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We analyze elastic electron-atom scattering at intermediate and high energies by combining the Born
series and eikonal series to get a consistent picture of the scattering amplitude through order k;*. Our
eikonal-Born-series approach is compared with the usual Glauber approximation, which is shown to be
seriously deficient. We also discuss the Schwinger variational principle, exchange effects, and forward
dispersion relations. Applications are made to the elastic scattering of electrons by atomic hydrogen and
helium. The agreement between our results and the experimental data is very good.

I. INTRODUCTION

The nonrelativistic elastic scattering of electrons
by atoms is one of the most fundamental problems
in atomic physics. In this paper, we present a
theoretical approach to such processes based on
a detailed study of the Born and Glauber! multiple
scattering series. Our method applies essentially
to the region of intermediate and high energy.
Although we shall formulate our approach for the
general case of electron-atom scattering, we
shall illustrate it by considering the elastic scat-
tering of electrons by atomic hydrogen and helium,
These processes have recently attracted a con-
siderable amount of theoretical interest,?~'® while
experimental data have also become available,!®~23
particularly in helium,'®~22 where absolute mea-
surements of angular distributions have been
made.

After recalling some basic equations, we present
in Sec. II a detailed comparison of the Born series
and the Glauber multiple scattering series.! First,
the second Born term is evaluated by using an
average excitation energy, and its analytic behav-
jor is discussed. Then the Glauber series is
analyzed in detail. As in the case of potential
scattering,?* it is shown that important contribu-
tions are missing from the Glauber series. We
conclude Sec. II with a brief discussion of the ex-
change amplitude. Section III is devoted to the
application of our method to the analysis of elastic
electron-hydrogen and electron-helium scattering.
Our results are compared with other theoretical
approaches and with the experimental data. We
find good agreement between experiment and our
theoretical values. We also find at all energies
a very significant difference between our results
and those of the Glauber approximation. We con-
clude Sec. III by using the Schwinger variational
principle? to estimate higher-order corrections

to our eikonal-Born-series results.

Finally, in Sec. IV we discuss the important
question of forward dispersion relations and show
that our results for the real part of the forward

~ elastic scattering amplitude are in good agreement

with the dispersion-relation calculation of Brans-
den and McDowell.?

II. THEORY

A. Basic Equations

Let us consider the elastic scattering of an
electron by a neutral atom of atomic number Z.
We assume that the collision is nonrelativistic.
Since we are interested in the intermediate and
high-energy region, we shall first neglect the
effects of the Pauli principle between the incident
and target electrons; corrections due to exchange
effects will be considered separately below. The
initial and fmal wave vectors of the electron will
be denoted by k,l and k,, respectively, with ]k,]

]kfl_k The nucleus of the atom being the origin
of our coordinate system, we shall denote the
coordinate of the projectile electron by Fo , while
the positions of the atomic electrons will be la-
beled by T, (i=1,...,Z). Atomic units will be
used throughout this paper.

The free motion of the two colliding particles is
described by the Hamiltonian

H,=K +h, 2.1)
where K is the kinetic-energy operator
K=-3V} (2.2)

and k is the internal Hamiltonian of the target.
Moreover, we have

hln) =w,|n), (2.3)

where |z) denotes an eigenstate of the target Ham-
iltonian and w, is the corresponding internal ener-
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gy. We shall denote by |0) the initial (and final)
eigenket of the target.
The full Hamiltonian of the system is such that

H=H,+V, (2.4)
where V, the interaction potential between the
projectile and the target, is simply

Va2 — -—, (2.5)

with 7,,=|T, = T,| .
The scattering amplitude for elastic scattering
is then given by the expressions

f==@n2@v|¥;)
or
f==@) (‘I’;IVI‘I’,),

where &; and &, are eigenstates of H, (i.e., free
waves), while ¥; and V7 denote the full scattering
wave functions satisfying the Lippmann-Schwinger
equations

V=9, +GiV¥}

(2.6a)

(2.6Db)

(2.7a)
and

U7 =@, +G5VY; . (2.7b)

In these equations, the Green’s operators G; are
given by

‘o= (E - Hyi€)™, (2.8)

S ice we are considering only nonrelativistic col-
lis ons and we neglect the Pauli principle between
th . incident and target electrons, we may ignore
t} 2 spin of the projectile; the indices ¢ and f
t erefore label the momentum of the projectile
together with the internal quantum numbers of the
target. In what follows we shall write the asymp-
totic states (&) and |®,) more explicitly as |0, k »
and |0, k,), respectively. More generally, an
eigenstate |®,) of H, will be written as |n,q). The
normalization condition which we adopt is such that

(', q'|n,q)=6,,6@-q"). (2.9)
Hence, in the coordinate representation
®,(F,, &) = (2n) 3% " Toy, (£),

where £ denotes the collection of target coordi-
nates.

(2.10)

B. Born and Eikonal Series

Let us return to the Lippmann-Schwinger equa-
tions (2.7) and solve them by iteration, starting
from the free waves &, and ®,, respectively. We
obtain in this way

V=8 +G Ve +GyVGaVE +... (2.11a)

and
V7 =8 +Gy VB +Gy VGV +++ < . (2.11b)

By substitution into Eqs. (2.6), we see that the
Born series for the scattering amplitude is given
by

f=i;lfnn’ (2.12)
where
fon==QRn)X@|VGIV++-G3V|®,)). (2.13)

In this last expression the potential V appears
n times, and the Green’s operator G; appears
n-1 times. We shall also define fj, to be the sum
of the first n terms of Eq. (2.12). That is,
n_
Bn =:Z->1 Ios (2.14)

We now consider the “many-body” Glauber!
approximation to the scattering amplitude, name-

ly,

fo= 21n fdzb % Bo(0|etxe Do+ - h2) _1|0),
(2.15)

where
-k, (2.16)

is the momentum transfer. In writing Eq. (2.15)
we have also decomposed the vector T, as

(2.17)

and we have chosen the z axis to be perpendicular
to the momentum transfer. The implications of
this choice, first proposed by Glauber,! have been
discussed in detail by Byron, Joachain, and Mund**
in the case of potential scattering. We shall return
to this point below.

