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The multichannel (p+, H) collisions are investigated in the three-state approximation. In our

formulation, precautions are taken to ensure that the state function has the correct asymptotic behavior.

Consequently, the spurious long-range interactions coming from the nonadiabatic interactions do not

appear in our coupled equations. These coupled equations are solved in the straight-line eikonal

approximation. The calculated differential elastic, electron-transfer, and 2pq-excitation cross sections are

compared with recent experimental data and other theoretical results.

I. INTRODUCTION

This is the fifth of a series of papers' in which
we hope to develop a practical and systematic
semiclassical procedure for calculating electronic
transitions in slow collisions of atoms and mole-
cules. Our effort has been to reduce the coupled
equations of the adiabatic state expansion method
to a practical form for regimes where the eikonal
approximation is valid. The problem was formu-
lated in paper I, where it is shown that the use of
the eikonal approximation to describe the motion
of the atoms and/or iona permits the coupled equa-
tions of the adiabatic state expansion method to be
reduced to one-dimensional equations defined
along a classical trajectory. The techniques for
the evaluation of the wave functions and the
Green's functions of the coupled equations in the
eikonal approximation were described in paper II.
A few illustrative applications were given in paper
III as well as in paper II.

Utilizing these techniques, the coupled equations
were further reduced in paper IV to a form which

allows straightforward computation. As a first
example of the application of the coupled equations
in the multichannel eikonal approximation, we have
in paper IV calculated the energy dependence of
the 2P-excitation cross section for the He'(1s)
+H(ls)-He'(1s)+H(2P) process. In this calcula-
tion, we have utilized the multichannel feature of
our procedure and investigated the coupling of the
asymptotically degenerate channels associated
with the 2P and 2P, H states. It is shown that the
explicit inclusion of this coupling is a necessary
first step to bring the theoretical result into a rea-

sonable agreement with experiment. '
The purpose of the present paper is to investi-

gate the application of the coupled equations in the
multichannel eikonal approximation to the calcula-
tion of the differential cross sections. For the
calculation of differential cross sections, unlike
the total cross sections, we must treat the phase
relation in more detail. Consequently, we need
to know more about the adiabatic states of the mo-
lecular system to be considered. For this reason,
we return to the (P', H) system for which the exact
states are known. ' Reasonably accurate calcula-
tions of the elastic and 2P-excitation scatterings,
as well as the resonant and 2P-excitation electron-
transfer collisions, have recently become avail-
able' " in a wide range of energies (30 eV to
30 keV). These calculations would provide a very
useful comparison in assessing the validity of
various simplification assumptions adopted in our
multichannel eikonal approximation.

After a brief review of the recent developments
in the treatment of the (P', H) collision, we pre-
sent in Sec. II a multichannel eikonal approxima-
tion for the (P', H) collisions. In this approxima-
tion we have taken the 1so, y 2Po'„, and 2Pm„adia-
batic H, ' electronic states into consideration.
This constitutes one of the simplest models which
would provide a reasonable description of the
Everhart damping" and the 2P-excitation colli-
sions. '" The method of evaluating the nonadia-
batic interaction between these adiabatic states is
presented in Sec. II. The results obtained in our
calculation are analyzed and compared with avail-
able measurements and other theoretical results
in Sec. III.
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H. EIKONAL APPROXIMATION FOR
MULTICHANNEL (p', H) COLLISIONS

A. Multiclmnnel (p+,8) Collisions

The remarkable measurements of Everhart and
his associates" in the early 1960's have made it
apparent that the familiar adiabatic two-state
approximation" does not provide an adequate de-
scription of the elastic and resonant electron-
transfer (P', H) collisions. One of the salient fea-
tures which the adiabatic two-state approximation
fails to account for is the damping in the electron-
transfer probability. One of the physical reasons
for this damping has been pointed out by a number
of workers"'" as being due to the coupling with ex-
cited states which are neglected in the adiabatic
two-state approximation, and it is this coupling
that concerns us in the present paper. A second,
comparatively trivial, source of damping is the
difference in the amplitudes of scattering in the g
and u states at a given angle, which necessarily
leads to nonzero minima in the interference pat-
tern. This type of damping is well understood and

requires no special comment here. ""The damp-
ing due to excited states must be accounted for by
including these excited states in the expansion
leading to the coupled equations to be solved; the
adiabatic representation provides the most com-
mon approach to these coupled equations, but
other approaches are also useful in various cir-
cumstances. "'"

