, and Gerjuoy, Vriens, and Garcia are
given in the table. The Gerjuoy, Vriens, Garcia
results are the more rigorous, although Gryzin-
ski’s results are often closer to experimental data.

The approximation used in Eq. (31) is best justi-
fied for single ionization in the Ith shell and multi-
ple ionization in shells higher than the 7th shell.
Then, except for the Ith electron, all the prob-
abilities will tend to be flat (unless the orbit ve-
locities differ by an order of magnitude or more
from the I'th orbit velocity) over the region of
nonzero P,(E,,b). In this case, Eq. (30) reduces
to

Nr

011 nR1S,en d = ("R) Pir(1 - Pp)%"r

S

... (ff) Pr(1-P)YUg,,  (32)
J

where
0, =N; [ 210 P,(b) db (P, <<1) (33)

is the cross section for ionizing a single /-shell
electron.
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FIG. 8. Atomic binding energy vs atomic number. The
binding energies for various atomic shells and subshells
are plotted for all atoms from Z =1 to Z =100. This
figure is based on the variational calculations of Herman
and Skillman.

The only parameters required to do a calculation
are the binding energies U and the radii R of the
electrons that are removed from the atom. The
binding energies for all shells in all atoms are
given in Fig. 8, based on the variational calcula-
tions of Herman and Skillman.?® The cutoff radii
may be estimated from Fig. 3 in terms of the
atomic radii a. These may in turn be estimated by
using a =n?a,/Z, where n designates the electron
shell, Z is the effective nuclear charge at that
shell, and a,=9.529%10"% cm.

As an example, let us estimate the cross sec-
tion for the ionization of one K-shell and several
L-shell electrons for 3.2-MeV « particles incident
on titanium. In order to compute o,y ,, We use
Egs. (5), (30), and (31) with Ny =2 and N, =8. We
take the binding energies for K- and L-shell elec-
trons in titanium (Z =22) from Fig. 8 as 5000 and
500 eV, respectively. In choosing the L-shell
binding energy we have chosen an average L-shell
binding energy, ignoring the differences between
subshells as well as the fact that U changes for
each state of ionization. We use (Z/n)?=|U|/13.6.
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Now V =[(E/U)(m/M)]¥?=0.3 for the K shell and0.9
for the L shell. Consequently, we take R =(v2)a
=(v2)(2)%a,/12=2.5x 10~° c¢m for the L-shell cutoff,
since V=1, We now find from Eqgs. (5) and (31)
that P, =~ 0.036 using the tabulated Gerjuoy, Vriens,
and Garcia G(V). The cross section may be eval-
uated according to

ou = (5) PEL= P oy, o)

where the value of 0, may be quickly found from
Eq. (5). The ratios 0y,,;/0:x 0 and Oyx 21/01¢,01
are 0.29 and 0.039, respectively. The correspond-
ing experimental values®® are 0.218 and 0.026,
respectively, while the full BEA calculations give
0.29 and 0.038.

It is much easier to evaluate P,(V,0) by using
Fig. 3 and the scaling laws corresponding to Eqgs.
(17—-19). At v=0.9, P,(V,0)=2%/Z2P(1,0)
=~ (2/12)?1.42=0.039, in reasonable agreement with
the previous estimate of 0.036.

In the current applications of this procedure,
primarily estimating cross sections for removing
one K- and nL-shell electrons, the estimates of
P, are typically within a factor of 2 of the value
which best fits the data, and usually the estimates
are too large.

Finally, let us compare our estimates to the
results of Hansteen and Mosebekk for the ratio
of 04411 /01x,0r, fOor 0.5-10 MeV protons on copper.
Since 0.5 < V'<2.5, we take R =(v2)a in Eq. (31).
In atomic units (¢? =h =m, =1), P, may then be
expressed as

P, =2(z/2)*G(V). (34)

Taking Z2=4|U,|/13.6 =294, the results given in
Table V may be quickly confirmed. Except at 10
MeV, they are in good agreement with Hansteen
and Mosebeck. At 10 MeV the total L-shell ion-
ization cross sections predicted by the binary-
encounter approximation is five times that pre-
dicted by the semiclassical approximation, so
that the large discrepancy in o,k ,; /0,4 o i8 to be

TABLE V. Comparison of double-to-single-ionization
cross sections for p +Cu. Our present estimates are
compared to those of Hansteen and Mosebekk, who in-
tegrate over probabilities computed in the semiclassical
approximation,

Energy °1K.LL/‘71K.0L
(MeV) McGuire-Richard Hansteen-Mosebekk

0.5 1.5% 2.4%
1.0 3.1 2.6.
2.0 3.8 1.2
5.0 2.6 2.5
10.0 1.5 0.2
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expected. The full binary-encounter results in
Fig. 4 are within 10% at low energies and a factor
of ~2 at high energies of the binary-encounter
estimates in Table V.

IV. CONCLUSION

The theory of multiple ionization based on the
binary-encounter approximation gives relative
intensities which are usually within a factor of 2
of experiment for heavy, fully stripped projectiles,
when the probability for atomic ionization is much

J. H. McGUIRE AND P. RICHARD 8

smaller than one. Simple estimates, easily done
using tables and scaling laws, give about the same
accuracy.
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