The Glauber phase-shift function x, which ap-
pears in Eq. (2.15) is given by

- > ~
ro=by+242,

Xc(knbow"’bz)

1 o0 -> - ->
=—7'Tf V(by, 2o,y sT7)d2,, (2.18)

where we have decomposed the vectors T, as
(i=1,2,...,2). (2.19)

We have used the fact that for any potential V
which depends only on 7%, and 7;,—in particular, for
the interaction given by Eq. (2.5)—the Glauber
phase-shift function does not depend on z; .

By analogy with the Born series [Eq. (2.12)], we
now define the Glauber multiple scattering series

g -~
r;=b,+z;2

(2.20)
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where

_ k n - - -
Fon= ok S [ty o 0l @, ..., BI0).

@.21)

We shall also denote by f., the sum of the first
n terms in Eq. (2.20). Thus,
n
fG,,=IZ_)1fc,. (2.22)
Before we analyze in detail the Born series of

Eq. (2.12) and the Glauber series of Eq. (2.20), we
first recall that with the choice of z axis which
we have adopted it is straightforward to show that
Js1 = 1 for all scattering angles. Moreover, for
the interaction potential given by Eq. (2.5) the
phase-shift function y, can be readily evaluated;
it is given by

zZ 2
xe= = In(1-22 cos (g - )+ B),  (2.23)
kf i=1 bO bO

where ¢, is the azimuthal angle of 5‘ in the xy
plane, and b, =|b;|. Since x, depends only on the
differences ¢, - ¢,, it is clear that the only ¢,
dependence in Egs. (2.15) and (2.21) is contained
in ' Po, Thus, we may perform the ¢, integra-
tion and write

fo= 5‘ [abobod, (B Oleixe-1j0)  (2.24)

J

and

n

Fon= S 50 [ab,0,0, (KO OIE0).  (2.25)

It is now obvious from Eq. (2.25) that the terms
of the Glauber multiple scattering series
[Eq. (2.22)] are alternately purely real (odd order)
and purely imaginary (even order). This is in
contrast to the Born series of Eq. (2.12), where
already the second-order term f,, contains both
a real and an imaginary part.

C. Second Born Term

Let us now analyze in more detail the term f,.
If we neglect exchange and write the states |®,)
and | &) as |0,k,) and |0, 'ﬁ,), respectively, where
zero denotes the ground state, then we have

2 oo (5 0k V]n, &), G |V]0, &)
Iz =87 quz") q* -E +2(w, - w,) —i€  ’ (2.26)

where the interaction potential V is given by Eq.
(2.5). This expression has already been analyzed
by several authors,?:3:8:14:15:18 g that we shall
only give the essential steps of our calculations.
First of all, because |n,q)=|n)|q), with the
normalization specified by Eq. (2.9), the integra-
tion on the plane-wave parts of the matrix elements
in Eq. (2.26) can be done immediately. We obtain

Fon= 7 [T g (O 2 % Tn o) )l Z e T 1)[0) a2 - 1 +2(0, w9 -ie],  @20)
B2~ 2 qu K%K; m=1e - 23 lin:le - )) q° - ki +2(w, ~w,) —i€], 2.

where E, =E, ~3q and §,=Ef -q.

The basic approximation which we shall make
in this section is to replace the quantity w,~ w,
in the denominator of Eq. (2.27) by an average
energy difference A. By thus removing the u
dependence of the denominator, we see that the
sum on intermediate states in Eq. (2.27) can be
done by closure, giving the simplified second Born
approximation (SB2)

.2 1 1
on= 7 [Py e

><<0|(m2z=1(e'*?f' n-1)) (i @R Fa-1))(0),
" (2.28)

where p? =k? —2A, If we write |0)as an antisym-
metrized sum of products of orthonormal orbitals,
where the orbitals are denoted by ¢, ,¢,,..., ¢z,
then it is straightforward to reduce this expres-
sion to

—
_2 (. 1 1
Fine = 72 fd TKTK? @ -pi—ic

Z - - - - > >
(5 @le® T el T i T,
n=1

Z - > - >
+27 (Dal 7T = 1], ) (Dple™ s T =1]y)
1

zZ > - - >
-5 <¢,,le"<i"—11¢n><¢,le-"<f"—1|¢m>).

n,m=1
(2.29)

Note that in the case E, =§, the singularity coming
from the term K;? K ;2=K 7* is canceled by the
term in large parentheses, which vanishes at
least as fast as K? in this case. The matrix ele-
ments in Eq. (2.29) can be easily evaluated for

any collection of orbitals {¢,} which can be written
as a sum of terms of the form »'e~%". Then the
integration on q can be reduced to a single integral
on a Feynman parameter ¢ by the usual Feynman
techniques.?® -
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For the special case of elastic scattering from the ground state of hydrogen, the last two sums in Eq.

(2.29) do not contribute, and we have

- 2 (. 1 1
fsm'ﬂz quKfKﬁ g% -p? —ie

<¢{«lslet'ﬁ-}’_etﬁj-}’_e-iifT+1|¢Fs)’ (2.30)

where ¢f%=e™/V7 is the hydrogen ground-state orbital. Similarly, for the case of elastic scattering from
the ground state of helium, the final sum in Eq. (2.29) does not contribute (because of the orthogonality of

the two spin orbitals inhelium), and we find

1 1
K? q°—p?—ic 2@l

= 2
fSB2 =-7T_2J‘d3qK";

-D.-D -> .-’ -> .-D He
iK r_eiK‘ T eiKy r+1|¢1 >

+2(Qle|oRi T q|gley (gHe| gmiRe T _ g gHey) (2.31)

where ¢f¢ is the ground-state single-particle orbital for helium,
| For atomic hydrogen and helium targets an obvious improvement can be made on Egs. (2.30) and (2.31).
'Indeed, it is possible in these cases to include exactly a certain number of low-lying target states in the
summation on u appearing in Eq. (2.27), and to perform the summation on the other states by clo-
sure.®'1415:18 gince the ground state lies far below the cluster of other bound states near the continuum,
it is sensible to deal with the intermediate state p =0 explicitly in Eq. (2.27). This will result in only a
trivial modification from a computational point of view. For atomic hydrogen, we find that the simplified
second Born amplitude f;Bz given by Eq. (2.30) is replaced by