We shall consider the former approach and treat
the multichannel (P', H) collision in the adiabatic
state expansion method by including the appropri-
ate excited states. Bates and Williams" have
shown that the damping in the electron-transfer
probability comes primarily from the nonadiabatic
coupling of the 2Pv„state with the 2Pm„state at
close internuclear separations. The effect due to
the nonadiabatic coupling with the 2Pm„state on the
electron-transfer probability was then treated in
the impact-parameter approximation. The results
are in qualitative agreement with observations in
that the electron-txansfer probability is no longer
oscillating between unity and zero. The results of
Bates and Williams were further improved by
Smith" using an approximate wave treatment. The
justification of the procedure is, however, not

straightforward. " Attempts at solving such three-
state coupled equations in terms of the adiabatic
molecular states have been made only recently. ' "

The three-state approximation has bien investi-
gated by Knudson and Thorson' in the WKB approx-
imation. In their work, the asymptotic states
were constructed in the molecular reference sys-
tem. As a consequence, spurious long-range in-
teractions appeared in their coupled equations.

(2.1)

with

G„=(E+iq —K- W„-'U~) ', (2.2)

where TV +Q are the eigenvalues of the adiabatic
states p, K is the appropriate kinetic energy
operator of the colliding system in the c.m. sys-
tem, and J & are the appropriately modified non-
adiabatic interactions [see Eqs. (I2.16)and(I 3.28)].
In Eq. (2.1), we have labeled the initial states as
e = 0 with incident relative momentum p. Thus,

This spurious long-range interaction which comes
from the 2Po„—2Pm„rotational coupling has an 8 '
dependence. Fortunately, their calculation was
carried out at relatively low energies where the
errors introduced by this spurious long-range in-
teraction are small. The total 2P -excitation
cross section has recently been calculated by
Hosenthal" in the four-ungerade-state approxima-
tion. Such spurious long-range interactions were
also presented in this calculation.

One way to eliminate the spurious long-range
interaction is to explicitly introduce a transla-
tional factor in the state function to give the cor-
rect asymptotic states. " This was done corxectly
by Bates and Williams" in the context of the time-
dependent theory. The three-state coupled equa-
tions as formulated by Bates and Williams have
been solved by McCarroll and Piacentini" in the
150-eV-2.84-keV energy region. The results are
in reasonably good agreement with experimental
obsenrations. "

The spurious long-range interactions coming
from the nonadiabatic interaction can also be for-
mally eliminated in the formulation of the coupled
equations. This has been done in paper I by Chen
and Watson in the context of stationary-state
scattering theory. This approach has the advan-

tage that the spurious long-range interaction would

not appear even in the absence of the translational
factor. In the present work, we investigate the
application of these coupled equations to the (P', H)

collision problem in the three-state approximation.
We shall solve the three-state coupled equations
in the straight-line eikonal approximation. "A
similar procedure has been adopted by McCarroll
and Piacentini. " The difference lies, however, in
the treatment of the longitudinal and transverse
components of the momentum transfer. The non-
adiabatic interactions used in the present calcula-
tion are those obtained using the exact adiabatic
H,

' molecular electronic states.
The set of coupled equations which is free from

the spurious long-range interaction takes the
form [see Eqs. (13.43) and (I3.45)]
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the coherent state 4 '
&

represents the elastic
scattering [see Eq. (I3.44)]. This set of equations
is consistent with fox mal scattering theory. %e
shall solve these equations in the eikonal approx-
imation.

In adopting these coupled equations and the eiko-
nal approximation me have restricted our interest
to problems which are bounded by the following
two inequalities (we are using the notations of
paper I):

n. = w/(e'/&) « I,

q,
-=)I/(Ps, ) (( I,

(2.3)

(2 4)

where v and p are, respectively, the relative
velocity and momentum of the colliding atoms,
e'/)I = 2&10' cm/sec is a characteristic bound-

electron velocity, and a, is the Bohr radius. The
smallness of the dimensionless parametex q, per-
mits a neax'-adiabatic description of the collisions
provided by the coupled equations. The smallness
of the dimensionless parameter g, permits the
coupled equations to be solved in the semiclassical
eikonal approximation. For collisions where the
inequality for q, is not adequately satisfied, cou-
pled equations of the same form mould still be ob-
tained [see Eq. (IB.7)].

