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A collision-type formalism for spectral theory, described by Lu and applied originally to Xe, is improved

and is applied to analyze the strongly perturbed absorption spectrum of Ar. The analysis expresses

experimental data in terms of three sets of empirical parameters: five eigenquantum defects p, , one 5 X 5

orthogonal transformation matrix tt,-, and five dipole matrix elements D . The energy dependence of the

parameters is studied and is found to be approximately linear for the p. and insignificant for 11; and D .
With these parameters thus determined by fitting to the experimental data, the mixing coeKcients of the

Rydberg levels have been determined and their oscillator strength have been predicted and compared pvith

available experimental data.

I. INTRODUCTION

A collision-theory analysis of highly perturbed
spectra has been developed by Fano, ' in a paper
(to be called FH) which relies on Seaton's' multi-
channel quantum-defect method (QDM). FH ex-
presses photoabsorption data obtained below, be-
tween, and above different ionization limits in
terms of three sets of theoretical parameters.
These parameters pertain to collisions of an elec-
tron with an ion core (atomic or molecular) and
characterize the close-coupling eigenchannels of
this system. A related payer by Lu'(to be called
LX) extended FH to a multichannel case and ap-
plied it to analyze Xe spectra which involve five
strongly perturbed series.

Although the treatment of LX was successful in
describing a vast amount of photoabsorption data
in a unified way, it had a number of limitations.
First, all parameters were treated as if they were
independent of energy, although an energy depen-
dence was apparent in the imperfect fitting of the
lower-lying levels. Second, LX did not determine
uniquely all elements of the transformation ma-
trix 1), which connects the channels i of the dis-
sociated system (electron + ion core) with the
eigenchannels e of the same system in a close-
coupling situation. Finally, the classification of
levels provided by LX remained rather qualitative
owing to insufficient knowledge of the matrix lt, „.

The present work started with the modest aim of
applying the method of LX to analyze the Ar spectra
for which very extensive experimental data are
available, primarily due to Yoshino. However, in
the course of the work, we succeeded in removing
various limitations, thus extending the range of
application of the formalism.

The method employed in this paper is basically
the same as that of LX; moreover, the Ar spec-
trum has the same structure as that of Xe. Spe-
cifically, photoabsorption by Ar in its ground

state leads to the same configurations as one finds
in Xe, namely, to np'd or np's, ~=1, odd-parity
states belonging to five series, of which three
converge to the first ionization limit I», and two

converge to the second ionization limit I,r, .
In treating the energy dependence of the param-

eters, we found the procedures involving Seaton's
B and 9 functions" to be rather unsuitable for
Ar, whereas they had proven valuable for Ne. '
Ne treated the energy dependence of the param-
eters by expanding them directly as linear func-
tions of energy without prior elimination of the
Coulomb field effects represented by B and 9.
This aspect of the problem is discussed in Sec. ID.

As in LX,' we chose the dissociation channels
i to be jj coupled. On the other hand, the o.
channels are much more nearly LS coupled in Ar
than in Xe. This pex mitted us to fit the ll, „matrix
by minimizing the departure of these channels
from LS coupling (Sec. IV).

Complete knowledge of the matrix g,. has made
it possible to characterize each discrete level of
the absorption spectrum quantitatively as a super-
position of dissociation channels i with mixing
coefficients Z, and alternatively as a superposition
of close-coupling eigenchannels a with mixing
coefficients 5~. These coefficients are given in
Table II for 20 excited levels.

As in LX we fitted intensity parameters to re-
produce the observed intensity profile of the auto-
ionization spectrum. The parameters were then
utilized to predict the line intensities in the dis-
crete spectrum. These predictions will be dis-
cussed in Sec. V with oscillatox strengths deter-
mined by electron collision experiments~ and with
optical relative intensities estimated by Yoshino. ~

Analysis of the absorption spectra of the Ne, Ar,
Kr, Xe group by our method has now reached the
following stage: The Ne 2p'ns (and also the 2P'np)
levels have been studied by Starace. ' Ar is re-
ported in this paper. For Kr the experimental
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data are too fragmentary to permit a detailed
analysis. For Xe we have tried to improve the
fit obtained in LX and to interpret it in greater
detail but without sufficient success to warrant a
new report.

One obvious application of the present treatment
of noble gases would be to analyze the carbon
group. In particular, the perturbations noticed by
Andrew and Meissner' in the series 4s'4p PP)nd
of GeI are evidently similar to those occurring in
the noble gases and should be amenable to a simi-
lar treatment. Other spectra (Al, Ba, and Hg)
have been analyzed to some extent in this labora-
tory.

Sec. II will be a brief summary of the necessary

analytic formulas. Numerical fitting will be treated
in Sec. IV.

II. SUMMARY OF FORMULAS

This section summarized the formulas of LX and

extends them as required for our purposes.
The atoms of interest have two ionization limits

I,&, and I», corresponding to the doublet core
states p"P,f, and 'P», , respectively. Photoioniza-
tion of the ground state (Pe'So) yields odd-parity
states with J=1 consisting of the doublet ion and of
a continuum electron in s,(2, dsf2, or d», orbits.
These states belong to five dissociation chggnels
i which will be labeled in the jj-coupling scheme
by

label= pP, »)d„, , pP, q, )d,q, , pP„,)d», , pP«2)s«2 ( P3/2) I/2 (2.1)

(these labels are different from those used in LX).
The states of the discrete absorption spectrum are
often classified into five perturbed Rydberg series,
but each state is actually a superposition of all
five dissociation channels. The energy E of each
state can be separated into the energy I of the ion
and the energy e of the excited or ionized electron.
It is important that the energy separation differs
for different channels. It is written in a.u. as

1E=I)+e]=Iq-
2V)

. (i=2, 3, 5)
1

2VS]2

I s —2, (i =1,4),
1

(2.2)

where I,q, &I,&, and v, is imaginary or real accord-
ing to whether ~, &0 or ~, &0. There are three
spectral regions: discrete, auto-ionization, and

open continuum, corresponding to E&I», , I,~, & E
&I,», and I„,&E, respectively.

The QDM' relies on the existence of a distance

yo between the excited electron and the residual
ion such that the interaction is purely Coulomb
for r&r, . For x&ra, Eq. (2.12) of LX represents
the wave function of the excited or ionized atom as
a superposition of the wave functions of the five
dissociation channels,

excited electron in the i th channel; f (v, , l, ; r}
and s (v, , l, ; r}are regular and irregular Coulomb
wave functions' for the ith channel. Symmetriza-
tion of the coordinate y of the excited electron with
those of other electrons included in p is implied
in (2.3), though not indicated explicitly. The pa-
rameters of (2.3)—five eigenquantum defects p, „
and a 5 x 5 orthogonal transformation matrix tt;„—
represent boundary conditions on the wave func-
tion at r =r, . The index a pertains to the close-
coupling eigenchannels which characterize the
effect of short-range interactions between the
excited electron and the residual ion. These
interactions, involving exchange and other electron
correlations, prevail in the region r &r, . These
eigenchannels a are to be identified by fitting the
parameters 1t, and p. „to the experimental data.
The coefficients I I are to be determined by the
boundary conditions at r =. These conditions are
different in the different ranges of the spectrum.