.2 (a1 1
T35 [P 50RT o
1 1

> > > -
(¢i{sleﬂ< T _eiKier _ o-iKp r+1|¢i{s

2 E.T . .
+_‘I_T?fd3qK?K§ qz—k%—ie <¢Ps|e s r_lld)ﬁs)(d)?s[etk‘ r-ll¢Ps>

2 1 1 E P -
- & [wogd o @Bl ™ T tel oo™ T 1lo, 2.32)
1

while for helium the expression (2.31) is replaced by

- 4 1 1

o= w2 quKfKﬁ q% - p? —ie
8 (. 1 1

t quK’,‘Kf ¢ -FK-ic

SNy P —
w2 K2K% q*-pi-ie

Let us now evaluate Eq. (2.30) for an orbital
of the form

{{s'z*=(Z*3/ﬂ’)112 e~ Z*r, (2.34)

The physical value of the important first term in
Eq. (2.32) is then obtained by setting Z*=1, and
the analogous first term in Eq. (2.33) is a linear
combination of such terms with various values
of Z*, since we write the Hartree-Fock orbital
¢4 as™

ole = (4r)"/2(Ae~ 2" +Be™B7), (2.35)

with A =2,60505, B=2.08144 and o =1.41, 8=2.61.
The additional terms necessary to evaluate Eqs.

He - - - -
<¢ls|e”( I'_elKg l’_e-{Kf I'+1I¢lil;

(e |emKe T o 1[0 He ) @He iRy T 1| He

->

(@le|emRe " T 1|gHe ) (ple | iRy " T~ 1] ooy, (2.33)

T
(2.32) and (2.33) are straightforward, since they
are essentially second Born terms for scattering
by a simple potential obtained by averaging over
the ground-state wave functions. Such potentials
decay exponentially, and hence the corresponding
second Born terms exhibit familiar potential scat-
tering behavior. The real part varies like ;2
for k; large, and the imaginary part varies like
k7! for k, large. In all cases these extra terms
were evaluated by reducing them to an integral
on one Feynman parameter, which was done nu-
merically.

Using Eq. (2.34) in Eq. (2.30), one finds after
straightforward calculation with Feynman methods
that fsz,,; is given by
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—g% , dl 2K K2 +8Z*2 Ha=0) where we have introduced an obvious notation for
fem=4U~¢ do? )y -pz* - (K% +4Z272)2 (@=0), fspr evaluated with an orbital of the type given in
(2.36) Eq. (2.34), and where
—
1 a?t+2A

ReI(a):J; [(o® +K?) t = K2 t2]"2{(0* - 4 p2 K?) t% +[4 p3(a? +K2)+4Aa2]t+4A2} (2.372)
and

ImI(a)=2p, f = at (2.37b)

Both of these expressions can be evaluated ex-
actly, but the results are too cumbersome to be
useful. In all results presented in subsequent
sections, these equations were evaluated by nu-
merical integration. However, if k, is large,
simplifications occur, and one finds

a?(a? +K?) +2AK? — 2A 02

m
Rel(0)~ g ke) * ~ 2 a(a® +K°F
(2.38a)
and
- 1 k(a? +K?)
ImI(a)=~ 7 (o 1K) 1n v s (2.38b)

where we have assumed a= 1. For the case a =0,
Egs. (2.37a) and (2.37b) are straightforward to
evaluate. One finds

Re10)= 52 TR (2.392)
and

_ 2 P K +(p? K? +4A2)2
ImI(0)= K(p7K? + a0y 10 250 :

(2.39b)

Using Eqgs. (2.38a), (2.38b), (2.39a), and (2.39b)
in Eq. (2.36), we find in the limit of large &,

R -2 K2 +8Z*? (1 K
*Fim =2 (i 277 ~ERaa

4Z*2 1 6A 162*3
T 22 (KR +4Z77) T BE(K® +4Z )
128AZ*2
- W (2,403)
and
K? +8Z*2 1 . k,(K?+4Z*?)
74, -4 ety (o 2SS
K 1g K+ K2+4A%)V/2 )
T K aarE " 24
2(K? -4z *2
k((K‘—ulZ# . (2.40b)

p2 K?) 2 +[4p? (0? +K?) +4Aa?]t +44%

—

We notice in Eqs. (2.40a) and (2.40b) that there
are two distinct angular regions of mterest When
K=<2A/k,, i.e., when 652A/%, m varies with
energy like k“ln k,, and Re fsm varies like ;1.
For scattering angles 922A/k ImfZ, varies with
energy like ;! and Re f%; varies like k2. The
leading corrections to Egs. (2.40a) and (2.40b) are
of order k7% and k;%Ink,, respectively.

We may remark in passing that the zero-angle
results

RefZ, (6=0)=n/k, Z*?
and
Imf%; (6=0)=(2/k,Z**)Ink,

(2.41a)

(2.41b)

satisfy a forward dispersion relation,!®

= Im & (0=0, E’)

Ref (9 OE)—"_ 7
$B2 \ E —F

dE’,

(2.42)

where E =32, as may be verified by direct inte-
gration.

D. Eikonal Series

In order to facilitate the comparisons with ex-
periment which we shall present in Sec. IIE, we
shall discuss in some detail the eikonal series for
the elastic scattering of electrons by hydrogen and
helium, Our starting point is the quantity f;,,
defined by Eq. (2.25). Let us write this equation
in more detail for these two special cases.

For hydrogen, we have, using Eq. (2.23),

T (&) [0, kogl0% 6y, 2007

x 1n" (1 231- cosd, +

b )b dbyb,db,de dz, ,
(2.43)

where ¢!l is given by Eq. (2.34) with Z*=1, If
we define the quantity A (b,) by
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A,I;l(bo) = fl¢ ﬁg(bl ’ zl)lz

XIn" (1 2 —b-’~-cos¢>1

)b dbdd,dz,
bO

(2.44)
then Eq. (2.43) can be written simply as

- 1 ; n=1
fG"=E(é—) [ K8 A ) byt (2.45)

For helium, the situation is qualitatively very
similar to that of hydrogen. If we use a product
of Hartree-Fock orbitals ¢}¢(T,) and % (T,) as
given by Eq. (2.35) to represent the ground state
of helium, then it is straightforward to show that
for helium

]_,G":;LIT(E’"_)"-IIJO(K%)E W

X AR (bo) AB(b,) b, db,, (2.46)

Imf E=100 eV

| | [ | [

1 2 3 4 5 K
FIG. 1. Solid curve shows Imf & [Eq. (2.30)] for Z*

=1 as a function of momentum transfer K. Dots are the

values of Im fg, for electron-hydrogen elastic scattering.

where

4409 = [ lgke by, 22

XIn" (1 2 2’—cos<p1

5 )b db,de,dz,.

