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Rigorous upper and lower bounds on the diagonal and off-diagonal bound-state matrix elements of an
arbitrary Hermitian operator 8' are derived which represent a significant improvement over previous
results in that all first-order error terms are eliminated. These bounds do, however, contain error terms
of the three-halves power of the errors in the trial functions used; they are therefore termed
"quasistationary bounds. " In the particular but important case of the diagonal bound-state matrix
elements of non-negative (nonpositive} Hermitian operators, true stationary lower (upper) bounds are
obtained; the errors are of second order in the errors of the trial functions used. All trial functions can
contain variational parameters. The results obtained are tested by computing upper and lower bounds
on the expectation value of r, +r2 for the ground state of helium, and a substantial improvement over
previous bounds is obtained.

I. INTRODUCTION

Rigorous upper and lower bounds on diagonal
and off-diagonal bound-state matrix elements have
been obtained. ' The bounds are functionals of
one or more trial functions which may contain pa-
rameters that can be varied to obtain the best pos-
sible bound for the given form of the trial functions.
Further, the bounds are "global" —they are valid
not only for trial functions which are close to the
true functions but for arbitrary trial functions.
(The bounds will of course be poor for poor trial
functions. ) Unfortunately, the bounds are non-
stationary, in that the error, the difference be-
bveen the bound and the true value, is of first or-
dex in the errors in the trial functions.

V'ariational, or rather stationary, principles for
the estimation of diagonal and off-diagonal bound-
(and continuum) state matrix elements also ex.-
ist. 4 ' The stationary principles contain not
first but only second-order error terms, but the
sign of the error is unknown. The stationary prin-
ciples are functionals of trial wave functions and of
trial "auxiliary functions"; the latter can be
thought of as Lagrange undetermined multipliers
introduced to account for the constraints imposed
upon the wave function. A significant step was re-
cently taken in these stationary principles, it hav-
ing been shown~ that it is possible to characterize
the trial auxiliary functions as the functions which
extremize specified functionals.

It will be our purpose in this paper to obtain re-
sults, where possible, which combine the advan-
tages of the two above results, the bound and the
stationary property. The approach is rather sim-
ple. Rather than bound the matrix element in
question directly, we recast the matrix element in-
to the sum of a calculable approximation and a for-
mal higher-order error term, and we bound the

error term. We could, in fact, begin with a "vari-
ational identity" 8 in which the matrix element is
expressed as the sum of a (calculable) stationary
principle for the matrix element plus an explicit
but noncalculable second-order term, and pro-
ceed to bound the second-order term; the xesult
would be the same as that obtained below by a
slightly different approach.

The matrix elements to be bounded are of the
form

with a Hermitian inner product, where W is an
arbitrary (except as noted) Hermitian operator with
respect to the (orthonormal) bound-state eigen-
functions g„defined by

The global bounds will be functionals of normalized
trial wave functions g„, and g„, and of trial auxil-
iary functions Lrfg Rnd I ~g I rft RIld L~g RX'e es-
timates of "hybrid auxiliary functions" I.„and I.
patterned after but slightly different from the
auxiliary functions appearing in stationary prin-
ciples. L,„and L, will be defined in Sec. II. %e
introduce the errors 5g„and 5L„defi ed nby

and refer to them as of first order, though there
is no guarantee, of course, that they are small.

For the particular but important case of n = m
and 8'& 0, we can, as shown in Sec. III, obtain re-
sults which combine all of the advantages of the
bound Rnd the stationary principles; we obtain a
global lower bound on S'„„which is a functional
of g„, and L„, (which may contain variational pa-
rameters) and for which the (second-order) error
is given by O(5P)+O(6$„5L„) For this sp.ecial
case, then, we have results for a non-negative but

isi
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otherwise arbitrary operator which are of the same
character as the results for matrix elements of the
operator H, including the Rayleigh-Ritz theorem
for the ground-state energy, the Hylleraas-Und-
heim theorem for excited-state energies, ~ and
scattering parameters, including scattering
lengths'0 and elements of the X matrix. "

The more general case of upper and lower bounds
on W„„for n em and/or for W not of well-defined
sign is treated in Sec. Vf. The bounds contain an
error term of O((6$) I ) and possibly of
O((6$)(6L)' ) as well, depending upon the details
of the procedure used. We refer to such bounds
as quasistationary.