A. Discrete Spectrum, E(I„,
To each discrete state with an energy E corre-

sponds a pair of values (v„, , v,&) determined by
Eq. (2.2), from the value of E. The main boundary
condition on discrete states, that 4 - 0 as r -~,
leads to relation (2.18) of LX,

+ = Q 0, [ f (v, , l, ; r) Dt, „cossp„tt„ QF, tt„=O for all i, (2.4a)

-s(v, , l, ; r) Qtt, „sins', „tt„], r&r0
where

(2.3)

where P, denotes the wave functions of the residual
ion core, of spins, and of the angular part of the

E, =it«sins(v, +p„). (2.4b}

Equation (2.4a) has the compatibility condition

E(v«, , v,q, ) = det[E, J= 0 (2.5)
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and the solution

m. =&,.(v,~. , v». )/K&&.(V,I. , v».)]"', (2 ~)

where the index i can be chosen arbitrarily for
convenience, and the C, „(v,q, , v», ) is the cofactor
of the element of the ith row and eth column of
the determinant I F,J .

The pair of values of v»2 and v3&, corresponding
to each energy level must satisfy (2.2) and (2.5)
simultaneously. For the nth particular pair
(v,i, „,v», „},the coefficients 5 „'"' can be ob-
tained according to Eq. (2.6). Since the wave
function in Eq. (2.3}is normalized per unit energy
in a.u. , the normalization integral needs to be
worked out. The result given by (3.13) of LX must
be generalized when the energy dependence of the
parameters cannot be neglected. The more gen-
eral result, worked out in Appendix A, is

This equation establishes a relationship between
the five coefficients g,.'"', which measure the
mixing among the+vs dissociation channels (i
channels) for the nth state in the region r) r, , and
the five coefficients .Pf „,which measure the mixing
among the five close cou-pling eigenchannels (a
channels). Through this equation, we can connect
the present collisional approach to the traditional
spectroscopic interpretation in terms of configura-
tion interaction, as will be discussed in Sec. VI.

The oscillator strength, for the nth state, is
written as

(2.13)

d~-"3&2 n &3i2 n+ "i&2 ~&Z&2 ~

where

Q [Qu, „coss(v, „+p„)%„'"']',

N», „= Q [gtt«cosx(v, „+p. „)$„'"']'.
j =2, 3,5 cf

(2. 1)

e =e/X =+4 F'"'Z" (2.9)

P( = [v( „T(l g
+ v( ~ +1)T(v) „-l ()]

x(2r/v, „', "~ ~e "t"~.n for r-~, (2.10)

Therefore, the normalized wave function for r &ro
can be represented as a superposition of the five
dissociation channels in the form

+Q Q g d
'"

u, s sin@(y, „-p, 8)%'„"'tit"'
a 8

according to Eq. (3.12) in LX, with the five diPole
matrix elements D„defined in LX. These five
dipole matrix elements D„are regarded in this
paper as the energy-independent parameters to be
determined by fitting the Beutler-Pano profiles
in the auto-ionization region.

8. Auto-ionization SPectrum, Isn +E+Il/

Following Sec. III B in LX, there are three open
dissociation channels, i =2, 3, 5 in the auto-ioniza-
tion spectrum. Therefore, there shall be three
coLLision eigenstates, p = 1, 2, 3, each collision
eigenstate p being a superposition of the standing
waves of the three open dissociation channeLs with
the same eigenPhase shift sT&.

Por each value of v, &, corresponding to an energy
E, I», &E& I», , the boundary condition for the
wave function in Eq. (2.3) at r =~ will lead to the
following relations [see (3.23) of LX]:

and

8,'"' = (-1)'&"Qtt, „cosx(v,. „+y.„)ti '„"/N„. (2.11)

Qti( ~ sln1F(v~(2 + p ~)'g ~~ = 0

for the closed channels, i =1,4

These coefficients Z, satisfy the following normal-
ization condition'

pit, „sins{-T,+p„)tt &» =0

for the open channels, i =2, 3, 5,

(2.14)

Qs, g„Z, =1, (2.12a)

/gal
= 5)~ +[(-1) & (2/Jf v( } cossv)]

x(QN; tansy, lt~ )[(-1)'s (2/vv&)'"cosvv&].

(2.12b) F( T~, v», ) =0 for -p=1, 2, 3. (2.15)

for each of the three coLLision eigenstates p. The
compatibility condition of Eq. (2.14) gives a re-
lationship between ~~ and vy/2 having the same
form as Eq. (2.5) with v», replaced by -Tz,
namely,
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[Note that (2.2) would require v», itself to be
imaginary in the autoionization spectrum. ] The
solution of (2.14) is then

The dipole-matrix elements D„can be deter-
mined by fitting the profiles in the auto-ionization
spectrum according to Eqs. (2.1V) and (2.18).

tl'„=C, „( T -v g, )/[QC,'„(-&„,g,)]"'
for p=1, 2, 3. (2.16)

df ' df'"
dE q-, dE

where

df &&' 2(E-E,)~Q.D. tip('
dE Np

and

Np= Q ~ Q„lt,„cos(. rp+p, -„)m„'~'
j =2, 3,5

(2.17)

(2.18}

For a given value of v„, , Eq. (2.15) is satisfied
by three pairs (-7~, v, ~,). For each pair there is
a set of coefficients 5~ . Therefore, the density
of oscillator strength in the auto-ionization spec-
trum can be represented as the sum of contribu-
tions corresponding to photoionization into the
three collision eigenstates p, according to Eq.
(3.25) in LX:

C. Open-Continuum Spectrum, I„2&E

In this energy range we use the coefficients 5
which satisfy the ingoing wave boundary condition
at ~ [Eq. (3.28} in LX]. The oscillator-strength
densities of the two photoelectron groups can thus
be expressed as

df»2/dE=2(E —Eo) Q Q it~, lt, s
a, s &=2, 3,S

xcosv(p, „-p, z)D„D&,
(2.19)

df«2/dE =2(E —Eo) Q Q itt„,. li, 8
0(, , 8 g =1,4

xcos1T(p~- p, g)D~Dg,

according to Eqs. (3.29) and (3.30) in LX. There-
fore, the total oscillator-strength density and the
branching ratio of the two photoelectron groups
can be written as

"f»2 + "f«* -2(E E )g D2 (2 20)dz ds dE

and the ratio is

d f»2/dE +& 2 3 5Z=fC. fl. 11 (gglt g8 cosv(p„- ps)D~DS
df». /dE g, =, ,g„,u.",u, , «»s(p „p,)D„-D,

(2.21)

From these formulas the Ar experimental uv

photoabsorption data on level positions, line in-
tensities, intensity profiles in the auto-ionization
spectrum, the total photoabsorption cross section
in the open-continuum spectrum, and the branching
ratio of the two photoelectron groups can be ex-
pressed in terms of three sets of parameters,
(lt«, p, „,D„},which are slowly-varying functions
of energy within the neighborhood of the ionization
limits. The energy dependence of these param-
eters will be discussed in Sec. III.

