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A Glauber-type eikonal approximation with the classical trajectories taken as two intersecting

straight-line segments (called "angle" trajectories} is examined and applied to the 2s and 2p excitation

of hydrogen atoms by electron impact. The calculated differential and total excitation cross sections are

compared with experimentally measured and "straight-line" Glauber-eikonal cross sections. The angle

approximation does provide a significant improvement over the straight-line approximation for the

cMerential cross section at angles )40'.

I. INTRODUCTION

Recently, the Glauber-type straight-line eiko-
nal approximation" has been applied to a number
of atomic problems with very encouraging re-
sults. '-' There are a number of factors which
contribute to this success. Formally, it can be
shown'-' that the Glauber-eikonal approximation
contains the second-order multiple scattering
terms, in addition to the first-order multiple scat-
tering texms. For atomic problems involving
Coulomb pair interactions, the second-order mul-

tiple scattering terms remove the singularities of
the Coulomb phases in the eikonal approximation. ~

The characteristic Glauber approximation of taking
the transverse momentum transfer to be the total
momentum transfer (i.e., the longitudinal momen-
tum transfer is neglected) has an intimate influ-
ence on the angular dependence of the differential
cross section.

It can be shown that the longitudinal momentum
transfer has the effect of damping the scattering
amplitude [see E(I. (2.19) in Sec. II]. This damping
increases with increasing scattex ing angle. By
neglecting the longitudinal momentum transfer,
this damping is removed and consequently the
scattering amplitude is increased, particularly
at large angles. " This then partially compensates
for the errors introduced by the straight-line
approximation. The approximation of taking the
transverse momentum transfer [which appears

. in the argument of Bessel functions, see Eqs.
(8.V) and (8.8) in Sec. III] to be the total momen-
tum transfer has the effect of decreasing the in-
elastic scattering amplitude at small angles,
particularly at low energies. Consequently, the
Glauber-eikonal approximation yields a total in-
elastic cross section which is smaller than the
other high-energy approximations at the low-ener-
gy side. All these features help to yield better

results for the Glauber-eikonal approximations.
These characteristic features of the Glauber-

type eikonal approximation can be preserved when
the classical trajectories are generalized beyond
the straight-line trajectories. ' Chen ar 5 Hambro"
have recently examined the Glauber-eikonal ap-
proximation with the classical trajectory approx-
imated by two intersecting straight-line segments
(which we call the "angle" trajectory). They have
shown that the "angle" txajectory does provide a
significant improvement over the straight-line
trajectory for both the differential and total elastic
scatterings. The purpose of the present paper is
to further investigate the Glauber-eikonal approx-
imation for angle trajectories. Calculations are
carx ied out for both the differential and total in-
elastic (e, H) scatterings.

H. GLAUBER-EIKONAL APPROXIMATION
WITH ANGLE TRAJECTORIES

The collision amplitude g», for a transition
na Pb may be written in terms of the transition
operator T~ as

J —( yp) )
z'

[ y(+))

with

(2.1)

r~ =us+a s( (E+ i)i)o„,

q(a) (r i R ) ~( I3( cI)r(2v)-8/mes%&I ~ R~

(2.2)

(2.8)
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Z=k'/(2p, )+ e(8)=k' /(2p )+ e( ', (2.5)

where X("'(r') and )(js) (r) are the products of the
asymptotic eigenfunctions with eigenvalues ~~~& and
eP), respectively; t) and 0 s are the interaction
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with

(2.6)

potentials in channels a and P, respectively; and
G(E) = (E -H) ' is the Green's function of the sys-
tem. Utilizing the asymptotic channel states given
by E(ls. (2.8) and (2.4), we may rewrite E(l. (2.1)
in the form

path. When the eikonal approximation given by
Eq. (2.12) is adopted in E(l. (2.V), we obtain

(rr ri ) ( ) dR i0 ei(8~+I-)(()()) ~ R0()
()(i)( i (2 }3 C Ct'

(2.14)

The integral for T can be evaluated in the
cylindrical coordinate system (p, z, q)). To relative
order [ 8.[ (the classical scattering angle), we
have

X ~& ( It o R -g~g~ Ps) (2.7)

where gs„ is the Fourier transform of the tran-
sition operator T &

in the coordinate represen-
ta.tion.