(2.47)

Apart from the choice of orbital, Eqs. (2.44) and
(2.47) are identical. The terms in Eq. (2.46) which
differ from the hydrogenic result of Eq. (2.45) have
a simple physical origin. A disconnected term
like AHe(b,) [note that AM(b,)=1] arises from »
successive interactions of the projectile with a
particular electron in the target; it is clearly
completely equivalent to All(b,), apart from the
choice of orbital. A connected term like AH¢, (b,)
x AHe(p,) results from a situation in which the pro-
jectile interacts m times with one helium electron
and n — m times with the other helium electron.
The coefficient in front of the term A, (b,) A% (b,)
corresponds to the number of possible orderings
of the interactions. These terms are obviously
not present in the case of hydrogen; in helium,
however, they are very important.

The functions A}(b,) and AHe(b,) are the key
quantities in the evaluation of the eikonal series,
For any orbital of the form 7! ¢~°"1 in Eq. (2.44)
or Eq. (2.47), the z, integration can be done analy-
tically in terms of Bessel functions of the second
kind, so Eqs. (2.74) and (2.47) involve only a two-
dimensional integral which is straightforward to
evaluate numerically, The A,(b,) have character-
istic rates of decrease for large values of b,;

A, (b,) decreases exponentially with increasing b,,
whereas all higher A,(b,) decrease like an inverse
power of b, as b, becomes large:

A, (by)~a,/b?
-a,/bt* (nodd, n>1),

(n even, n>0)
(2.48)

The very slow falloff of A,(b,) gives rise to a
divergence of f,, at K=0, as may be seen from
Eq. (2.45). This corresponds to the fact that for
K =0 fg, diverges logarithmically as A, the aver-
age energy of excitation in intermediate states,
tends to zero. This is apparent from Eq. (2.40b).
Such a result is expected, since the derivation of
the many-body Glauber result of Eq. (2.15) as-
sumes essentially that A=0. Note, however, that
the higher A,(b,) (n>3) are such that the integrals
in Eqs. (2.45) and (2.46) converge at the upper
limit of integration, even when K =0,

We show in Fig. 1 a comparison of Im fZ%; | g#=1
with Im f, for the case of elastic electron scat-
tering in hydrogen. We see that for very small
momentum transfers there is a substantial dif-
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ference between fgp, and f,,, but otherwise the
two agree very well, even at momentum transfers
corresponding to 6=180°% This remarkable re-
sult has also been noted by the authors in potential
scattering.?® Since the forward divergence occurs
in 702 only because of an insufficiently rapid falloff
of A,(b,), it is likely that the results for fg,, fg,,
etc., will agree with the corresponding Born terms
Refg,, Imf,,, etc., at least for angles satisfying
the usual eikonal criterion' 6< (2/k,)"'2. In fact,
the range of validity may be much greater. The
authors have found in a study of the eikonal method
in potential scattering that for many types of po-
tential Re fp,=Re gy, Imfy, =Imf,,, etc., in the
high momentum limit for all scattering angles.

In concluding this section, we should note that
in order to include the leading 1/k% corrections to
the first Born differential cross section, one
needs Re fj, in addition to f, and f,, because
Re fp, is of order 1//2 and will give contributions
of this order to the differential cross section.
Since 753 is formidably difficult to evaluate, on
the basis of our foregoing discussion we shall
use Refg, in place of Refy;. The reason that we
use fp, instead of the simpler f, is also obvious
from our analysis. In addition to the unphysical
divergence of Imf, at very small angles, f,
contains a real part which is completely missing
from faz. This term is numerically very impor-
tant, particularly at small angles where, as we
have seen above, Ref, is of order 1/k; and hence
gives the dominant correction to the first Born
differential cross section.

E. Exchange Corrections

As we have seen above, if we wish to make
consistently the leading corrections to the first
Born amplitude, we must include all terms of
order k;2. This leads to the conclusion that the
leading term in the exchange amplitude must also
be included, since it is well known to be of order
k2. Fortunately, higher exchange terms may be
neglected at this level of accuracy, although they
would become important if we were to go beyond
order k;2. The first Born exchange amplitude is
given in the case of electron-hydrogen elastic
scattering by

— 1 - - 1 1
Fh=—gr [ R (- )

x e*ki " To Y (T, )dT, dT, , (2.49)

and by

_ 1 T - - 1 1 2
He _ _ _— —-ikg *1; pHe He —_— ——
&h 27 fe et (ro)CPls(rz)(rm " Yo2 7o

X %t " To pHe(F,) Qlle (F,) dF, dF dF, (2.50)

)

in the case of helium, where we use Hartree-Fock
orbitals. We should remark that although we have
written the exchange amplitude in “prior” form,
the same results for gl¢ are obtained if one uses
the “post” form.

In order to have a consistent expression for the
exchange amplitude it is necessary to look in
somewhat more detail at Eqs. (2.49) and (2.50).
The dominant contribution to both of these equa-
tions comes from the 1/7,, term in the interaction
potential; this is sensible, since it represents the
interaction between the incident and ejected elec-
trons. This dominant correction falls off like
k;? for large k;. The contribution from 1/r, falls
off like %;° as is readily seen by inspection of
Eqgs. (2.49) and (2.50). Consistent with our present
level of approximation we may neglect this term.
In fact, there are more compelling reasons for
neglecting it; one can show that the next term in
the Born series will contain a part which will can-
cel this term, leaving a contribution of still higher
order in k;. Similarly, the contribution to gh¢
from the term 1/, in Eq. (2.50) will be neglected,
since its value at the energies of interest is very
small, being only of order k;'°, Thus, Egs. (2.49)
and (2.50) simplify, respectively, to

= 1 _" ." - 1
Th-gy [T )~

x e~ *To OB (F,)dF dF, , (2.51)
— 1 - e e (% 1
ggf”'gfe the "q’:*s(ro);o—l

x etk *Top e (F,) dF dF, . (2.52)