III. ENERGY DEPENDENCE OF PARAMETERS

All parameters of QDM' should be considered
as a slowly-varying function of energy within the
neighborhood of ionization limits. In Fano's treat-
ment of the H, spectrum the energy range of inter-
est was about 4x10~ a.u. , near the ionization
limits, hence these parameters were regarded to
be energy independent. The possible extension to
a broader spectral range has been discussed by
Fano in Appendix B of FH. ' Applying this method,
Starace' has analyzed successfully the spectrum of
Ne over the energy range of 1.8&10 ' a.u. near the

ionization limits. In Lu's treatment' of the Xe
spectrum, the energydependence of these parameters
has been disregarded over the energy range of 1.8
&10 ' a.u. near the ionization limits. Neverthe-
less, only limited evidence has emerged of gross
errors due to disregarding the energy dependence
of these parameters for Xe. In the present prob-
lem of Ar, the energy range is about 1.6&10 '
a.u. , near the ionization limits. The evidence for
the energy dependence of these parameters is
quite apparent as will be discussed in Sec. IV.
Therefore, the energy dependence has to be taken
into account and is going to be discussed in the
following.

In the range r &r„ the long-range Coulomb in-
teraction is taken into account by representing the
wave function of the excited electron as a linear
superposition of analytically known Coulomb func-
tions. The coefficients of this superposition have
been related by Seaton' to elements of a short-
range electron-ion scattering matrix. For this
purpose, Seaton used two alternative pairs of
Coulomb functions, each of which can serve as a
basis for describing an arbitrary state of the
electron in Coulomb field. These two pairs of
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Coulomb functions denoted by (f, s ) and (f,g) are
related by a linear transformation' and coincide
at the ionization limit.

The pair of Coulomb functions (f,g ) forms a
convenient basis for representing the wave func-
tion in the asymptotic region r- ~ over an energy
range extending across the ionization limit. With
this choice of Coulomb functions, the wave func-
tion in the region r )r, can be represented by Eq.
(2.3) with the transformation matrix Il, „and the
eigenquantum defects p, „as parameters. Fano'
and Lu' have emphasized that these parameters cor-
respond to the eigenvalues and the eigenvectors of a
short-range electron-ion scattering matrix (i.e. , S&&

=g 11, e"'~ll t&), andthattheyrepresentbound-
ary conditions on the wave functions at r =x„which
characterize the dynamics of the excited electron
in the region r(xo These parameters are expected
to depend on energy, since they involve the energy
dependence of the boundary conditions of the wave
functions and the values of Coulomb function ( f, s)
at g —go

The other pair of Coulomb functions (f,g) con-
sidered by Seaton is normalized to be energy in-
dependent at x =0. In fact, these functions are
approximately energy independent over the com-
bined range (see Sec. III of Ref. 8):

(3.1)

where e is much smaller than the potential and
kinetic energies. As stressed by Seaton, f and g
are analytic functions of energy c, while f and g

are continuous but nonanalytic functions of e. The
representation (2.3) of the wave function in the
region x)r, can be replaced by a similar linear
superposition of the Coulomb functions (f,g) with
the parameters $8 and U, 8. The connection be-
tween (f, s ) and (f,g) establishes an energy-de-
pendent transformation between the two sets of
parameters (p. „,11, ) and ($8, U, 8); the transforma-
tion identifies the index P.' The parameters $8
and U,.~ correspond to the eigenvalues and eigen-
vectors of the symmetric matrix I4 ' of Seaton. '
For practical calculations Seaton introduces the
Y matrix which differs from matrix IJ ' by a
known function 9, Y=(8 —IJ ') '.' In his second

paper Seaton' introduced the concept of representing
Yby asymptotic energy expansion together with sim-
ple poles. The parameters of the expression of Yas
a function of ener gy were fitted by Moores' to experi-
mental discrete levels of the Ca spectrum. Our ap-
proachh

differs from that of Seaton and co-workers' '"
primarily because we fit in effect the eigenvalues
and eigenvectors of a scattering matrix, which
are smoother functions of energy than the separate
elements of the Y matrix. Returning to our study
of energy dependence, it has been surmised in FH
and in the early phase of this work that the set of
parameters (4, U, q) would vary with energy more
slowly than the set (p, „,11«), because a degree of
energy dependence due to motion in the Coulomb
field would have been removed by the transforma-
tion from (p, „,11,„)to (gz, U~8). In fact, this might
be the reason why Starace has analyzed Ne data
only for s and p electrons successfully by fitting
the parameters ($8, U, 8) rathe. r than (p„,11; ).
Note that the difference between (f,g) and (f, s)
becomes larger as the angular momentum l in-
creases; for l =0, the pair (f,g) almost coincide
with the pair ((,g).'

In order to check the above surmise, detailed
numerical experiments have been performed on
the spectra of Ar and Xe. Our results indicate
that in case of Ar, no advantage is achieved by
fitting the parameters ($8, U, s) rather than param-
eters (p, „,11,„), while in case of Xe, the param-
eters (gz, U, 8} are more strongly energy dependent
than the parameters (p „,11;„). This apparent
contradiction can be explained as follows.

The values of the cutoff radius r„beyond which
the interaction between the excited electron and
the residual ion is purely Coulombian, can be
taken from the Herman-Skillman potential model"
for each atom, keeping in mind that they are prob-
ably underestimated. These values can be entered
into Eq. (3.1}to verify whether the Coulomb func-
tions (f,g) are still approximately energy inde-
pendent at ro throughout the energy range of in-
terest, extending from the lowest discrete level to
the second ionization limit. The relevant quanti-
ties for Ne, Ar, and Xe are shown in Table I.

From the values of the ratios (r,e), the criterion

TABLE I. The relevant quantities of noble gases.