For collisions when g, is not small, the atomic
state or atomic pseudostates may for certain
cases be used in place of the adiabatic molecular
states for the formulation of the coupled equa-
tions. "'" Detailed calculations with very er.-
couraging results are obtained" for the (P', H) col-
lisions at energies larger than j. keV. The r.oupled
equations obtained in the atomic state exparision
can also be solved in the eikonal approximation. '
%e shall, however, confine our consideration to
the adiabatic-state expansion and to the case where

g, and q, are both small.
It has been observed"" that the nonadiabatic

coupling between the 2Pa„and 2Pm„states alone
mould lead to much too large a cross section for
the 2P& excitation of the hydrogen atom. There
are a number of othex adiabatic H,

' states, name-
ly, the 2sow, SPo„, Sdow, 4'„, and Sdww states,
which mould lead to the n = 2 excitation of hydrogen
atoms. Schneiderman a d Hussek" hav poi ted
out, based on the calculation of Mukherjee and
Hussek, "that the inclusion of the 3PO'„state cou1d
significantly reduce the 2P&-excitation cross sec-
tion. A detailed two~gerade state (2Po„, 2Pw„)
and a four-ungerade state (2Po„, 2Pw„, SPo„, and

Spm„) calculation have been carried out by Rosen-
thal. " The result indicated that the inclusion of
the 3po„s'tate does improve the agreement with
experiment" at energies above 2 keV.

It should, homever, be pointed out that recently

the differential elastic scattering, electron-trans-
fer, and (s =2)-excitation cross section, as well
as theix absolute ratios, have been measured. "
Thus, by normalizing the differential elastic scat-
tering cross section to the theoretical result at
one scattering angle, the absolute differential
(s = 2)-excitation cross section can be obtained.
The excitation cross sections so normalized are
in good agreement mith the three-state theoretical
results at energies of O. V and I keV. The magni-
tude of the total (s = 2)-excitation cross section ob-
tained from such normalized differential cross
sections is also consistent with the measured total
2P, -excitation cross section. " (One expects the
total 2s- and 2P, -excitation cross sections to be
small. ) Thus, in this energy region (E( 1 keV),
the three-state approximation appears to be rea-
sonable. In the present work, me shall confine
our treatment within the three-state (Iso~, 2Po„,
and 2Pw„) approximation.

and for the wave function

e,(R') =(2w)-" y, (R') s"s& R'& (2.6)

R

S.(R, R')= „«.(R"}de
,Rl

RIll
R

S,(R)= «,(R') ds,

(2.7}

«.= [2M, (Z- W„-~.)]'~. (2.9)

%e suppose that the eikonal amplitude y8 is a re-
Latively slowly varying function of the position.
We further suppose that E= (Q'/M„)/8»1 (wher-e
(R is the Rydberg constant), so that the path inte-
grals for the eikonals given by Eqs. (2.7) and (2.8)
can be evaluated in the straight-line approxima-
tion. A detailed investigation of the trajectory
problem for the (P', H) collision was given in pa-
per II.

In paper IV, me have shown that the coupled
equations given by Eq. (2.1) can be reduced, in the
straight-line eikonal approximation, to the form
[see paper IV, Eq. (IV 2.48)]

e ( R) = 8,4'; (R) -Q,
d~'J. , ~', S y, ~', S e-" a~"'~, 2.io

8. Multichannel Eikonal Approximation

To solve Eq. (2.1) in the eikonal approximation,
we write for the Green's function

&.(R, R')=-(I,/2w)IR-R'I '8" '" "' (»)
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with [Eqs. (IV 2.26} and (IV 2.58)]

y.,(z', b) =- g(%') —q(R)

= —z(b[)- b cos 8)+ 542„[)(z, b)

+-'[4»(b) —4.(b)], (2.11)

SS.,(s, i) =f [(2/v ) V —(2/, ) V ] d ',
(a.ia}

vs = lim(z [])/I„.