Finally in Sec. V we explore the quality of the
bounds derived by computing upper and lower
bounds on the expectation value of r, +rz for the
ground state of helium, and compare the results
with the "true value" as determined by Pekeris'~
with the use of a 10V8-parameter wave function.

We assume in Secs. II-Vthat allmatrixelements
are real. This restriction is not at all necessary,
as shown in Appendix A; we need not even restrict
ourselves to systems which are invariant under
time reversal and rotation, for which it is always
possible'3 to choose the radial functions to be real.

Mn-=(4m~@') (2. 1)

For the moment, we assume 4 to be known.
The trial auxiliary function L„, that arises nat-

urally in the stationary principle for M„ is an ap-
A

proximation to L„defined by

(H- E„)L„=—C +M„g„.

II. BASIC UPPER- AND LONER-STATIONARY BOUND
FORMULAS

We begin by deriving stationary upper- and low-
er-bound formulas for the overlap of f„with a
quadratically integrable but otherwise arbitrary
function 4,

of g„. L„can be made unique by requiring that
(L., 4.) =o

The ultimate justification of the introduction of
L„via (2. 2) is that it will enable us to obtain a
bound on M„, a bound which becomes exact as g„,
approaches g„or as our approximation L„, to L„
approaches L„. However, (2. 2) is by no means
the only form of equation which can lead to a bound.
While not an essential element, we note that the
right-hand side of (2. 2) has the nice property of
being independent of the normalizations of P„and
of y„,.

It will almost always be possible, theoretically
or experimentally or by a combination, to obtain
accurate upper and lower bounds on both E„and
S„,' and therefore to replace E„and S„by the ap-
propriate bound in any final bounds on M„. For
purposes of discussion, it will be convenient to
think of E„and S„as known. Our unknowns are g„
and L„.

In line with the discussion in the Introduction,
we write the unknown M„as a known term plus an
unknown term of lower order; thus, using (1.3),
we have

M„= (&„„C)—(6g„, 4). (2.4)

to arrive at this, we also used

(H —E„)6g„= (H E„)g„„—
the quadratic integrability of L„, and the resultiag
hermiticity of H. The appearance of the unknown
quantity M„ in the expression for (6g„, C ) causes
no difficulty. Thus, we can insert the expression
for (6g„, C ) into (2. 4) and rearrange and square to
find

Carrying this one step further, we use (1.3) a.nd

(2. 2) to write

—(6y„, 4 ) = (y„„[H—E„]L„,) —(6$„,[H —E„]6L„)

—(1 —S„)M„/S„;

This involves only the exact (unksoam) entities E„
and g„. The differential equation defining L„„on
the other hand, must involve only known entities,
including f„, and E„,. For present purposes it is
convenient to introduce the hybrid auxiliary func-
tion L„, defined by

(6g„, [H E„]6L„) =[a-—(M„/S„)]',

where

a =-(y„„e)+(y„„[H-E„)L„,).

(2. 6)

(2. 6)

(H- E„)L„=—4 +M„$„~/S„,

where

S.= (0. , I.,)-
(2.2)

(2. 3)

is the overlap integral of the trial and true wave
functions. We refer to L„as hybrid since its de-
fining equation involves both the ~Qcnown E„and
g„and the known g„, .

L„ is defined by (2. 2) only to within a multiple

a is nothing other than the (calculable) stationary
estimate for M„, a quantity that could almost cer-
tainly have been expected to appear.