Ne Xe

xp (a.u.) Herman-Skillman

Energy range of interest (a.u. )

Combined region (r «1/~g

Tp E'

1.7
0.18

r «5.4
0.31

2.6

0.16

r «6.3
0.41

3.6

0.18

0.67
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for the parameters ($(), U, ()) to exhibit minimum
energy dependence (i.e. , re«l) is not well sat-
isfied in any case —Ne, Ar, or Xe, esyecially-
if z, is underestimated. Thus me have no definite
reason to choose the set of parameters {$8,U, ()} to
fit the data. We prefer the set of parameters
(p„, it«) corresponding to the Coulomb functions
( f, s ), which form a convenient basis for repre-
senting the wave function in the form of Eq. (2.3)
in the asymptotic region y»yo, and for applying
the bo dary co diti s atm=

These parameters —transformation matrix g,
and the eigenquantum defects p, „—mill then be
treated as slowly-varying functions of energy
within the neighborhood of ionization limits. The
5 X 5 orthogonal matrix g« is conveniently ex-
pressed in terms of ten angles, 8~ =1, . . . , 10 as
detailed in Appendix B. The energy dependence is
then taken into account by expanding the eigen-
quantum defects p, and the angles 8, into powers
of the energy e measured from the lowest ioniza-
tion limit. In the case of Ar, the energy range of
interest, extending from the lowest discrete level
up to the second ionization limit, is about 0.16 a.u.
We use the linear expansion

0
ptf}f Qg +Ep gy 9 1j 0 0 0 f 52

8 = 8 + e 8', k = 1, . . . , 10.
{3.2}

With regard to the dipole-matrix elements D„, the
fitting was not sufficiently accurate to justify the
introduction of a nonzero linear coefficient D~.

IV. NUMERICAL FITTING

Experiments on the UV photoabsorption of Ar
have determined the following data: (i) the level
positions of five Rydberg series belonging to
(SP')nd or (SP')ns, J=1, odd-parity states with n

up to 58'; (ii) the photoabsorption cross section in

the autoionization spectrum and in the continuous
spectrum beyond the second ionization limit'~;
(iii) the branching ratio of photoelectron groups. "

In Sec. II, these quantities have been expressed
in terms of three sets of theoretical parameters-
eigenquantum defect p, ~, transformation matrix
)t, , and dipole-matrix elements D . These pa-
rameters mill nom be determined by fitting the
experimental data.

As a preliminary, we recall the surmise'~ that
the close-coupling eigenchannels would be LS
coupled, since the Coulomb interactions between
excited and core electrons are stronger than
spin-orbit coupling for ~ &yo. The experience of
LX for Xe confirmed that the o. channels are ap-
proximately LS coupled, and also showed that the
quadruyole coupling between s and d channels is
rather weak. Accordingly me classify each e
channel by approximate quantum numbers (i.e., by
spectroscopy symbols):

Sym=(P'd)'D (P'd)'f (P'd)'I' (P")'f* (P")'I'
(4.1)

It mill be convenient to introduce an intermediate
basis of channels a, for mhich the quantum num-
bers l (—= s and d), I and S are exact, and to rep-
resent the connection between actual e channels
and the a channels by an orthogonal matrix V~~
which should differ only a little from unity. Thus
me factor the matrix 5,„in the form

(4.2)

where g,—„tranforms the jj-coupled channels i
into the LS-coupled channels a. This transforma-
tion Q, ~, which does not couple s and d channels,
is known analytically" and is given by

i —,
' j,

u, -„=[(ij.+) )(2j.~ ) )(RI;„+))(2s-+\)]"' ) —,
' j,

)) i

-V-„V 3

~i

0 0

(4.3}

5 0 0 0

where j, and j, pertain to the core and to the
photoelectron in the i channels. The V—„„matrix
will be fitted numerically.

The matrix factorization (4.2) has an important
further advantage due to representing the dipole-
matrix elements D~ in the form,

(4.4)

Owing to the selection rule that prohibits inter-
combination lines from the singlet ground state to
triplet excited states, we know in advance that the
three D-„pertaining to triplet states (a = 1, 3, 4)
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must vanish. Accordingly only two of the D-,
pertaining to two 'P states remain to be fitted
numerically.

a. Graphical representation. ' The level posi-
tion of each discrete line can be represented by a
pair of numbers (v,» „,v„, „) from Eq. (2.2).
However, levels with v», „&30have been dis-
carded because Ne determination of the value of
v„, „(modulo 1) becomes inaccurate near the
threshold. As an important part of our procedure,
each pair (v», „,v», „) is represented graphically
by one point in the plot of -v», (mod 1) vs v„,
(mod 1) shown in Fig. 1. Since each pair
(v«, „,v„, „) must satisfy Eqs. (2.2) and (2.5)
simultaneously, each point of the plot must lie at
the intersection of lines representing these equa-
tions. Equation (2.2) is represented in Fig. 1 by a
family of nearly straight lines which cross the
figure almost diagonally with varying obliquity;
Fig. 1 shows only some fragments of these lines.
A main objective of the fitting is to determine
parameters (p, „,lt«) such that the curve repre-
senting Eq. (2.5), F(v„„v»,) =0, passes as close
as possible to all points of Fig. 1.

A look at the figure shows that the points for
low-lying discrete levels do not lie on the same

curve F =0 as the others; these departures will
have to be corrected by introducing the energy
dependence of the parameters. The curve F =0
shown in Fig. 1 pertains to the values of the pa-
rameters at the threshold I,» which we call
(~', ll& ).

Important applications of the plot "-v», (mod 1)
vs v, »(mod 1)"have been stressed in LX.

(i) The intersections of the curve F =0 with the
diagonal vy/2 ~3/, =0 have the ordinates -v, /,
(mod 1)= p; therefore their experimental deter-
mination yields the values of p, directly.

(ii) The slope g of the curve F =0 at each of
these intersections is

S~= Q 11( Q 11(„. (4.5)
j =1,4 =2, 3,5

S 1-' -'2-'
~ 2 5 2p (4.6)

(b) The separation of the matrix (4.2) into two
submatrices for s and d states would cause the
Eq. (2.5), F =0, to factor into separate equations:

In addition, should the a and a channels coincide
exactly, the following would also hold.

(a) The slopes (4.5) would be given by (4.2) as

e: 12345

FIG. 1. -v3/2 (mod 1) vs
vf/2 (mod 1): open circles
are observed level positions.
Solid curves represent Eq.
(2.5), F =0, with parame-
ters fitted near the thresh-
old I3/2. The diagonal line
represents vj/2 v3/2 0.
The function -v3/2(v& ~2) de-
fined by Eq. (2.2) is repre-
sented by sections of al-
most straight oblique lines.
Each of the dotted curves
represents a section of the
curve 5' =0 fitted to the en-
ergy of one of the low-lying
levels.
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FIG. 2. Argon auto-ionization profile for 8.64 ~
v&~2

~ 9.64 (note abscissa scale mod 1). Dashed lines repre-
sent the experimental data from Ref. 12 and solid lines
the theoretical fit with D~ listed in (4.12).