Utilizing Eq. (2.10), the transition matrix for a
final state a and relative momentum k [see Eq.
(I S.45)],

((wk~ITIop) = 5~(x~, U0212+, -)

(a.is)

may be evaluated to give

T~= 5, (hq, U~ 2'„1/)+(2 )w' Q vsao J&
y 0 co p

B.we a

x blab Jo k bsin8 8 5 e('+~ oo( ~, 2.14
0

with

(2.15)

~Qa[[(z, b)
=A~[] 5[]0—iA~B Q Q8y,g

y wing

(2.17)

Q (b)=e ' "I ~'" ()""lim Q (z b)

e' +e'0=- ~eU ~0+PUo~o d

where the U~'s are defined in terms of the adiaba-
tic potential '0 [see Eq. (IV 2.12)]. For consis-
tency in notation, we have ko =p .

The quantities Q [](z, b) are solutions of the set
of coupled first-order differential equations

duced is less than one percent. " The extension
to interaction with exponential-type azimuthal an-
gular dependence is given '.n Bef. 24.

In terms of the solutions obtained from Eq.
(2.20), the transition amplitudes take the forms
[see Eqs. (2.14), (2.15), and (2.19)]

2'i, " =[is, /(22)'] f dndd, (pn sinn) (v'n —2),

(2.21)
2'[ i = [iv, /(22)'] f 2ddd (2 2sind)

0

& (e" [i —f1 &"](b)]-I], (2.22)

2'[",'=[2, /(22)'] f dddd(2 2sind)
0

~(u) f ( j.fh} @'p g~21 (2.2s)

C. Three-State Approximation

In the three-state approximation, Eq. (2.17) re-
duces to a set of three coupled equations. To
simplify our notation, we shall label these states
in the numerical order 0, 1, and 2 where 0 and 1
denote, respectively, the asymptotically degener-
ate 18'~ and 2Po„adiabatic H, ' states and where
2 denotes the final 2P~„adiabatic H,

' state.
From symmetry considerations, it is clear that

the nonadiabatic interaction matrix elements 4 8
vanish between gerade and ungerade states. This
then uncouples gerade and ungerade interactions
and the three coupled equations reduce to a pair
of coupled equations for the ungerade states. %e
have from Eq. (2.17)

(Q['",''] (0 ) ( o AI",]] ['Q~",»
gl "II "I 220

dz kQ'2) ( 'A" 32(A'2' 0 j (Q["'/]'

A ~8(z, b) = v 8' J' 8(z, b} e '~n]]~"] . (2.1S)
I',"' (b) = (,l,) Q'".'(b} (2.24)

Thus, by solving Eq. (2.17), the transition matrix
given by Eq. (2.14) can be evaluated. The poten-
tial scattering terms (A], ,U, )id'„w } can be written
in the form [see Eq. (II5.11)]

(x„-,U, e,'. -,) = [iv l(2w)']

X bdbJ0 0 8 e' 0( ~-1, 2 19
0

which was first derived by Moliere. "
In deriving Eqs. (2.10), (2.14), and (2.17) we

have supposed that the nonadiabatic interactions
J 8 have cylindrical symmetry. Consequently in
Eq. (2.14) only the zeroth order Be-seel function
J', (z) appears in Eq. (2.14). For the intended ap-
plication to the (P', H) problem, the error intro-

where the superscripts (g) and (u) are introduced
to denote the gerade and ungerade symmetries.
From the comparison of Eq. (2.22) with Eq. (2.19),
it is clear that the dampings due to the coupling
with the 2P~ states in the ungerade mode of in-
teraction give rise to the iI'," term.

In the three-state approxir~ation, the elastic
scattering and resonant electron-transfer ampli-
tudes may be obtained by appropriate linear com-
binations of the elastic transition amplitudes T~(~~

and T(",~. %'e then have

'„"(is- Is) =(aw)'M„' I-,'(r['] ~ r,", &) I'. (2.25)

It is, however, not possible in the three-state
approximation to distinguish electron-transfer



CHEN, ISHIHARA, PONCE, AND WATSON

excitation from scattering excitation. We have,
therefore, the approximations

„„'(Is-2Ps)= „"(Is-2Pv)
dG

=(2&) M, (~2/'vg)' I&,'",'I' (2.25)

The total cross section and electron-transfer prob-
ability can be readily determined in terms of
these differential cross sections.