The problem of determining a stationary bound
on M„has thereby been reduced to the problem of
obtaining a nonstationary bound on the second-or-
der term on the left of (2. 6). To do so, the Gram-
determinant approach will suffice. The Gram-de-
terminant inequality' formed from the three func-
tions 6g„, [H-E„]6L„,and g„ is found to be
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(5g„, [H E—„]5L„)'& (1 —S„'}

([ff-En] 5I N. [If-En] 5L n) (2 'I)

With the help of (l. 3) and (2.2), we find that

([ff-E.J 5I,„,[a-E„]5m,„)

= & - (2o'Sn/M. )+ (Ms/Sn)'~ (2 3)

where

P=-(@,@)+2(C,[if-En]Inc)+(Lng~ [If -En]'Imp) ~

(2.9)
From (2. 5), (2.V), and (2.8), we find

[a —(M„/S„}]'& (1 —S„')[P —(2aM„/S„) + (M„/S„)')

M„'—2aS„M„-[(I-S„)P - a ]«
or, finally,

M„S„a+[(1-S„')(P —a')]'~. (2.10)

It is shown in Appendix B that P —o. is non-neg-
ative so that the bounds (2. 10) always exist. (We
always have Sa& 1.) It is also shown in Appendix
8, as is to be expected from the nature of the der-
ivation, that the right-hand side of (2.10) differs
from M„by quantities of second order so that the
bounds are stationary ones.

The fundamental stationary bounds provided by
(2.10) require the choice of an I,„,. In the de-
velopment of a stationary principle for (P„, WP„),
one must be able to find an L„,which differs from
L„ in first order, and the problem there is first
to find an appropriate differential equation de-
fining L„,and then a technique enabling one to ap-
proximate the L„, so defined. The present ap-
proach, providing a global bound, does not require
a definiag differential equation for L„,. One can
simply guess at a form for L„,which contains
variational parameters and one can then vary the
parameters to do as well as one can.

If 4 is indeed known, we have a calculable sta-
tionary bound on M„. 4 is known for many prob-
lems, including, for example, the problem of the
determination of the central density p, of a star
for which the pressure P is of the form g= Ep",
with X and y constants. If 4 is not known, the
bounds are only forrnal, and terms involving 4
must in turn be bounded. It is simple to bound
terms such as ($„„4)when, for example, 4 is
chosen to be Wg„, viz. , by using (2. 10) with 4
= Wg„, . The more difficult problem of bounding
(4, 4) is considered in Sec. 1V. We will first show
that it is possible to obtain stationary lower bounds
on 8'~ for W&0 with 4 chosen to be a known func-
tion.

III. VARIATIONAL STATIONARY LOWER BOUND ON

V„„FOR8'& 0

If W& 0, the Schwartz inequality permits us to
write

, (4n~ Wana)' (W...g)'

(4nt. WAN() Wag, ,g

(3.1)

It is readily verified that the first-order error
terms in (3.1) cancel, that is, that (3.1) is a sta-
tionary (though formal) bound. The unknown quan-
tity W„„,must still be bounded from below. A sta-
tionary lower bound on W„,„, is readily found from
(2. 10) on choosing 4 = Wg„, . We assume that that
lower bound is found to be a positive number, as
will almost always be the case. %e thereby ob-
tain the stationary lower bound, one of the main re-
sults of the present paper,

& g2 (3.4)

the solution of which is

x(-e +[I+(Z, —1)r)e

The term in e has been added in order to guaran-
tee that L has a mell-defined limit as Sj approaches
unity. In fact, we find

I, (Z, =I)=-—', (I/v)' ~r e (3.5b)

For various values of S, we approximated the true
I, of Eq. (3.5) by I., given by

(3.6)

where the choice of ~ in the exponent is arbitrary.