(4 'I)

The curve representing E =0 would then split into
two branches that could cross freely. Figure 1
shows that three crossings are narrowly avoided
near (0.86, 0.00), (0.86, 0.33), and (0.40, 0.13).
The narrowness of the gaps at these quasicrossings
indicates that, the matrix V-„„is indeed near unity.
This conclusion is confirmed by the fact that the
slopes at the intersection with the diagonal are
well represented by the values (4.6). Finally, the
assumption V„-=5„-leads to a value of 2 for the
branching ratio of photoelectron groups (see Sec.
VI C of LX); the experimental value of this ratio
is indeed 1.98 for Ar, though it was 1.6 for Xe.
See however the discussion in the note added in
manuscript.

b. Determination of Ne parameters (p, '„, ll', „,
Da) ', at fi st ionization limit 1~&. We perform here
an initial fitting of the parameters using only ex-
perimental data within &.18 eV of I,q, . Values
of p, o„can be abtained from the intersection points
between the diagonal v,~, —v,q, =0 and a curve,
representing E(v,qi, v,q, ) =0, drawn through the
54 experimental points with 10& v,q, & 30. The
correspondence between each of these intersection
points and each of the a labels (4.1) is established
using a combination of information from Moore's
table, "from Hund's rules, and with the help of
plots -v,i, (mod 1) vs v, q, (mod 1) for other values
of J, namely, J=0, 2, 3, 4. These plots are used
because the character of the I S-coupled eigen-
channels should be the same, irrespective of the

~ values, as discussed in the Appendix of LX.
The values of p,

o have been read off a graph simi-
lar to Fig. 1 to an accuracy of ~.01 and have been
assigned to the e channels as follows:

~o~ =0 22 0 07 0 50 0 15 0 11 (4.8)

Starting from these values of p. ~ and from the
trial assumption that V-„=Q«, improved values
of p.o~ and of V~~ were determined by a least-
squares technique with aid of trial values. The
quantity to be minimized is

~o & ~3~~ „&so

IE("vs,n~ "iii,n)~ ~ (4.9)

with the E function given by (3.5). The numerical
work was carried to three significant figures and
yielded the more accurate values of p, o~, that is

2 3 4 5

p. o~ =0.214 0.070 0.500 0.154 0.109. (4.10)

However, it yielded no significant departure of
Vcffx f

%e proceed now to the dipole-matrix elements
D„, of which only D, and D, are nonzero owing to
the intercombination selection rule and to V~„-5-, as noted above. The parameters D, and D,
were fitted to the intensity profile of the first
autoionization line pair above the threshold I~q, .
This profile, extending over the range 8.64& v, q,
& 9.64, is shown in Fig. 2. The experimental
photoabsorption data, from Hudson and Kieffer, "
are of limited accuracy for the purpose of deter-
mining the total oscillator strength owing to in-
tensity saturation in the incompletely resolved
very sharp peak. These data were then com-
plemented by the measured total oscillator strength
in the smooth continuum just above I,q, . [Recall
that a series of absorption profiles identical to
that of Fig. 2 are observed in each unit range of
v, &, above 9.64, but that these profiles are in-
creasingly sharp and difficult to resolve as the
entire range from I,~, to I,~, extends only over
0.18 eV (1431.4 cm ').]

The qualitative features of the intensity profile
of Fig. 2 are determined primarily by the values
of the parameters p, ' and ))o, „and only to a lesser
extent by the ratio of the nonzero dipole param-
eters D, and D,. This ratio has a small influence
because an increase of the amplitude D, of p- s
excitation would raise the relative intensity of the
sharp peak mhich is poorly resolved, and hence
might escape detection. Actually, the values of

and g, determined by fitting the discrete
spectrum account rather mell for the qualitative
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features of the profile in Fig. 2. The value of D,
is then determined primarily by the value of
d f/dE at any point of the profile, in Fig. 2, far
from the sharp peak. The value of D, is deter-
mined by reconciling the observed height of the
sharp peak with the value d f/dE = I.4 a.u. above
the second ionization limit Ig/2 The D param-
eters thus adopted,

~=12 34 5

D (a.u. ) =0 2. 1 0 0 1.4,
determine through Eqs. (2.17) and (2.18}the theo-
retical curve shown in Fig. 2.

As a further step to evaluate the accuracy of
fitting, we assumed the value 1.98 observed for
the branching ratio (2.21) of photoelectron groups
to be significantly different from the value 2. We
then again fitted the matrix V-„, under the assump-
tion of minimum departure of o. channels from n
channels, so that Eq. (2.21}would yield 1.98 with-
out increasing significantly the least-squares-sum
value of (4.9). This procedure yielded

1.000 0.001 0.000 0.000 0.001

-0.001 1.000 -0.005 0.000 0.000

V-„~ = 0.000 0.005 1.000 0.000 0.003

0.000 0.000 0.000 1.000 0.000

-0.001 0.000 -0.003 0.000 1.000

D„(a.u. ) =-3.0x10 ' 2.1 -2.0x10 2 1.0x10 4 1.4,

(4.12)

and left the va]ues (4.10) of p, '„unchanged. In
Fig. 1, the curve E(v»„v»2) =0 calculated by
using the adopted parameters (p, '„, ll', „)shows a
fair fitting with the experimental points. As shown
in Fig. 2, the theoretical autoionization profile,
determined by the parameters D„(4.11), shows no

significant difference from the theoretical profile
determined by the parameters D„(4.12). See,
however, the discussion in the note added in manu-
script.

Energy dependence of parameters (p, „,il«).
In Sec. III, the energy dependence of the param-
eters has been discussed and represented by the
linear expansion (3.2). After obtaining the param-
eters (lt„, li', ) at the threshold I», from the previ-
ous procedures, we now proceed to determine the
linear expansion coefficients (p, '„, 8',).

As noted in Sec. IV a, the five parameters p. „
are determined by the five intersection points
between the curve F =0 and the diagonal line
v, —v», =0 in the plot -v», (mod 1) vs v», (mod 1).V~g~

—V3]~—
The slope of the curve F =0 at each of these five
intersections relates to the matrix H, „from Eq.
(4.5). If now the parameters (p, „,lt,.„)are energy
dependent, the equation E(v«„v», ) =0 will no

longer be represented by a single curve on the
-v„,(mod 1) vs v, i, (mod 1) graph of Fig. 1. How-
ever, it will be represented by a single curve on a
plot of -v,i, (mod 1) vs v,» itself rather than vs
v,»(mod 1};such a plot is shown in Fig. 3, where
the curve E(v,&„v»,) =0 is simply drawn through
the experimental points. As shown in Fig. 3, the
point [v»„-v», (mod I)] representing each discrete
level must lie at an intersection of the curve
E(v„„v»,}=0 and of one of the almost straight

0.2—
O. I—
0.0—
0.9
0.8
0 7

U
0.6—

E 0.5—
0.4—
0.3—
0.2—
O. I

—
(

0.0'
2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

en circles are level positions. The full curves indicateFIG. 3. Quantum defect -&~2 (mod 1) vs vf/2 plot of Ar. Open c rc es are
the curve I" =0. The relation -~3&2(v&&2) defined by Eq. ( . ) y2.2 is shown b dot-dashed lines.
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lines (2.2) indicated by dashed oblique lines.
To fit the linear expansion coefficients (p, '„, 8', ),

we first estimate a set of p, ~ from the Fig. 3 and
tentatively assign small values to 8~ as trial
values. These parameters (p'„, 8'„) thus can be
determined by adjusting these parameters so that
the curve E(v»„v», ) =0, for each of low-lying
discrete levels, passes as close as possible to
the corresponding experimental point.