D. Nonadiabatic Matrix Elements

~„,=-(1/2M„)[(m., Vse, )+2(m. ,V;A) V}I]. (2.23)

To solve the coupled equations, we must first
evaluate the nonadiabatic interaction. The matrix
elements J ~ of the nonadiabatic interaction be-
tween the adiabatic states y and ya were defined
in payer I in terms of the incident channel coordi-
nates (r„R,). Since Z 8, unlike 4 q and b~'), are
less sensitive to the choice of the coordinates, we
shall use the usual coordinates ( r, 8}for the eval-
uation of J 8, where R is the vector from the target
proton to the incident proton, and r is the position
of the electron with respect to the mass center of
the nuclei. We then have

~as( Ry t +s) = +(gs —11m 4~8—:6~8 —h~ j (2 27}

8 ~ j, 8 gVR=R —+y ————J )
BR R By

1 8 i
+q . ———cosy(Z, .-tany J„)I, (2.30)8 siny Bg )

where J...J„, and J,. are the Cartesian compo-
nents of the electronic angular momentum opera-
tor in the moving molecular coordinate system.

Assuming the classical trajectory lies in
straight lines, we may take the local tangent a of
the classical trajectory in the direction parallel
to the z axis of the fixed reference coordinate
system. Since

A A

ZR=cosy =(Z/R),
A

Z y = —siny= —(5/R),
(2.31)A A

Z'g = 0

we obtain from Eq. (2.30)

A 8 sin y 8 g
«8 &R = }tg cosy ——kg ———J,i, (2.32)

BR R 8y

where J„.can be expressed in terms of the lower-
ing and rising electronic angular momentum oper-
ators. We have

countered in the work of Knudson and Thorson' and
of Rosenthal. "

Let R, y, and g denote the unit vectors forming
the basis of the spherical polar coordinates R
= (R, y, q) in the fixed reference coordinate sys-
tem. In the moving molecular coordinate, the
gradient takes the form"

This change in coordinates does not introduce an
error in Z s, under the condition m/M «1 and
Eq. (2.4). In the eikonal approximation, b

& to the
order of q, takes the form

a„s= —(iT(8/M„) ~ (q, vR ys),

iJ„.= g (J'~ —j ),
with

~g t 8 . f 8J =me"" +icot8'
Bg/ 8 @I

(2.33)

(2.34)

where the first term of Eq. (2.28), which is com-
paratively smaller than the second term, has been
neglected in Eq. (2.29).

The electronic coordinates in adiabatic states
are usually expressed in terms of the reference
system which has the z axis parallel to the molec-
ular axis of symmetry. The collision system is,
however, specified in terms of a fixed coordinate
system. The atomic states obtained from the adia-
batic states in the 8- limit depend therefore
explicitly on 8 . Consequently, the asymptotic
expressions of b „8 [i.e., b~„'8, see Eq. (2.27)] are
spurious for cases where ~ and P states belong
to the scattering or to the rearrangement channels.
It has been shown in paper I that the appropriate
nonadiabatic interactions which appear in the
coupled equations are J ~ but not 4 8. By defini-
tion J 8 do not contain &„~& and are therefore free
from the spurious long-range interactions en-

where 8' and y' are the polar angles of the elec-
tron in the moving molecular coordinate system.
The nonadiabatic interaction in the straight-line
approximation then takes the form

its 8&.8(R)=- «s7 ~ —„~'8)r
4"y y„, —(J, -8 )rp . (2.35)

The nonadiabatic interaction between the PPo„
and 2Pw„has been investigated by Bates and
Williams" in the united-atom and linear combina-
tion of atomic orbitals (I CAO} approximations.
This approximate expression was used by
McCarroll and Piacentini" in their three-state calcu-
lation. Evaluations of the Q~„~, nonadiabatic
interaction can also be carried out using the
exact adiabatic 8,+ electronic wave functions. ""
We have also carried out such a calculation using
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FIG. 1. Angular dependence of the theoretical differ-
ential elastic, electron-transfer, and 2p „-excitation
cross sections in the{/+, H) collision obtained in the
three-state straight-line eikonal approximation at a lab-
oratory energy of 410 eV. The differential 2p~ -excita-
tion cross section calculated by Knudson and Thorson
(KT, Ref. 9) is shown as the dashed curve.