For P„, fixed, the right-hand side of (3.1}rep-
resents the very best lower bound obtainable by
means of Eq. (3.2). As we vary more and more
parameters in more and more sophisticated ap-
proximations to i.„, the further inequality utilized
in going from (3. 1) to (3.2) will approximate an
equality and our lower bound on W will converge
on (W„„,) /W„„. This statement is, of course, a
purely formal one since we do not normally know

g„or, therefore, W„,„,. It will be interesting to
considex the rate of convergence. of our lower sta-
tionary bound for the simple solvable problem of
the expectation value (r)o~=-,' for the ground state
of hydrogen. With S=m=e= 1, we choose

(3.3)

Equation (2.2) becomes
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TABLE I. Convergence of the stationary lower bound
on (r)pp for hydrogen. |t)& and L& are given by Eqs. (3.3)
and (3.6), respectively. M is the number of variational
parameters contained in L, . The exact value, in units
of ap, is 1.5.

0 1

1.001 1.4964 1.4978
1.05 1.330 1.401
1.25 .75 1.09

1.4992 1.4997 1.49999+
1.462 1.484 1.496
1.28 1.34 1.43

IV. QUASISTATIONARY UPPER AND LOWER BOUNDS ON
8'„„AND W„~

As always, we demand that W be Hermitian, but
we drop the requirement imposed in Sec. III that
W be of well-defined Sign. Choosing

4 =Wt) (4. 1)

where m may or may not be equal to n, a and P
contain unknown quantities which must be bounded
if we are to bound W„. The character of the
bounds on n and P (simple zeroth-order errors,
quasistationary, or stationary) will determine the
character of the bounds on W„. With X"' denot-
ing upper and lower bounds on X, we can replace
(2. 10) by

W„„-S„n ' a {(1- S„)[P
' —(n ) ]] . (4 2)

From the definitions of n and P, (2. 6) and (2.9),
respectively, we clearly have

n"' = Wnf,'~+ (log ~ [H —En] Lng)~

P"=(w').".+ 2(y. , w[H -E.]L.,)"
(4. 3)

+ (L„„[H—E„]PL„,). (4.4)

The determination of bounds on n and P, and there-
fore on W„, is thereby reduced to the determina-
tion of the three quantities with superscripts on the
right-hand sides of (4. 3) and (4.4).

Stationary upper and lower bounds on both W„,
and (p, W[H -E„]L„,) are readily obtained from
Eq. (2. 10) by setting n = m and choosing 4= Wg„,
and 4 = W[H —E„]L„„respectively. Unfortunately,
a stationary upper bound on W cannot be ob-
tained. A nonstationary upper bound on W can
be obtained by methods described previously, 3 for

The choice M=0 corresponds to L,=0; as M gets
large, L, converges on L of (3. 5) and the bound on
W„„converges on

(W )o (g rg )o [24ZP~oj(Z, +1)4]P

Woc, ot

The results shown in Table I show reasonable con-
vergence rates even for a rather poor g, .

example, by means of a simple bound on W; the
nonstationary bound contains an error of order
5g . Since 1-S„is of order 5go, the error in W„
is of order 5|(„5g„'~o. The bound is therefore supe-
rior, in principle, to the previous bounds with their
first-order errors but inferior, inprinciple, to the
bounds of Sec. III, when applicable, with their sec-
ond-order errors A concrete example of a q~~~ei-

stationary bound will be given in Sec. V.
By definition, simple bounds contain zeroth-or-

der error terms; their use for W "would cause
the bound P "of (4. 2), and therefore the bound of
(4. 2) on W„, to be of first order; the bound (4.2)
would therefore be of the same accuracy as the non-
stationary bounds' obtained previously and would
be more difficult to calculate.