Finally, if we transform these two equations
into momentum space and retain only the leading
term in the large-k; expansion, we arrive at the
Ochkur approximation®

— 2 T >\ g o>

&5~ 80cn=" ;z_'fe“‘ T[of(F)1dr, (2.53)
1

_ 2 [ e et

=gl = [eFTIORGPE,  (250)
13

where, as usual, K is the momentum transfer. In
Eqgs. (2.53) and (2.54) the k72 dependence of this
leading contribution to the exchange amplitude is
explicit. Using Eq. (2.34) with Z*=1 for ¢! and
Eq. (2.35) for ¢!  we have

32

&51™ Boo =~ (i 147 (2.55)



1274 F. W. BYRON, JR. AND C. J. JOACHAIN 8

e m oo __ 8 ed? _  __2yAB
&p1~ 8o = 12 ((K2+4a2)2 (K? +4y%)
BB?
* K + 45 ) ’ (2.56)

where A =2.60505, B=2,08144, a=1.41, 3 =2.61,
and y =a +8 =2.01,

With the inclusion of exchange, the full scat-
tering amplitudes for hydrogen will be given by

fdns=f+g’ ftxip':f"g, (2‘57)
and then

49 _1) 12,32

R TALES (AL (2.58)

To our order of approximation, we will use
g=gH, . For helium there is just one amplitude,
f-g, and

do _ 2
dﬂ _|f _g‘ H (2°59)
where again g = ghe ,

III. APPLICATIONS TO ELASTIC SCATTERING
BY ATOMIC HYDROGEN AND HELIUM

In Figs. 2-11 we present our results concerning
differential cross sections for elastic electron
scattering by atomic hydrogen and helium, We

] T
sin ech (au)

E= 100 eV

0 10 20 30 40 50

FIG. 2. Quantity sind do/dQ (in a.u.) vs 8 for elastic
electron scattering by atomic hydrogen at 100 eV. Solid
curve gives eikonal-Born-series result, dashed curve
gives first Born approximation, dash-dotted curve gives
Glauber approximation, and dashed-double-dotted curve
refers to our eikonal-Born-series results for positron
scattering. Circles are experimental results of Ref. 23,
normalized to Born-series result at 30°.

include for comparison on each graph the Glauber
cross section and the first Born cross section,
in addition to the existing experimental results.
In most of these figures we have multiplied the
various differential cross sections by sinfé, so
that the curves will be more readable. Thus, the
area under the curves in such figures is directly
proportional to the total cross section for elastic
scattering, apart from contributions from larger
angles. Our eikonal-Born-series results are ob-
tained by writing the direct amplitude f; as

Ref, = fg, +Refa, +Refeq, (3.1a)
Im f,=Imfp,. (3.1b)

As discussed in Sec. IIE, we include for consis-
tency the Ochkur approximation to the exchange
amplitude.

Figures 2 and 3 show elastic electron-hydrogen
scattering at 100 and 200 eV, respectively. The
most striking aspect of these results is that at a
rather high energy such as 100 eV, the difference
between the Glauber and the eikonal-Born-series
results is very large—50% or greater at all angles
shown. Even at 200 eV, the difference between
the two is always greater than 25% over the range
shown, which clearly comprises most of the con-
tribution to elastic scattering. These differences
are due primarily to the term Re fy,, which is
completely missing from the Glauber amplitude.
At small angles, this term actually gives the lead-
ing correction to the differential cross sections,
and at larger angles it gives a correction equal
in importance to Ref;, and Imfp, .

It is interesting that in both cases at angles
greater than 20° the first Born approximation is
closer to the eikonal-Born-series result than is
the eikonal result, whereas the eikonal result is
closer at small angles. If one performs the inte-
gral over all angles, one finds that at these ener-
gies the total cross sections given by the first

T T T

T
sine—ﬁ-: < (a.u)

0.2

E: 200 eV —

0 10 20 30 40 50

FIG. 3. Curves are same as in Fig. 2, but at 200 eV.
Circles are experimental results of Ref. 23, normalized
to Born-series result at 40°.
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. FIG. 4. Quantity sinf do/dQ (in
04 —1 a.u.) vs 6 for elastic electron scat-
tering for helium at 100 eV. Solid
curve gives eikonal-Born-series re-
° . sults, dashed curve gives first Born
03 * . . approximation, and dash-dotted curve
. | refers to Glauber approximation.
Circles are experimental results of
0.2 . e _|  Ref. 19 as normalized by Ref. 21.
P - T e— e Squares are experimental results of
e = —_— Ref. 22.
I/ =TT =
01 // -7 - ]
/ 7
_--" 6 (deg)
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Born and Glauber results are very nearly equal,
From such an agreement, one might be tempted
to conclude that the first Born (or Glauber) approx-
imation gives a good account of elastic scattering
at energies above 100 eV. We see that this is
emphatically not the case. The total elastic cross
section given by our Born-series result will be
much greater than the first Born (or Glauber)
result at both 100 and 200 eV.

The experimental results of Teubner et al.?® are
also shown in Figs. 2 and 3. Since these are not
absolute measurements, we have normalized them
to our eikonal-Born-series results at a single
point, We see that the agreement is good (well
within the experimental uncertainty), although the
agreement with the Glauber result would be equal-

ly good if we had normalized the experimental
points differently.> This results from the fact that
over the angular range in which we have experi-
mental data, the eikonal-Born-series differential
cross section and the Glauber differential cross
section differ by a very nearly constant factor.
It is clear that measurements at smaller angles
would be necessary in order to distinguish between
the two theories. Finally, we also note from Fig,
2 the very large difference between electron scat-
tering and positron scattering in our theory. These
differences are missing from the first Born and
Glauber approximation predictions.