FIG. 3. Comparisons of the 2p„-excitation probability
fsee Eq. (3.1)] in the (P+, H) collision as a function of
the impact parameter obtained in the three-state quan-
tum WEB, straight-line eikonal, and impact-parameter
approximations.

the exact wave functions. The result agreed with
those obtained by Knudson and Thorson' and by
Rosenthal. " The 4

&
term which is expressed in

terms of atomic states can be evaluated exactly.
We have

IO
3

», = i(bv/R) [16%/81).

By subtracting 4
&

from 4 &, we obtain the de-
sired nonadiabatic interaction J 8. For numerical
convenience, we have fitted the nonadiabatic in-
teraction into a simple analytic expression (in

2
ce IQ

b

10

1.0

0.8o
C)

0.6—

o 04I—
I
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02
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= 0.41 keV

o- Everhort
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FIG. 2. Angular dependence of the theoretical differ-
ential elastic, electron-transfer, and 2P„-excitation
cross sections in the (p+, H) collision obtained in the
three-state straight-line eikonal approximation at a lab-
oratory energy of 500 eV. The differential 2p„-excita-
tion cross section calculated by Knudson and Thorson
(KT, Ref. 9) is shown as the dashed cruve.

8 (deg)

10

FIG. 4. Comparisons of the angular dependence of the
calculated (p, H) electron-transfer probability in the
three-state straight-line eikonal approximation with that
measured by Helbig and Everhart (Ref. 14) and that cal-
culated by McCarroll and Piacentini (dashed line, Ref. 11)
and in the two-state straight-line (dash-dot line), angle
(dotted line), snd classical-trajectory (0(1P I too)) (dash-
double dot line) approximations (Ref. 2).
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atomic units) ~

J' „,(R}=+(ibk,/M„R') e """
x(1+0.9914R+0.9355R'-0.275VR'

LO

f, ~ 0.5kt'V

+0.1486R~). (2.36)

This is the expression that we have used in the
calculations reported in the Sec. III.

III. DIFFERENTIAL CROSS SECTIONS IN

(p',H) COLLISIONS

C)

0.2—
Lal

I

2.0
I

4.0

8 (dgj

6.0 8.0 I0.0

Calculations of the differential cross sections
for the (P+, H) elastic, electron-transfer, and

2P, -excitation collisions are carried out in the
three-state approximation described in Sec. II.
The coupled differential equations, Eq. (2.20), for
the Q sare solved using the Bulirsch-Stoer nu-
merical method. " In terms of these Q ~, the
transition amplitudes are then obtained by evalu-
ating the integrals givenby Eqs. (2.21}-(2.23). To
account for the rapid oscillation of the integrand,
the integrations over b are split up into two re-
gions. For b&V/ksine the Gaussian quadrature
is used, and for bksin8&7 the integrals are eval-
uated by utilizing the asymptotic expressions of
the Bessel functions to recast the integral in the

FIG. 5. Comparisons of the angular dependence of the
calculated (P+, H) electron-transfer probability in the
three-state straight-line eikonal approximation with
that measured by Helbig and Everhart (Ref. 14) and that
calculated by Knudson and Thorson (dashed line, Ref. 9).

form

a&+&a&

Z db. [g,(qb) sin(q b}+g,(qb) cos(qb}j,

where the functions g, and g, are fairly smooth
functions. An explicit evaluation of these integrals
is then carried out by cubic-polynomic interpola-
tion of g, and g, . The results are presented and
compared with experimental measurements and
other theoretical results in graphic forms.
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Elastic Electron Transfer FIG. 6. Comparisons of the
angular dependence of the the-
oretical differential elastic
and electron-transfer cross
sections obtained in the three-
state straight-line eikonal ap-
proximation with that mea-
sured by Houver et al. (Ref. 15).
The experimental results are
normalized to the theoretical
elastic cross section at labo-
ratory angles of 0.8' and 1', re-
spectively, for energies at 700
and 1000 eV.
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keV FIG. 8. Comparisons of the angular dependence of the
calculated {p,H) electron-transfer probability in the
three-state straight-line eikonal approximation with that
measured by Helbig and Everhart (Ref. 14) and by
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with slightly smaller magnitude in comparison
with the present result.