V. NUMERICAL EXAMPLE

In order to explore the quality of the bounds de-
rived in preceding sections, upper and lower bounds
on (r, +rp)pp, the expectation value of r, +rp for
the ground state of helium, were calculated. We
choose

W=s=xj+xg, (5.1)

and note that (rg)pp= o (8)pp ~ We use Hylleraas
coordinates s, t=x, -xz, andu=x». The trial
wave functions were chosen to be the energy-op-
timized three-parameter Hylleraas function'7 fo,(3)
and the energy-optimized ten-parameter function

go, (10) of Chandrasekhar ef al. 'P The Po,'s there-
fore contained no variational parameters. The
trial auxiliary function L«does contain varia-
tional parameters. The form of Lo, chosen is
based roughly on the realization that the Hamilto-
nian H for helium can be approximated by a sum of
hydrogenlike Hamiltonians; Lo, should then, crude-
ly, be a product of hydrogenlike Lo's, which are
known. [See Eq. (3.5b). ]

The upper bound on So was always chosen to be
unity. The lower bound on Sp, which plays a more
significant role, was obtained from Weinhold's
formula, "
(8p, tpg(N)) & (ko, fog(N')) (fog(N), log(N'))

([1 (t)'o tI'og(N')) ][1 (Pop(N) Ppt(N'))]]'

(5 2)

Pp, (N) is the trial wave function being used; Ppt(N )
is some better trial wave function whose overlap
with go has been bounded. Thus, we choose N'=10
for N= 3 and N' = 18 for N = 10, where go, (18) is the
18-parameter energy-optimized trial wave function
of Chandrasekhar et a/. ' In all cases, the re-
quired bound on (go, Po,(N')) has been obtained by
means of the Eckart criterion,
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(&I& tt (y ))2
E

&
—8'os(N')~ H ~ot(f ))

0~ Ot E -E1 0
(5.3)

Lower bounds on &r, )oo were calculated by means
of Eq. (3.2), with 4=s &1&o, . Equation (3.2) is then
calculable as it stands.

Equation (4.2), with m =n = 0, was used for the
upper-bound calculation; the same choice of 4 was
made. Equation (4. 2) then reads

(o, ) & 1 (&(+&+[(I Ss) (P(+& (&2)(-&]1/2j
o'"'= so', o&+ (&I'o& (H -Eo)Lo&)

P"=sos' +2(&f&o&~s(H Eo)Lo&) "+II(H Eo)Lo&ll .
The required upper bound on spp was calculated
from'

(Al)

Defining

S.=- (e. , e.,).
so that

x(5L„,[H —E„]5L„). (A2)

pressed as

IIIII'[(n x)['+llxll'/(0»&I)['+II»Il'[(0 x)['
—2Re [(@,q) (&I, &I) (X, y)] —II@II'llnll'IIXII'« ~

Choose

y=54. , n=(H E-.)5L., X=4'
Then (&I, X) = 0, llxll = 1, and (Al) becomes

( (5'„,[H —E„]5L„)[
& [(5&I&„, 5|l&„)—

[ (5'„, l/&„) [ ]

soo' =so,o&+((I-So)(soo —[(so,o&) ] )

so, o& =so&,o~+ f(1 So) [so&,o& (sos, o&) ]}s/a

(5, 4a)

(5.4b)
Ss = (lI'ng~ 4n)~

it follows that

The required bound on spp could be taken as a sim-
ple bound, as mentioned earlier. This can be im-
proved upon by using the relationship

s oo & I«&')Do

along with the upper bound

(y&)oo & 4. 81004

obtained by methods described in our previous
paper. 3

It is to be noted that the bounds (5.4b) are nonsta-
tionary, although stationary bounds for this term
could have been obtained by the method described
in the last paragraph of Sec. II. This was not
considered to be worthwhile because only non-
stationary bounds were available for s«. For
the same reason, the nonstationary bound

(&I&o& s(H Eo)Lo&) "-=(4o& s(H-Eo)Lo&)

+« -So)[lls(H-Eo)Lo&ll'-&'m s(H-Eo)Lo&)']j"'

was used. The resulting upper bound (5.3) is then
quasistationary in character as described in the
previous section.

Referring to Table II, it can be seen that the up-
per and lower bounds are of almost identical quali-
ty, despite the fact that the former is quasistation-
ary, while the latter is a true stationary bound.
This is a consequence of the relatively crude
choices of L, . More elaborate choices can be ex-
pected to result in a more rapid convergence of the
stationary lower bound than the quasistationary up-
per bound.