Now let us turn to elastic electron-helium scat-
tering. Figures 4-11 show the results that we
have obtained in the range of incident energies

I I T I I
do
sing o) (au)
E = 150 eV
03— ]
L] L]
. . FIG. 5. Same as Fig. 4, but at
0.2~ = 150 eV. There are no experimental
. ° values from Ref. 22 at this energy.
[ <
e ’—’_:,—&--; T
. - - - = -
0.1} e _--7 &
/ -
4 7
// 6 (deg)
rad 1 | | ] |
0 5 10 15 20 25 30
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[ ]
0.2~ |
. b . FIG. 6. Same as Fig. 4, but at
. L 200 eV.
* L ]
— __/-:-——__,_4—: \\\- ---------- 1
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7/ el
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ad 1 L 1 | |
0 5 10 15 20 25 30

0 5

10 15 20 25 30

FIG. 7. Differential cross section (in a.u.) for elastic
electron scattering by helium at 300 eV. Curve 1: the
eikonal-Born-series results; curve 2: modified close-
coupling calculations of Ref. 16; curve 3: eikonal opti-
cal-model results of Ref. 13. Dashed curve gives first
Born approximation and dash-dotted curve refers to
Glauber approximation. Circles are experimental data
of Ref. 19, as normalized by Ref. 21.

100-500 eV. The comparison between the eikonal-
Born-series and Glauber differential cross sec-
tions® is qualitatively the same as for electron-
hydrogen scattering, although at the lowest ener-
gies in question the discrepancy between them is
even larger than in the hydrogen case. The exis-
ting experimental results are also given in Figs.
4-11. At energies of 100, 150, 200, 300, and
400 eV (Figs. 4-9), the circles denote the results
of Vriens ef al.'® as normalized by the measure-
ments of Chamberlain ef al.?! at 5°. At energies
of 100, 200, and 400 eV (Figs. 4, 6, and 9), the
squares denote the results of Crooks and Rudd.??
In Figs. 10 and 11, the circles denote the experi-
mental values obtained by Bromberg?® at 500 eV.
All of these helium measurements are absolute,
so we do not have the freedom to normalize ex-
perimental points to theoretical curves.

It is interesting to note that in cases where two
sets of experimental data are available, our eiko-
nal-Born-series results lie between the two, ex-
cept at 100 eV, In every case, the Glauber re-
sults fall below all experimental data. It is dif-
ficult to assess the accuracy of such experiments
because of the ever-present possibility of system-
atic errors. The statistical error quoted by
Chamberlain et al.?! is about 5%; the results of
Refs. 19 and 21 tend to fall below our theoretical
Born-series curves by about 10-20% at all ener-
gies in question. At the lowest energies, such a
discrepancy could be explained by higher terms
missing from our Born-series result, but at the
highest energies we feel that this is unlikely for
reasons that will be discussed below, Similarly,
at energies where we have the experimental data
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FIG. 8. Same as Fig. 4, but at 300
eV. There are no experimental val-
ues from Ref. 22 at this energy.

|

0 5 10 15 20

of Crooks and Rudd,?? our eikonal-Born-series
curve lies systematically below their data points,
except at 100 eV. Clearly, more experimental
work is necessary before the situation at energies
below 400 eV can be discussed definitively.
Before we discuss the situation at 500 eV, let
us comment briefly on Fig, 7, where we compare
our calculations (curve 1) not only with the first
Born and Glauber results, but also with some
other recent theoretical calculations. Curve 2
shows the results obtained by Berrington, Brans-
den, and Coleman'® by using a modification of the
close-coupling method which allows for the static
coupling between the 1S, 2!S, and 2'P helium tar-
get states, together with a second-order pseudo-
potential in the elastic channel. Curve 3 corre-
sponds to the eikonal optical-model results of
Joachain and Mittleman,'® normalized at 6=5° to

25 30

the experimental results.!??! It is worth pointing
out that our curve lies consistently above the ex-
perimental results of Refs. 19 and 21, but delow
those obtained by interpolating between the experi-
mental data of Crooks and Rudd?? at 200 and 400
eV. Not shown in Fig. 7 are the results of second
Born calculations of Holt ef al.'* and of Woollings
and McDowell,'® which agree more poorly with
experiment, particularly at larger angles.

Let us now examine in detail the results at 500
eV. In Fig. 10 the small-angle behavior is em-
phasized, while the situation at larger angles is
more clearly illustrated by Fig. 11. We note that
the experimental data of Bromberg?® agree extra-
ordinarily well with our eikonal-Born-series re-
sults. Bromberg quotes a statistical error of
about 3%; our results agree with his at all points
to within this error. On the basis of the analysis

T T T | T
015 4 |
g
smed—a(a.u.) E - 400 eV
[
° [ ]
010 ¢ R _
° T T T T~
P T e FIG. 9. Same as Fig. 4, but at 400
7 - /’/ =~ ~-— \\\\\\ » eV.
/,/ /// ‘\~\': \\\\
‘ / "~ ~
0.05|- /-’ 7 ~
‘ 7
,/ J
‘/ //
,/ //
/// (2] (deg)
’ | | | | |
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FIG. 10. Differential cross section (in a.u.) for elas-
tic electron scattering from helium at 500 eV. Solid
curve gives our eikonal-Born-series result, dashed
curve gives first Born approximation, and dash-dotted
curve refers to Glauber approximation. Circles are
experimental data of Ref. 20.

given below, we feel that our Born-series results
might be off by perhaps as much as 5% at 500 eV,
although this probably is a bit conservative. It
is interesting to note that even at this high energy
our results are significantly sensitive to each term
included. The Glauber result shown in Fig. 11
shows that the omission of Re f, and g, leads to
an error of about 20%. If we had included fp, but
omitted Re763, the Glauber contribution, then
our results would have been too large by 10-20%.
Finally, had we neglected g, , our results would
have been too small by about 8-10%.