The adopted values for the five p. '„are

p, '„(a.u. ) ' =1.22 0.66 1.84 -0.28 -0.40. (4.13)

Vfhile the ordinates p, „of the intersection points
were thus found to vary appreciably as v, /, varies
as shown in Fig. 1, the slopes of E =0 at these
points remained effectively constant. That is, the
values of the parameters 8~ did not depart from
zero significantly; in other words, the transforma-
tion matrix lt, „remains approximately the same as
the matrix g,.„at I,/, throughout the range of in-
terest. At this point we may return to the graph
of Fig. 1 with v», (mod 1) as the abscissa by fold-
ing again the curve E(v»„v», ) =0 with the values
of p, given by (4.10) and (4.13); a segment of a
curve E(v»2, v», ) =0 for each of low-lying discrete
levels, which is calculated by using the adopted
parameters, is plotted as a dotted curve in Fig. 1.
These curves show a fair fitting with the experi-
mental points except the 3d line.

The implications of the parameters (p„, lt, „,D„}
thus adopted over the whole spectral range of in-
terest will be discussed in Secs. V and VI.

V. ANALYSIS OF OSCILLATOR STRENGTH

Equations (2.13), (2.17), and (2.18) establish
the connection between the oscillator strength
density d f/dE in the auto-ionization spectrum and

the oscillator strength f„of each discrete line.
Using the theoretical parameters (p, „,lt, , D„)
obtained in Sec. IV, and recalling that the D have
been fitted to the auto-ionization spectrum, we

can now predict the values of f„.
The quantity fitted in the auto-ionization spec-

trum is the total oscillator-strength density, since
the measurements do not separate out the contri-
butions of photoionization to the three collision
eigenchannels, p = 1, 2, 3, Eq. (2.17). However,
for the calculation of the f„we must consider the
separate terms of Eq. (2.17). Accordingly, Fig.
4 (b} shows the separate terms df '~'/dE for
p =1,2, 3, plotted on adjacent graphs; the abscissa
of each graph represents one unit range of v»,
(mod 1). (The sum of the ordinates of the three
graphs coincides with the value of d f/dE plotted
in Fig. 2.) For purposes of identification, Fig.

4(a} shows the values of ~~ for p =1, 2, 3, plotted
against the same abscissas as df '~'/dE.

In principle, each curve representing one of the

7~ in Fig. 4(a) should coincide with one of the
branches of the plot of -v», (mod 1}vs v», (mod 1}
in Fig. 1, since the ~z are defined as roots of
&(v»„-~~}=0, and the plot of Fig. 1 represents
E(v»„v», ) =0. However we have found it expedient
to assign the labels p =1, 2, 3 in such a way that the

~~ curves skip from one to another branch at the
three "near crossing" points with coordinates
(0.86, 0.00), (0.86, 0.33), and (0.40, 0.13). This
artifice is analogous to the frequent practice of
drawing energy-level diagrams of diatomic mole-
cules according to a "diabatic" rather than "adia-
batic" approximation. Because of this artifice,
the plot of ~, represents, in effect, a root of the
approximate Eq. (4.7), E,{v,&„-7~)=0, while v,

and ~, represent roots of E,(v»„-v~) =0; that is,
p =1 represents an s branch and p =2, 3 represent
d branches. The artifice is justified, in our prob-
lem, by the weakness of sd coupling discussed in
Sec. III. The main result of this artifice of plotting
is to smooth out the plots of d f '~'/dE in Fig. 4(b);
a sizeable jag remains for p =1 and 2 at the near
crossing abscissa v», =0.40(mod 1), but no visible
one appears at the position of the other near
crossings.

To calculate the value of f„ for a line of the
discrete spectrum with quantum numbers

(v„, „,v», „) one should take the value of df '~'/dE

at the abscissa vy/2 vy/2 and with such p that

7~ = -v», „(mod 1) and then divide this value by the
coefficient shown in (2.18). The results could
then be compared with the experimental values of
Ref. 6. Instead we have followed the procedure of
LX of renormalizing each experimental value into
an effective oscillator-strength density defined by

= . ~S~2 ~ +~~/2 ~

+gPQ '" u,.q sinn(y, „—p, s)St„'"'fig' .
g dE

(6.1)

Each of these renormalized data is plotted in Fig.
4(b) (as marked by circles) at the abscissa for
which v, q2

——v»2 „(mod 1) and r&
——-v»2 „{mod 1).

Also plotted in Fig. 4(b) are theoretical values
of the oscillator-strength density adjusted to the
low values of v, /, = v», „pertaining to low-lying
discrete levels. The adjustment was made using
Eq. (2.18) with the same dipole-matrix elements
D fitted to the auto-ionization spectrum but taking
g „=y. '„+p, '„e„, with e„=-0.5/v'», „. The calcula-
ted values are listed in Table II.
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The experimental points and the calculated value
for low-lying lines appear to follow the main fea-
tures of the main theoretical curve which was
based on fitting to the auto-ionization spectrum.

As a further comyarison with experimental
evidence, we have also entered in Fig. 4{c)
Yoshino's' experimental "relative line intensities"
of highly excited levels of the three Rydberg series
converging to I,/, . This plot relies on the following
considerations.

(i) Each line is unresolved in the spectrogram;
accordingly its ayyarent strength is proportional
not to f„ itself, but roughly to the product of f„
and the unresolved width and hence to f„v',» „.

(ii) For large values of v», „, the last three
terms in the brackets of (5.1) are negligible as
compared to the fix st one. Therefore, the relative
intensity values given by Yoshino are approximate-
ly proportional to (d f/dE)„and are accordingly
plotted directly as ordinates in Fig. 4(c).

Interpretation. As shown in Fig. 4(b), the theo-
retical plot of df '~'/dE reproduces the main fea-
tures of the variations of (df/dE)„. In particular,
it reproduces the points of near-zero intensity
which correspond to the three points with "triplet"
character among the five intersections between
the diagonal v», —v», =0 and the curve E(v»„v», )
=0 as marked in Fig. 4(a). (These zero points of
the Ar spectrum were already noted in LX.) Thus
the relative intensity for each of the IOs, 15d,
I'Id lines in Fig. 4(c), is very low because these
levels are almost pure close-coupling eigenstates
with triplet character. The occurrence of these
low minima is consistent with the near coincidence
of a channels with a channels for Ar. We will
return to this point with complementary evidence
in See. VI.

VI. DISCUSSION

Several relationships have been established in
this paper between spectral properties of Ar in
the discrete and continuum regions. The plot of
the equation E{v»2, v», }=0, in Fig 1, deter. mines,
on the one hand, the position of discrete levels of
strongly perturbed series and, on the other hand,
the resonant behavior of collision eigenphases
v~~ in the auto-ionization region. Figure 4(b) pro-
vides the connection between the oscillator
strengths in the discrete and the continuum, on
the same scale. In all these regards the series of
discrete levels and their adjoining continua can be
indeed treated as a single unit.