A comparison of the 2P, -excitation probability

P~ .

FIG. 7. Comparison of the angular dependence of the
theoretical differential 2p„-excitation cross section ob-
tained in the three-state straight-line eikonal approxima-
tion with that of the differential (e = 2)-excitation cross
section measured by Houver et al. (Ref. 15). The magni-
tude of the experimental data is obtained based on the
single-point normalization in Fig. 6. The 2p -excitation
cross section calculated by Mc Carroll and Piacentini
(Ref. 11) and by McCarroll et ul. (Ref. 8) are shown as
dashed and dotted curves, respectively.

In Figs. 1 and 2, the arear dependence of the
differential elastic, electron-transfer, and 2P~-
excitation cross sections are displayed for two
fixed laboratory energies at 410 and 500 eV. The
2P, -excitation cross section has been calculated
by Knudson and Thorson (KT) at these energies. '
It is seen from Figs. 1 and 2 that their cross sec-
tion exhibits the same angular dependence, but

(3.1)

which appears in the impact-parameter integral
approximation for the total 2P&-excitation cross
section

{),„{{s-RP„)=Rw f bd) P,~„{)), (3.2)

is made in Fig. 3 with those calculated by Knudson
and Thorson in the quantum %KB and impact-pa-
rameter approximations at an energy of 500 eV.
It is apparent that the present straight-line eiko-
nal approximation yields results which are in
closer agreement with the quantum %KB results
than the impact-parameter approximation.

The electron-transfer probability &,t can be ob-
tained from these differential cross sections by
the approximate relation

„"(ls-1s)+ „"(1s-2P„)
&et =

d~
&' (1s- ls)+ ' (1s-1s)+ '(1s-2P, )+ " (1s-2P', )

l

(3.3)

Comparisons of the angular dependence of I',t with

experimental d"-ta' at these energies are given in
Figs. 4 and 5. The damping due to the coupling
with the 2Pm„state is apparent at large angles. We

have included in Figs. 4 and 5 the three-state re-
sults obtained by McCarroll and Piacentini" and

by Knudson and Thorson, ' respectively.
At these relatively low energies, one would ex-

yect that the trajectory effect would also be of
importance for large-angle collisions. In paper
II, we have investigated this trajectory effect in
the two-state approximation by following the clas-
sical trajectory up to the order IPI'a, . This result
was then compared with those obtained in the
straight-line and angle approximations. "' For
comparison, these results obtained in payer II are
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Houver et aE. (Ref. 15) and with that calculated by Mc-
Carroll and Piacentini (dashed line, Ref. 11) at a labor-
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now reproduced in Fig. 4. It is seen that at E~b
=410 eV, the trajectory effect is still appreciable
in comparison with effects due to the nonadiabatic
coupling with the 2Pm„state at large angles.

Recently detailed measurements of the differen-
tial elastic, electron-transfer, and (n=2)-e exit -a

tion cross sections in the (P', H) collision have be-
come available for the first time at slightly higher
energies. " A comparison of the angular depen-
dence of the theoretical and experimental differen-
tial elastic and electron-transfer cross section is
made in Fig. 6 at O. V and 1 keV labox atory ener.—

gies. The experimental data are normalized to the
theoretical elastic cross section at laboratory
angles of 0.8' and 1', respectively, for energies
at O. V and 1 kev. At these angles, the elastic
cross section goes through dips. The theoretical
and experimental data shown in Fig. 6 are in
reasonable agreement. The inclusion of the cou-
pling with the 2Pm„state to allow for the 2P v exci-
tation does have a substantial effect on the differ-
ential elastic and electron-transfer cross section
at the large-angle tails.

Since the measurement also provides the abso-
lute ratios of the differential elastic and (n = 2)-
excitation cross sections, this single-angle nor-
malization in Fig. 6 also determines the absolute
magnitude for the differential (s = 2)-excitation
cross section. A comparison of the excitation
cross section so normalized with theoretical re-
sults is made in Fig. V. The magnitude of the
cross section agrees remarkably well. At these
energies, we expect the 28 and 2P& excitations to
be small so that the (s = 2) excitation constitutes
predominantly the 2p& excitation. The magnitude
of the total 2P fr-excitation cross section obtained
from the differential cross section at these ener-

FIG. 10. Comparison of the semiempirical function
Z3 tsee Eqs. (3.4) and (3.5)] with the theoretical values
(denoted byx) obtained from Eq. (3.15) tsee also
Eqs. (3.8) and (3.9)] in the three-state straight-line
eikonal approximation.

gies is consistent with that measured by Stebb-
ing et sl." At higher energies, the three-state
approximation tends to overestimate the magni-
tude of the 2P, -excitation cross section.