The well-known Glauber approximation is the
straight-line eikonal approximation to E(l. (2.V) for
the a =)6 case:

The eikonal can be written in the form"

(2.15)

q)) =(b, —b ~ cos8), q = -b„, sin8, (2.1V)

8', -k, R = q(, z+ q,b cosq) + 4 (z, b), (2.16)

with

(g)
y2y ~eq~ ~ b ~a ccf (2.8)

where q~~ and q are the longitudinal and transverse
components of the momentum transfer, 6 is the
scattering angle, and 4 (z, b) are the local eiko-
nal phases which depend also on the internal coor-
dinates of the colliding partners.

When E(ls. (2.15) and (2.16) are utilized in E(l.
(2.14), we obtain

9) a =~aa kn)) =pn(va v()i

(2.10)

(2.11)

with

q (b 8) f d I0 e([i)))g+4 (s, )]))

(2.18)

(2.19)

where p,„is the reduced mass in channel a, b
= (b, q)) is a two dimensional vector in the plane
perpendicular to the trajectories, 4&~' are the
straight-line eikonal phases due to pair interac-
tions V, (=- V;, ), and the j sums are over all the
pair interactions which constitute the channel
potential '0 . We shall consider the application
of the eikonal approximation to E(l. (2.7) with
e = P for the angle trajectory rather than the
straight-line trajectory adopted in the Glauber-
eikonal a,pproximation.

In the eikonal approximation, we have2 ""
(rR ( T„)r'R' ) e'"~~ ~~

=—'U„e N~&R~) 6(R -R }6(r-r'), (2.12)

with the eikonal defined by the path integrals
R~8', (R„)= f (b, -2)u a )'imds, (2.13)

where the path integrals are taken along the clas-
sical trajectory with ds denoting the element of

where Q (b, 6) is related to the partial-wave scat-
tering amplitude. The collision amplitude depends
sensitively on the accuracy of the eikonal phase.
At small scattering angles, the straight-line ap-
proximation for the eikonal phase is sufficient.
Howevex', at large scattering angles the eikonal
phase should be evaluated to a relative order
higher than ( 8, ~

. To evaluate the eikonal phase
to relative order 8'„we can make use of a vari-
ational principle. "

According to the principle of least action, '~ the
eikonal i.s stationary with respect to a variation
of trajectory about the exact classical trajectory.
If we hold fixed the end points where the system
enters and leaves the interaction region, we can
determine the trajectory between the two points
by minimizing the eikonal. The simplest improve-
ment over the straight-line trajectory is that
consisting of two straight-line segments inter-
secting at an angle 2p. If we consider p to be a
variational parameter, and vary P to minimize the
eikonal, we would then obtain'" 2 P = 8, :
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~m 'Ua 0 +O~c ~ (2.20)

where ft, = (f('+ z')'~'.
In this case, which we call the "angle" approx-

imation, the eikonal phase takes the form'4

HI. APPLICATION TO THE (e,H) SCATTERING

As an illustrative example for the application of
the Glauber-type eikonal approximation with angle
trajectories, we consider the excitation scattering
of electrons by hydrogen atoms. The exchange
effect will be neglected.

The three-body (e, H) problem involves Coulomb
pair interaction. %e have for

C (f() —= lim 4 (z, 5) =—4('(t(), (2.21)
3 Z3

I& +y,r I IR + yrl (3.1)

with

4'(5) =Ct'(5)+ &4 ' (5) (2.22)

with

y, = -(M/m+M), y3= (m/m+M),

~3= -&

QV,.dz, (2.23)

where d is the distance of closest approach of the
trajectory to the origin. Comparison of Eq (2.22.)
with Eq. (2.9) reveals that the angle approximation
differs from the straight-line approximation only
by the addition of an extra term in the eikonal
phase.