The analytical treatment of this paper involves
the parameters p.„,D„, and g,„. Values of these
parameters have been obtained by fitting the dis-
crete-level positions, the profile of auto-ionization

lines, and the branching ratio in the open continu-
and are given in Eqs. (4.10}, (4.12), and

(4.13). The energy dependence of these param-
eters has been represented by expansion as linear
functions of energy. Only the eigenquantum defect
p. appears to be appreciably energy dependent
over our spectral range. The over-all fitting is
satisfactory except for that of the Sd level in Fig.
1. An expansion including a quadratic energy
deyendence of p. may be required to take care of
this low-lying level.

Notice that the eigenquantum defect p. decreases
with increasing energy in the s series. This down-
ward drift also prevails in other noble gases,
e.g. , Ne, Kr, and Xe,""'"and appears to follow
the normal tx end of scattering phase shifts. That
is, the phase shift due to an atA active potential
(deeper than hydrogenic} is normally a decreasing
function of energy except in the vicinity of thresh-
olds or of resonances. By contrast, the presence
of a centrifugal potential appears to reverse the
situation for the d channels, whose eigenquantum
defect p. ~ increases with energy. "'" This upward
drift is most apparent in Ar, "less so in Kr,"and
more or less absent in Xe.' This may be corre-
lated with the change in character of the balance
between the electrostatic and centrifugal poten-
tial." In Ar, ' this balance creates a well defined
potential barrier, which separates two valleys.
This barrier confines a 3d electron near the bot-
tom of the outer valley, where the potential is
nearly hydrogenic. Increasing excitation yermjts
a d electron to achieve some penetration of the
centrifugal barrier toward the inner well where
the attraction is much greater than hydrogenic.
Thus the eigenquantum defect is larger for high
d levels. References 19 and 20, complemented by
additional estimates, suggest that the potential
barrier is lower in Kr than in Ar and may even
disappear for Xe. Accordingly the increase of
p, „with increasing energy, for d electrons, should
be reduced along the sequence Ar, Kr, Xe. In
fact for Xe all the d levels have approximately the
same eigenquantum defect. This might be the
reason why a rather satisfactory fitting was ob-
tained for the d levels of Xe even though p, ~ was
treated as independent of energy. For Ne, the
potential for d electrons is almost hydrogenic
and therefore the eigenquantum defect is almost
zero.

Observable properties have been related in this
paper to the five close-coupling eigenehannels e
of the complex e+Ar'. With regard to the eigen-
ehannels n, the electron's orbital momentum is
99.999+ I =2, and 0.001~%%d I =0 for three of them,
and 99.999+ I =0, and 0.001/ l =2 for the other
two. The s-d interferenee effects are quite small,



being of order . 002, as characterized by the
smallness of the nonzero elements g, ~ with
i =1,2, 3, o. = 5, which are of the order of 0.2%.
Yet the nonzero value of these elements is mani-
fested in the oceurrenee of avoided crossings
between the curves of Fig. 1.

One of the three eigenehannels with predomi-
nantly d character, namely the one labeled by
0. =2, is identified as predominantly singlet by the
large value of the dipole-matrix parameter D, and
the large magnitude of the oscillator-strength
density at v, q, (mod 1)=-p3(mod 1)=0.93 in Fig. 4.
The other singlet is assigned to one of the two
eigenchannels with predominantly s character,
a=5, by the large value of D, and large magni-
tude of oscillator-strength density at v, q, (mod 1)
=-p, (mod 1)=0.891. The other three eigenchan-
nels a are identified as triplets as described in
Sec. V.

Our data also provide a further characterization
of discrete levels through a tabulation of mixing
coefficients. Table I gives the components of the
eigenvectors tf„and Z, defined in Eq. (2.6} and

(2.11}. The entries pertain to 20 selected levels
listed in order of increasing energy. The coef-
ficients pf ~ and Z, represent the mixing of a chan-
nels and i channels in the given level, respective-
ly. However, they are so normalized according
to Eq. [2.12(a)] that g,.S',. is not equal to unity for
the lower levels. There are five levels, labeled
4s, 5s, 6s, 7s, and Ss, with mixing coefficient
~Z, ~~ 0.834; these levels thus belong predominantly
to the i = 5 channel, with a small admixture from
the other four i channels, the next more important
admixture being from i =4. This set of levels
represents the 3p'('P», )ns [1-,'] ' series according
to Moore's assignment. In three of them, n=5, 6,
7, the character is more than 0.99, i =5. How-
ever, Ss has O.S3 in i =5 and a substantial con-
tribution from i =4, that is, Ss belongs neither
purely to i =5 nor to i =4. These behaviors reveal
themselves in Fig. 4(a}, where the ns points with
@=5,6, 7 lie on the flat part of a curve with the
same quantum defect and are almost unperturbed.
In contrast, Ss lies near the intersection between
the diagonal line vg/ ps/2 0 and the curve
E(v«, —v~) =0. Table I shows that 8s has the char-
acter of e =5, i.e., of a singlet state, even though
it is mw"e highly excited than the ns levels with
n = 5, 6,7. Indeed the intensity plot in Fig. 4(b)
gives Bs a large oscillator -strength density. For
the d levels, we have followed Moore's tables by
calling nd, with n = 3, 4, 5, 6, the levels classified
as 3P'('P», )nd[-,']', and nd, with n= , 3, 4, 56clas-
sified as 3p'('P„, )nd[1 2]'. In fact, al-l of the mix-
ing coefficients Z, of these levels for i =1,2, 3 are
substantially large. This strong mixing of the i

channels constitutes a clear departure from
Moore's classification. Indeed most of these lev-
els lie on a rising portion of the curves in Fig. 4(a)
rather than on a flat portion. Again, 6d has the
character of a singlet, a =2, as one can see both
from the table and figure. Thus the combined
utilization of Fig. 4 and Table II provides a quali-
tative and quantitative analysis of strongly per-
turbed Rydberg spectra of our type.

In the auto-ionization region, the connection
between the collisional approach and the tradi-
tional interyretation of auto-ionization in terms
of configuration interaction, "has been developed
by Fano' for the two-channel problem of H, . The
traditional approach holds only when the resonance
profiles are isolated from one another. Otherwise,
the collisional approach followed in this paper
appears preferable. According to this approach,
autoionization of highly excited electrons in the
"closed" channels i =1 and 4 results from their
scattering into the "open" channels i =2, 3, 5 by
close range interaction with the Ar' core; this
scattering is inelastic because it drops the core
from its excited doublet level 'P, /, to the ground
level 'P», . The mixing of different eigenchannels
e into each state indicates the probability of the
scattering from one i channel to another.