In order to give a more precise picture of the

W. BYRON, JR. AND C. J. JOACHAIN

|

importance of the various terms contributing to
the Born series, we show in Tables I and II the
contributions to the real and imaginary parts of
the scattering amplitude for E =300 eV. Table I
gives the terms appropriate to the real part of the
amplitude. Notice how both Re fy, and Re f;, play
important roles in correcting the first Born ap-
proximation, The term Re f;, gives an idea of the
order of magnitude of possible higher-order cor-
rections to Ref,; we see that its effect will be
rather small at 300 eV, although as one goes to
lower energies (remember that Re f;, and Re fg,
scale with energy as E~! and E~2, respectively)
these higher corrections become substantial.
Note that the Ochkur approximation to the exchange
amplitude (which is purely real) is by no means
insignificant at these energies and angles,

In Table II similar results are given for the
contributions to Imf,. Also, Imfg, is included for
comparison with Im g, ; we see that the two agree
rather well, It is clear that the term Imf, is a
fairly substantial fraction of Imfg,, so we may
expect that terms coming from higher orders
could play a substantial role in correcting Imf,.
We should emphasize that in the context of this
work it would not be consistent to include Imf;,
in Im f, because we expect that the term Imfg,,
which is entirely missing from the Glauber series,
will be of the same order of magnitude as Imfm .
This is why it was important to obtain Re fp, to
correct Re f;,, so that a consistent result through
order k;? could be obtained. In a similar way, the
missing term Rej—‘a,, would presumably make a
significant correction to the term Re f;; shown
in Table I. If one were to throw caution to the
winds and ask what would happen to the differen-
tial cross section if we added Im)‘_a‘1 and Re f; to
f1, the answer is that at 300 eV this would change
the differential cross section by no more than
3% at any angle. Even at 100 eV, such a change
would have no more than a 5% effect on the dif-
ferential cross section.

I I T T I
. do
sing =< (a.u.)
0.0} dQ . E-=500 eV |
(d
/‘//// s FIG. 11. Curves are same as Fig.
Rt T~ T 4, but at 500 eV. Circles are experi-
s, . AN
0.05|- ;7 =~ TG mental data of Ref. 20.
7, e
7y ~.]
,/ //
v
7,
", © (deg)
! | L 1 I I
0 5 10 15 20 25 30



8 ELASTIC ELECTRON-ATOM SCATTERING AT INTERMEDIATE... 1279

TABLE I. Real part of the scattering amplitude (in

a.u.) for electron-helium elastic scattering at an incident
electron energy of 300 eV. The quantity Ref; =fz,;+Refp

+Refg;. The average excitation energy used in calculat-
ing Refgp is A=1.3 a.u.

TABLE II. Imaginary part of the scattering amplitude
(in a.u.) for electron-helium elastic scattering at an in-

cident electron energy of 300 eV. The average excitation
energy used in calculating Imfz, is A=1.3 a.u.

0 (deg) fay=f3 Refm Refpz Refgs 2o  Refy

0 0.792 0.586 —0.078 0.016 —0.091 1.300
5 0.770 0.259 —0.086 0.016 —0.088 0.943
10 0.712 0.124 -0.096 0.016 —0.080 0.740
15 0.632 0.078 —0.102 0.017 —0.069 0.608
20 0.546 0.060 —0.104 0.017 —0.058 0.502
25 0.465 0.052 —0.102 0.017 —0.047 0.415
30 0.393 0.046 —0.098 0.017 —0.038 0.341

Let us now discuss possible sources of error
in our results for f;. The question of wave-func-
tion accuracy is always a difficult one in many-
electron systems. We have used a Hartree-Fock
wave function for the ground state of helium given

6 (deg) Imf; =Imfg, Imf, Imfg,

(v 0.800 o -0.057

5 0.661 0.682 —0.055
10 0.463 0.448 —-0.051
15 0.332 0.329 —0.047
20 0.255 0.260 —0.044
25 0.210 0.218 —-0.042
30 0.182 0.191 —0.040

this is a severe comparison, but even here the
magnitude of the discrepancy is never more than
about 5%, except, of course, at 0°, At very small
angles, Imf,, depends logarithmically on A [see
Eq. (2.40a)], while at large angles it is strongly

dominated by the intermediate state |p)=|0), which
we include exactly. For Ref,,2 at small angles
there is almost no dependence on A [see Eq.
(2.40p)], and again at large angles the interme-
diate state |u) =|0) dominates. The value of A
actually used, A=1.3 a.u., was chosen to make
(47 /k) Im f,(6=0) agree with the result of Inokuti
et al.®® for the Bethe-Born value of the fofal cross
section in electron-helium scattering at 500 eV.
We feel that it is unlikely that the errors associ-
ated with the choice of A exceed a few percent of
the differential cross section.

by Eq. (2.35). Table III shows a comparison of
first Born differential cross sections calculated
using the wave function of Eq. (2.35) with those
obtained® by using a correlated 20-term Hyl-
leraas wave function.?® The difference between
the two is most severe at 0°, but even here it
never exceeds 1%. We feel that wave-function
errors of this magnitude are also present in our
calculation of fg,.

Also, the choice of A will effect f;, as may be
seen by comparing the values of Imfy, and Imfg,
in Table II. Since the Glauber method uses A=0,

TABLE III. Comparison of first Born differential cross sections for elastic electron-helium scattering using a
Hartree-Fock wave function and a correlated wave function of the Hylleraas type.

First Born differential cross section

E 0 BJ Hartree-Fock Correlated 20-term Hylleraas
(eV) (deg) wave function? wave function®
100 0 0.627 0.634

10 0.584 0.589
20 0.476 0.480
30 0.354 0.356
200 0 0.627 0.634
10 0.543 0.548
20 0.372 0.375
30 0.225 0.226
400 0 0.627 0.634
10 0.475 0.479
20 0.244 0.246
30 0.112 0.112

2 Byron and Joachain (Ref. 27).

b The results quoted in this column are obtained by
using the values of the atomic form factor of the helium
atom calculated by Kim and Inokuti (Ref. 31) using the
20-term Hylleraas wave function of Hart and Herzberg
(Ref. 32).
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TABLE IV. Comparison of Glauber and Schwinger-variational-principle scattering amplitudes for electron-helium

elastic scattering at 500 eV.

0
(deg) Refes Refss Imfs, Imfz, Imfs, Refs, Refgs
5 -0.053 -0.283 0.146 -0.025 -0.156 -0.135 0.006
10 -0.060 -0.126 0.045 -0.023 -0.052 -0.029 0.006
15 —-0.062 -0.073 0.026 -0.021 -0.025 -0.014 0.006
20 -0.061 -0.059 0.023 -0.019 -0.020 -0.012 0.006
25 -0.057 -0.049 0.020 -0.019 -0.017 -0.011 0.006
30 -0.054 -0.048 0.019 -0.018 -0.019 -0.012 0.006

Finally, we turn to the most serious probable
error in our eikonal-Born-series results, namely,
the fact that we include only terms through order
k;? (i.e., through Ref,,) in our series. We have
remarked earlier that if we take the Glauber re-
sults Imf,, and Ref to give the corrections
through order k;¢, then even at 100 eV the result-
ing changes in the differential cross section are
only of the order of a few percent. However,
having seen the importance of Re fg, in correcting
Re f;;, we should not be too quick to accept these
Glauber values.