APPENDIX A: MODIFICATION FOR COMPLEX MATRIX
ELEMENTS

The Gram-determinant inequality for three arbi-
trary complex vectors ft), g, and y can be ex-

(5$„,5$„)=(g„,—&I'„, &I&„,
—$„)=2-S -S,

=
f
S„/'- S„*-S„+1.

Thus, (A2) can be written as

[ (5q„, [H -E„]5L„)( s& (1 —(S„)')

x(5L„,[H-E„] 5L„).
We have

(A3)

N I g/e

Parameters
Lower Upper
bound bound

Lower Upper
bound bound

C2S

cg= 1.37
c2= -0.04

Cg=
C2=

1.91
-0.12 0.913 0. 946

c~= 1.62
3 c2(s +t ) c2= —0.14

3 c2s +c3t2 2
cg= 1.51
c2= -0.104
ca= —0.239

10 c2(s +t ) c~= 1.78
c2= -0.215

Cg=
C2=

Cg=
C2=
C3=

Cg=
C2=

1.93
-0.30

1.80
-0.226
-0.325

1.71
-0.170

0. 917 0. 943

0.920 0, 943

0. 925 0. 935

([H —E„]L„,[H —E„]L„)
M* iM )," (4.&, C)+ "

s ~

Sn ISn I

We also have

—([H —E„]L„,[H —E„]L„&)—([H —E„)L„t,[H —E„]L„)
M„*= 2 Re[(C, [H -E„]L„,)] —2Re ~ (&I&„„[H—E„]L«)

n

TABLE II. Upper and lower bounds on &&&lopoo for
helium. N is the number of parameters in the trial wave
function $0& and Lt is the auxiliary trial function. The
"true" value is 0. 930 (Ref. 12).
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We can therefore write that

(6L„,[H —E„]6L„)

= IIIII'+2Re(C, [H —E„]L„,)+(L„,, [H —E„] L„q)

M„* M„*—2Re " (g„„C)+ „-" (g„„[H—E„]L„,)
Sff Stt

I M„ I

(A4)
IS.I'

Similarly we find that

I («„,[H E„]6-L„)
I

lM I'
=

I (g«, C ) + (g„„[H E„]L—n~) I ]S~l

x " (g„„c)+ " (g„„[H-E„]L„,. (A6)
St Sn

Using these results in (A3} shows that

I (e..4)l'-2ls.
l
l~ll(II'. 4)I

-I(I- Is. l')e- l~l']&0

or

(y„, 4)l Is„l l~l+((I- Is„l')(p- l~l'))''; (A6)

where

a = (iI„„e)+(g„„[H—E„]L„,),
P = IIo II'+ 2

I (4, [H- E.]L„)I
+ (L.„[H E,]'L„,)—.

Equation (A6) is the complex equivalent of the ba-
sic bound (2. 10).

If 4 is known, (A6) is calculable as it stands.
If 4 is not known, ) n ) and P must be replaced by
appropriate bounds. Thus

I
~l"'= l(e.~ e) I"'+ l(e.t [H-E.]L.,) I.

ti"=(I lc I
I')"+21(~ [H-E ]L s)l"

+ (L.c. [H —E.]'L.~}

No assumptions were made about the form of g„
in obtaining (A6) which is valid regardless of the
behavior of the system under time reversal and un-
der rotation.

APPENDIX B: EXISTENCE AND STATIONARY CHARACTER
OF THE BASIC BOUNDS OF (2.10)

Using (1.3) and (2.2), Eq. (2. 6) defining a can
be rewritten as

a = (M„/S„)+ (6It„, [H E„]-6L„). (Bl)

Equations (2. 6) and (Bl) give

P = 2a(M „/S„)—(M„ /S„) + (6L„, [H -E„] 6L„)

= (M„/S„)'+2(M„/S.) (64., [H —E.]«.)
+(6L„,[H —E„] 6L„). (B2)

From (Bl) and (B2), we have

P —n = (6Lni [H-En] 6Ln) —(6kni [H-En]6Ln) ~

(B3)

It follows immediately from (2. V) that P —a is
non-negative and, therefore, the bounds of (2. 10)
always exist.