The angular dependence of the measured (s = 2)-
excitation cross section is in reasonable agree-
ment with those obtained in the molecular adiaba-
tic state expansion at the small-angle side. For
the large-angle tail, the agreement between the
theoretical and experimental results is not satis-
factory. This is partially owing to the straight-
line approximation adopted in the theoretical cal-
culations for the classical trajectories. The
trajectory effect is appreciable at these large an-
gles (see Fig. 4). At l kev, it is seen from Fig.
V that the atomic state expansion' actually yields
an angular dependence which is in better agree-
ment with experiment. This is somewhat surpris-
ing since the 2P~ excitations are induced by the
2PO„- 2Pm„rotational coupling at close encounters,
where the molecular characters are dominant.
One, however, expects that at these energies the
additional coupling interaction coming from the
translational factors" would be of importance.
Calculations which include these additional cou-
pling interactions as weQ as trajectory effects
would be instructive.

Comparisons of the theoretical and experimen-
tal a~mlar dependence of &,& at these energies
are given in Figs. 8 and 9. The agreements among
the theoretical and experimental results are very
reasonable. It is seen from Figs. 8 and 9 together
with Figs. 4 and 5 that the angle above which the
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K, = (v/k) (E,)v ' —5, (3.5)

where (E,) is an "effective value" related to the
phase integral and 6 is a constant phase. For the
(P', H) system, (E, ) and 5 have the experimental
values of (63.7 + 1) eV —A and (0.28 + 0.01) s, re-
spectively.

From Eqs. (2.14) and (2.19), the elastic scatter-
ing amplitude for the gerade and ungerade modes
of interactions can be written in the form [i.e. ,
see Eq. (2.29)]

T~~0~ = [ivo/(2s) ] b db j~ (ko b sin 8)
0

damping due to the coupling with the 2Pm„state
becomes appreciable, decreases with increasing
energies. In these damping regions, the experi-
mental data in general lie slightly above the theo-
retical results. In the present calculations, re-
sidual oscillations are found to be significant in
these damping regions.

As mentioned before, the difference between the
two theoretical results in the molecular adiabatic-
state expansion obtained by McCarroll and Piacen-
tini and by us comes primarily from the approxi-
tion in the momentum transfer.

Shortly after the measurements on the electron-
transfer probability first became available, semi-
empirical equations based on the impact-param-
eter treatment have been proposed to reproduce
the experimental data. "'"" It would be of inter-
est to examine the Lockwood-Everhart semiem-
pirical equation

I'~, ~ = K, (1/v) + K, (1/v} sin' [K, (1/v) ] (3.4)

in the framework of the present eikonal coupled
equations. In Eq. (3.4), K, and K, are slowly vary-
ing functions of v ', and K, takes the form

with
v c«&~b)

gr& &(b)=1 g g '""' = q,-e'&. ,
8&0 vo

(3.8)

1 —iI',"'(b) =1 —i g ' " ' ' -=q. e'". , (3.9)
8&0 1

where the expressions for I', and I'," would be
slightly modified for noncylindrical interactions. "
In the impact-parameter approximation, the total
resonant electron-transfer cross section

o,g(1s-1s}=(2v}M„' f ~~(TO~~0~ —TI",~)('dQ

reduces to

o„(ls-1s)=2w f bdb I'i, ~ (1s —1s),

(3.10}

(3.11)

with

I'~;,~ =
& ~[e' o(1- ii' ~ ~)- 1') —[e' & (1 —ii'i"~) —1]~'.

(3.12)

Substitution of Eqs. (3.8) and (3.9) into Eq. (3.12)
yields Eq. (3.4) with

K, (1/v) = «(q, —q„)',

K, (1/v) =q, q„,

K, (1/v) =-,'(4, —4,)+-,'(y, —y„) .

(3.13)

(3.14)

(3.15)
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