Now, following Glauber by making the approx-
imations

2p I b+ 'yns I

IS+ y sl ' (3.3)

where we have taken the z axis to be parallel to
the incident direction and written

where m and M are the masses of the electron and
proton, respectively. The straight-line eikonal
phase can be readily evaluated from Eq. (2.9).
%e have

Chary

(2.24)
(3.4)

(o)
q (5 8) f~aa (&f4 ~ 1)Ot (2.25)

the z integral for Q (b, 8) in Eq (2.19) .can be
evaluated to relative order I8, I with s = (s, y, ) denoting a two-dimensional vector

in the xy plane. The additional eikonal phase in
the angle approximation, given by Eq. (2.23), can
be evaluated for Coulomb interaction. %e have

Notice that Q is now no longer 8 dependent. This
follows from the approximation in dropping the
longitudinal momentum transfer q„. As mentioned
in See. I, this approximation has the effect of in-
creasing Q, especially at large angles. Substitu-
tion of Q„ from Eq. (2.25) into Eq. (2.18) yields
the Glauber-eikonal approximation with angle tra-
jectories, as follows:

\

T (r, r') =6(r —r')
2 1f

&4('(5)=—2-a d sinP

where we have made use of Eq. (3.4).
The transition amplitude J„, , given by Eq. (2.6)

ean now be evaluated using T obtained from Eqs.
(2.26) with eikonal phases given by Eqs. (3.3) and

(3.5). The differential cross section is related to
the transition amplitude

(g)
$2$ $g j)

b t 4Ot (2.26)
(3.6)

Thus the simple form of the Glauber-eikonal ap-
proximation given by Eq. (2.8) is not altered when
the straight-line approximation for the trajectory
is generalized to the angle approximation.

To evaluate g, „we must evaluate a four-di-
mensional integral. %e have for the 1s-2s exci-
tation
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g„„@=," bdb J,(qb} sds dy, d$ I'„[1——,'(s' +t'}' 'J e r'~" 's +~ ~
f(&2)b„ 2 X/S

0 0 0 0
(3 7)

and for the 1s-2p, excitation

iu e"~~

,~(q) = — ' bdbJ, (qb) s ds dy, c osy, dg e t' '~r' 't ' f',
~n 0 0 0

(3 8)

with

0=—Vga, g
= 92@,y

(o) (s)
I' =e'~ —j. or I = e'~

(3.9)

(3.1Q)

For b& 5/q Gaussian quadrature is used, and for
b & 5jq the integral is evaluated by utilizing the
asymptotic expressions of the Bessel functions to
recast the integral in the form

for angle or straight-line approximations, respec-
tively. J,(qb) and J,(qb) are the Bessel functions.

Calculations for the a =2 excitation in the (e, H)
scatterings are carried out in the Glauber-eikonal
approximation. The four-dimensional integrals
for the n =2 excitation amplitude given by Eqs.
(3.7) and (3.8) are evaluated numerically for both
the straight-line and angle approximations for the
classical trajectories. To account for the rapid
oscillation of the integrand, the integration over
the impact parameter b is split up into two regions.

b~ y~~
db, [g,(qb) sin(qb) + g, (qb) cos(qb)),

bg

where the functions g, and g, are fairly smooth
functions. An explicit evaluation of these inte-
grals is then carried out by fitting the functions

g, andg, into cubic polynomials. The numerical
results so obtained in the straight-line approxi-
mation are checked against those obtained from
the closed expressions derived by Thomas and
Gerjuoy. " This provides a valuable assessment
of the accuracy of the integration routine. The
results (numerical error &8% ) are presented and
compared with experimental data in graphic form.
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FIG. 1. Comparison of angular dependence of the
differential (e, H) (n = 2) -excitation cross section at
50 eV in the straight-lee and angle Glauber-eikonal ap-
proximations and in the first-order Born approximation
with experimental data (Ref. 16) which are normalized
to the Glauber-eikonal result at an angle of approxi-
mately 42', where the two theoretical curves corre-
sponding to the straight-line and angle approximations
come together.

FIG. 2. Comparison of angular dependence of the
differential (e, H) (n = 2) -excitation cross section at
100 eV in the straight-line and angle Glauber-eikonal
approximations and in the first-order Born approxima-
tion with experimental data (Ref. 16) which are normal-
ized to the Glauber-eikonal result at an angle of approx-
imately 42', where the two theoretical curves corre-
sponding to the straight-line and angle approximations
come together.