Further, we see by inspection of (B3) that P —u
is of second order. Since (1-S„)is also of second
order (and remains so after bounding), '4 [(1-S~}(P
—a~)]'~3 is of second order. Since S„differs from
unity by a second-order term and since a is a sta-
tionary estimate of M„, S„o-M„ is of second or-
der and the bounds provided by (2. 10) are stationary
bounds.

We discuss finally the statement made in Sec. II
that both bounds of (2. 10) reduce to the exact value
M„as either 6g„or 6L„approach zero. It is clear
by inspection of (B3}that p —a~-0 as 6$„0or
6L„-0. Both bounds (2. 10) therefore approach
S„ct, and n-M„ /Sn under these circumstances,
which proves the statement.
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R. Pogorzelski and C. Yeh
Electrical Sciences and Engineering Department, University of California, Los Angeles, California 90024

{Received 12 July 1972)

The formal exact solution to the problem of the radiation of a charged particle traveling with a
constant velocity through a dielectric sphere is obtained. The electromagnetic field may be expressed in

terms of an infinite number of spherical normal modes. It is found that radiation inay be emitted for
arbitrarily small particle velocities. For larger spheres (i.e., ka&&1 when k is the wave number and a
is the radius of the sphere) the radiated field is predominantly Cerenkov-type radiation when the

velocity of the particle is above the Cerenkov threshold velocity. For small spheres (ka &&1)and low

particle velocities the radiation is shown to be mainly of transition type. Numerical results are

presented to illustrate the behavior of the spectra of the various lower-order radiative modes as the

velocity of the particle is varied.

I. INTRODUCTION

%hen a charged particle moves with constant
velocity through or by an obstacle, there are three
(macroscopic) mechanisms by which radiation may
be emitted. Radiation of the Cerenkov type' is
expected if the particle moves along or through a
region in which the phase velocity of light is less
than the speed of the particle. Fox radiation of
this type to occur, the speed of the particle must
be greater than the smallest phase velocity en-
countered. Transition radiation, 3~ and dif fr action
radiation, on the other hand, may be expected
to occur at any particle speed. Transition radia-
tion which occuxs when the particle passes from
one electrical medium to another, and diffraction
radiation which occurs when the particle moves in
the vicinity of a localized inhomogeneity in a me-
dium, may be thought of as being emitted by the
accelerated motion of the induced image charges.
Since the nonuniform motion of the images will
occur even if the moving charged particle is
traveling slowly, there is no velocity threshold for
transition or diff raction radiation.

Most previous studies on diffraction radiation
were carried out for perfectly conducting (im-

penetrable) bodies such as conducting half-planes,
screens, or gratings, open ends of metallic wave-
guides, or conducting spheres. The important
problem of diffraction radiation due to the presence
of dielectric (penetrable) bodies has not been con-
sidered. It is expected that, owing to the presence
of multiple reflections within the penetrable ob-
stacles, the radiation characteristics for a uni-
formly moving charged particle passing by or
through such penetrable obstacles will be quite
different from those for the impenetrable case.
An important feature of diffraction radiation is that
the sources in general excite a continuous spec-
trum of frequencies; hence, it is essential that
exact solutions to the problems of diffraction
radiation be obtained. In this paper we shall treat
the problem of diffraction radiation from a uni-
formly moving charged particle passing through a
dielectric sphere. Exact solutions are obtained by
expanding the incident fields due to the moving
charge in terms of spherical harmonics and by
matching the incident field and diffracted field with
the interior field at the boundary of the dielectric
sphere. In other words, the electromagnetic field
excited by the passage of the charged particle may
be expressed in terms of an infinite number of