The complete fitting of the transformation ma-
trix M,.„based on minimizing the departure of the
n channel from LS coupling, constitutes a novelty
of this payer. As a further check of this approach,
we examine the relative strength of spin-orbit (so)
coupling and electrostatic interaction. In our
collision-type method, interaction strengths are
represented by dimensionless numerical param-
eters equal to the shifts of quantum defect hp, ~
=0.0045." On the other hand, the eigenquantum-
defect differences p.„-p, s of the close-coupling
eigenchannels should arise primarily from electro-
static interaction. The smallest difference among
the five p. in Ar is Ap, , =0.035, and is thus much
larger than ap. = 0.0045. . Also, as we have shown
above, the quadrupole coupling between s and d
channels is very weak. Therefore the LS char-
acterization for the five a channels is fulfilled.
This condition is satisfied even better in Ne; as a
matter of fact Starace' has assumed complete
decoupling of s and d channels. On the other hand,
this condition is much less fulfilled for heavier
noble gases, e.g. , Xe.' The procedure for fitting
1t, developed here can still be applied to situa-
tions like that of Xe.

The graphical procedures used in this paper, as
mell as in LX and FH, apply to spectra with only
tsoo ionization thresholds in the range of interest.
However, the determinant form (2.5) of the E =0
equation applies equally to spectra with more
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than two thresholds, and should be amenable to
numerical solution even when the simple graphical
approach fails.

Note added in proof, After this work had been
completed, we received revised values of the
branching ratios of the rare gases (Ne, Ar, Kr,
Xe}, measured by collecting electrons at the
"magic angle" of 54'44' by Samson. " The new

branching ratio for Ar is 1.8'7 ~0.06, instead of
the value 1.98 which was utilized by us. This
change of the experimental data changes the ma-
trix V [E(l. (4.12)] and the dipole-matrix elements
D into

1.000 0.009 0.000 0.000 0.006

-0.009 0.999 -0.041 0.000 -0.001

VQQ = 0.000 0.041 0.999 0.000 0.027

0.000 0.000 0.000 1.000 -0.001

-0.006 0.000 -0.027 0.001 1.000

TABLE III. The corrected oscillator strengths.

4d

6d

Table II

1.6x 10-3

2.6x 10~

4.3x 10~

7.5x 10~

Corrected

4.7x 10-'

4.9x10 3

6.2x 10

4.1x 10~

fected. On the other hand, observable quantities
which depend sensitively on interferences between
different channels are affected by the greater
departure of the a channels from the a channels.
For example, according to E(I. (2.13), the oscil-
lator strengths f„are proportional to ~Q K„("}D„~';
the increase of the dipole-matrix element D, to
reach the order of 10 ' a.u. modifies appreciably
the small oscillator strengths for the d series
given in Table II (see Table III). Other oscil-
lator strengths are not changed significantly.

D =-2.8x10-~ 2.1 -1.2x 10-~ 1.4x10-3 1.4.

The numerical values on the s-d mixing in the
e channels given in Sec. VI are thus changed. How-
ever no significant changes result in (i) the -v,„
(mod 1}vs v», (mod 1}plot of Fig 1, up .to the
second decimal digit included, (ii) the d f/dE vs
v», (mod 1) plot of Fig. 2, and (iii) the mixing
coefficients, 9f Q and 2, , for s and s' series;
changes of the order of %.01 do occur in the d,
d, and d' series.

The over-all characterization of the discrete
levels discussed in this paper remains thus unaf-
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APPENDIX A: NORMALIZATION INTEGRAL

According to the same procedure as in Sec. VI
of FH, ' the normalization integral of the wave
function (2.3) can be written as follows:

~ ~

00 ~r
}I„'dr= lim lim pp„dr= lim lim (E —E„) (pp„/E-E„)dv

E~S r~~
tf

g-+g f ~eo
n

1 d
[Ql&, „sin}((v, +y, )ti„] [Qn, „cosa(v,. „+p.„)ft("}].

lT Q

For convenience, the normalization integral is decomposed into three contributions with derivatives
dll, /dE, d[sinw(v, +t}, }]/dE, and df(( /dE, respectively. These three contributions are

N, =—Q g ' sinn(v, „+p. „)(tt(„"} [pit, (} sinv(v, „+ps)58("}]
K 8

n, s sin@(v, „+p„)cos}((v, „+p8)(S„("}qt8("}n'; Q 8 dE

''
~, ~cosw(v, . „+p }Bin(v, „+p~ '}'}}'m1("

Q 8

'"
u, (} sins(i},„—p, )m ("}&,("}, ,

1T
g Q 8

(A2)

since
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Qu, sinn(v, „+p„)m„'"'=0;

1 d
N, =—Q gtt, „„sins(v, „+P„) it'„"' [Qu, s cosv(v, „+P,s) ft&"']

j -Of E=En — 8

= + v( „[+tt(icos&(v( „+p~)5 ~~ ]@-~ +Q Q Q u(~ttgs cost(v(, „+p ~}cos7f(v( „+ps)5~~ Ks$,n a a @=En d@ f a j

d
=Qv,'[Qtt, „coss(v, „+P )tt„'"']'+QgQ "u,„lt,scosv(tt —Ps)st„'"'Pts'"&

Of of 8

since

= Q v,'. [Qtt,. „cosv(v, „+p. „)ft„'"']'+Q " (I„'"')',
Of Of

(AS)

Ett&augs =ttns,'

N, =—Q Qtt, „sinv(v, „+p, „} " [gtt,.s cosm(v, „+ps)ffs'"']
f -Of E=&n-

do
=—Qggtt, „tt,s sins(p„—ps) „' K&"'

a 8 E=&n

1 dm
=—QQS„s sinn(p, „-ps)

~ Ss'"' =0.
of 8 S=En

(A4)

Therefore,

=N, +N2+N3

2 n —1 n ~ 2n(n —1)

(i,j)=(1, 2) (1, S) ~ ~ (1,n} (2, S) (n —1,n).

The component 8„of the vector represents a
finite angle of rotation in the (f,j ) plane. The
explicit expression of n & n matrix 1& is

= Q v',. „[Qtt,.„cosv(v,. „+p„)5„'"']'
lt =n(n —1)/II R"(e ), (a1)

n dz ~ , a 8 dz

xsinw(p„- ps) tt'"'its' '. (A5)

where
12 ~

~ ~ ~ 0
1 0

~ ~ ~ ~ ~ ~
pg

~ s 0

APPENDIX B: REPRESENTATION OF n X n

ORTHOGONAL MATRIX %l

Geometrically, an n~n orthogonal matrix de-
scribes a rotation in n-dimensional space. Since
a rotation in n-dimensional space can be decom-
posed into a combination of the (",) elementary
rotations, 1l can be represented as a vector with

(,") components 8 with the following convention
for the subscripts:

R"(e„}=
0 ~ ~

1 ~

~ cos8
0

j 0 ~ ~ ~ sin 8„

0 ~ -sin 6I„~ ~ ~ 0
1

~ ~ ~ cps g o ~ ~ P
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