GLAUBER-EIKONAL APPROXIMATION WITH. . . 1287

—
I~o IOo

2
10

E = 200eV

Glauber (ongle)--- Glauber (stroight)——Born
Experiment

-3
10

10

10
0

t

30

e «eg)

90

IV. RESULTS AND DISCUSSIONS

In Figs. 1-3, the angular dependence of the
differential (n = 2)-excitation cross section are
examined. Figure 1 compares the experimental
data" with the theoretical angular distributions
at an incident electron energy of 50 eV. The ex-

1,2

1,0-

Glauber (straight)

Glauber (ongle)

Experiment

FIG. 3. Comparison of angular dependence of the
differential {e,H) g = 2) -excitation cross section at
200 eV in the straight-line and angle Glauber-eikonal
approximations and in the first-order Born approxima-
tion with experimental data (Ref. 16) which are normal-
ized to the Glauber-eikonal result at an angle of ap-
proximately 42' where the two theoretical curves cor-
responding to the straight-line and angle approximations
come together.

perimental data are normalized to the theoretical
value at an angle of 42', where the two theoretical
curves corresponding to the straight-line and
angle approximations come together. The theoret-
ical results for the (n =2) excitation are obtained
as sums of the 2s-excitation and 2p-excitation
results. As expected, the angle approximation for
the classical trajectories does provide a signifi-
cant improvement over the straight-line approxi-
mation. This is apparent for 8 & 50', where the
angle approximation lies between the experimental
data and the straight-line approximation. At
smaller angles, the difference between the two
approximations is too small to be seen for the
scale adopted in the figure.

Similar comparisons of the angular dependence
of the experimental and theoretical (s = 2)-excita-
tion cross sections are given in Figs. 2 and 3 for
an incident electron energy of 100 and 200 eV,
respectively. The experimental data again are
normalized to the theoretical value at an angle
about 42', where the two approximations come to-
gether. It is seen that the agreement between the
experimental data and the angle approximation is
getting better with increasing energies. The
deviation between the angle and straight-line
approximations also becomes smaller with in-
creasing energies.

For comparison we have included in these figures
the result obtained in the first-order Born approx-
imation. At small angles relevant to the deter-
mination of the total cross section, the Glauber-
eikonal results lie below the Born approximation.
The difference between the straight-line and the
angle approximation is, however, very small at
these angles.

The difference between the two approximations
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FIG. 4. Comparison of the energy dependence of the
total (e, H) {n = 2)-excitation cross section in the straight-
line and angle Glauber-eikonal approximations with ex-
perimental data which are the sum of the data for 2s
excitation of Kauppila et al. (Ref. 17) and the data for
2p excitation for Long et al. (Ref. 18). Cascade contri-
butions are not included in the theoretical results.
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FIG. 5. Comparison of the energy dependence of the
total (e, H) 2p-excitation cross section in the straight
line and angle Glauber-eikonal approximations with ex-
perimental data of Long et al, . (Ref. 18) .
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for the classical trajectories is much more pro-
nounced for the 1s -2s excitation than for the
1s- 2p excitation. This is because the 2p-excita-
tion amplitude contains significant contributions
from large impact parameters. The angle approx-
imation tends to increase the 2s-excitation cross
section but to decrease the 2p-excitation cross
section obtained in the straight-line approximation.
As a result, the differential (n = 2)-excitation cross
section (which is the sum of the two excitation
cross sections} is decreased at small angles and
increased at large angles. The angle approxima-
tion therefore yields (Fig. 4) a total (s =2}-exci-
tation cross section which is slightly below that
given by the straight-line approximation. The
experimental data shown in Fig. 4 are obtained
by summing over the data for 2s excitation of
Kauppila et al."and the data for 2p excitation
of Long et al, .' It should be noted that the 2s-ex-

citation data of Kauppila et al. contain significant
cascade contributions from higher. levels such as
the 3p state. Thus the shift provided by the angle
trajectories is in the correct direction at E &40
eV, although it is small. For E & 40 eV, both ap-
proximations fail to give the correct shape. This
is expected since our approximations are based
on the assumption 8, «1 and 8,= 1/E for the
potential of strength = 1 a.u.

A comparison of the energy dependence of the
theoretical and experimental total 2p-excitation
cross section is given in Fig. 5. Here the cascade
contribution in the experimental data is small
(approximately 2%). The experimental data are
those of Long et al."computed by Tai et al.
with the help of the measured polarization of Ott
et a/. " It is seen that the angle approximation
does provide a better agreement than the straight-
line approximation at E & 40 eV.
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