Another handle on the higher corrections can be
obtained by using the fractional form of the
Schwinger variational principle.?® If we use sim-
ple plane waves for the trial functions in the
Schwinger principle, then, as is well known, we
obtain the approximate amplitude

fs =f31(1 -faz/fm)_l- (3-2)

In the region in which the Born series is conver-
gent, we may write

fs=fm+f52+72§z/fm+---a (3.3)
so that, using our familiar notation, we have
781!:(732)"-1/(.731)"-2 (3.4)

for n>1. In Table IV we list the values of Re fg,,
Imf;,, Refs,, and Imf;, obtained by using our
values for fg and f, at E=500 eV. In addition,
we give the values of Re f;, and Imf,, for compar-
ison. It will be seen that the agreement between
Re'f—s3 and Refa3 is quite good at angles greater
than about 15°, and there is similar agreement
between Imfg, and Imf,,. The breakdown of the
agreement coincides with the onset of the anoma-
lous small-angle behavior of fj, owing to the long
range of the Coulomb potential. At very small
angles, a better trial function in the Schwinger
principle is probably called for. It is clear that
by adding Imf, to Imf,, we drastically change
the simple Glauber picture of the leading cor-
rection to Im f,,, since at angles greater than
15° Im f¢, nearly cancels Imf,,. Similarly, if

we add Re f;, to Ref;, to get the kj* correction to
our result for Re f; , we see that in the same an-
gular region we obtain a term of different sign
than we would have gotten by using just Re 7, .
Unfortunately, we cannot rely on this procedure
for all angles, a restriction that becomes more
important as we move to lower energies, where
the angle at which the anomalous “small-angle”
behavior sets in becomes larger and larger. For
example, at 100 eV the Schwinger results are not
particularly good, even at 30°. Thus, the values
of Im)—‘m and ReJ_‘Gs can probably only serve as
estimates of magnitudes of possible errors in our
results for f,, not as realistic higher-order cor-
rections. A glance at Tables I and II shows that
the uncertainties arising from higher-order terms
(as estimated by Im7,, and Ref,,) can be quite
considerable at low energies, and possibly as
large as 5-10% at the highest energies considered.
However, on a more optimistic note, we remark
that if we use the Schwinger corrections ImJf,
and Ref34 to supplement our values of Im]‘};‘1 and
Refs, then at 400 eV the resulting change in
dag/dQ at 20°, 25° and 30° is of the order of 3-4%.
Similarly, at 200 eV and 30°, the corrections to
do/d obtained in this way are about 8%. Thus, a
reasonable assessment concerning percent errors
due to omission of higher terms is that such errors
might reach perhaps 20% at the lowest energy
considered and are probably less than 5% at the
highest energy. It is clearly very difficult to make
a precise analysis of this problem.

IV. FORWARD DISPERSION RELATIONS

In comparing with experiment in Sec. III, the
point 6=0 is of necessity missing from the ex-
perimental results. On the other hand, the am-
plitudes vary rapidly in the vicinity of 6=0, so
this point is a sensitive test for any theory. How-
ever, as is well known, the point =0 is acces-
sible if experiments on total cross sections are
combined with dispersion relations via an equation
such as
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TABLE V. Comparison of the real part of the forward
elastic amplitude a8 given by dispersion relations with
the same quantity as calculated in this paper. The ener-
gy E is in eV.

E  Relfy(0=0)-gf5(6=0] Ref;5(6=0) Ref(6=0)

100 1.91 0.14 1.91
150 1.67 0.06 1.81
200 1.54 0.04 1.711
300 1.39 0.02 1.48
400 1.30 0.01 1.36
500 1.24 0.01 1.29

Ref(6=0,E)=fz,(0=0,E) -2, (6=0,E)
a2 f:-I-m—fE(,—e_:—QE’—E,—)dE’, 4.1)

where Imf(6=0, E) is given by the optical theorem
as
Imf(6=0, E) = (k/47) 0,,,(E). (4.2)

One must, of course, assume that forward dis-
persion relations are valid for elastic scattering
from a composite system with Coulomb forces.
No proof of this assumption exists, although it is
very plausible.® Combining Eqs. (4.1) and (4.2)
and using E =3k?, we obtain

Ref(9=0’ k) = f31(9=0) k) - EB[(Q=07 k)

1 ® 4%0,(q)
+ Pre p -2 dq. 4.3)

Thus, if one has values of Gyt(g) from ¢ =0 to
g =, then Re f(0=0, k) can be obtained for any k.
A calculation for helium has been carried out by

Bransden and McDowell® using the Bethe-Born
values of Kim and Inokuti* for o, and the Born

values of Kennedy* for ¢,, when £>4.5 a.u.

(01t =0+ 0 ), the elastic-scattering results of
Golden and Bandel®® below k£ =1.2, and a three-
term interpolation formula between 2=1.2 and
k=4.5. Fortunately, the results for Ref(6=0, k)
do not depend very sensitively on the region where
the interpolation is done, at least for energies
between 100 and 500 eV. Bransden and McDowell®
estimate that their results for Re f(6=0, k) in this
region should be accurate to about 10-15%.

In Table V we show our results at various ener-
gies and compare with the dispersion-theory re-
sults of Bransden and McDowell.® In column 1 we
list Re[f;(6=0) — gl (6=0)); in column 2 we show
Re f45(6=0, k) to give an idea of the order of mag-
nitude of corrections to be expected from higher-
order Born terms; and in column 3 we give
f(6=0,F), as determined by Bransden and McDow-~
ell. If we take 10% as a reasonable estimate of
the uncertainty in their results, we see that at
all energies we are in agreement with dispersion
relations, although we do seem to fall systemati-
cally on the low side of these calculations. It would
obviously be desirable to have reliable measure-
ments of total cross sections in helium to see if
this discrepancy persists when more precise dis-
persion-relation results, coming from improved
values of o, between the first inelastic threshold
and the Born region, are obtained.¥
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