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Upper and lower bounds were obtained previously on matrix elements of the form W„= (P„,R'f )
where W is a Hermitian operator and Q„and Q are the wave functions of the nth and mth
states of the system. The bounds are variational but nonstationary; they are expressed in terms of trial

wave functions f„f and it( f containing variational parameters, but the error in the bound is of first

order in the errors in the Q„, and Q, . The results have been either subject to rather restrictive

conditions (for example, only for certain specific choices for 8' and only for real wave functions) or
have been very. conservative. %'e remove most of these restrictions (8' need not be positive or negative

definite, the wave functions may be complex, the system may not even be invariant under time

reversal) but maintain rigorous bounds of good quality. The method of using Gram-determinant

inequalities, which has been employed previously, especially by reinhold, and which we adopt, leads to
variational but nonstationary bounds on 8'„ in terms of "simple" upper bounds (which may be poor)
on V „„.Here again, only for a very few particular choices of W'have such simple bounds on V~„„

been given previously (for example, n restricted to be the ground state, and 4' the operator z;, the
coordinate of the ith electron). The main result of this paper is to show that such simple upper
bounds can be obtained for a very wide class of operators 8' in terms of the energy eigenvalues of the

Hamiltonian. (They can be improved if given additional experimental information on oscillator strengths,

for example). These simple bounds on V „„donot involve any trial wave functions. The method of
variational but nonstationary bounds is illustrated for diagonal matrix elements of r, and r I we,

therefore, require simple bounds on r', and r,—for the states ls 'S and ls2s S of the helium atom,
with rather good results.

I. INTRODUCTION

%e will be concerned with the determination of
bounds on matrix elements,

W~ =- (g„, W g„)

with a Hermitian inner product, of an arbitrary
Hermitian operator 8' with respect to an ortho-
normal set of eigenfunctions defined by

(a-z„)tt„=o .
These bounds can be of different classes. %e will
refer to the most rudixnentary bounds as "simple
bounds"; the bound is just a number —it does not
contain any parametexs to be varied. Our primary
concern will ultimately be with "variational but
nonstationary bounds"; the bound is a functional
of trial functions lt}„, and lt}, which contain param-
eters, and the parameters can be varied to obtain
the best possible bound, but the bound is nonsta-
tionary in that the error (the difference between
the bound and the true value} is of first order in
the errors 5g„ in g„, and 5g„ in 5$,. [The error
is of the form O(5$„}+O(5$„}.j In a schematic plot

of the estimate vexsus one parameter c, the form
of the trial function being such that for t..= co the
trial function becomes the exact function, the
curve is not flat at e=eo and. does not even have a
continuous derivative at that point; the curve does
have its extremum value at e =co.

%e note that for our variational but nonstation-
ary bound the sign of the error is known but the
error is of first order in 5g„and in 5P . On the
contrary, for "variational principles, " one does
not know the sign of the error but the error itself
is of second order. "Variational bounds" or,
more accurately, variational stationary bounds
combine the desired features, the error being of
known sign and of second order. Such variational
bounds on arbitrary matrix elexnents have not been
published, but they do exist for the gxound-state
energy (the Rayieigh-Ritz principle) and for many
of the matrix elements associated with scattering
processes. %'e will present variational bounds
for arbitrary matxix elements in the following
paper; for the present we merely note that they
involve the evaluation of more difficult matrix
elements, including matrix elements of 8, than
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need occur in variational but nonstationary bounds,
so that the nonstationary results are not neces-
sarily entirely superseded by variational bounds.

It is important to note that the variational but
nonstationary hounds on S' often require bounds
on (W )„„; these latter bounds need not be very
accurate since they appear multiplied by a quantity
of second order. The simple bounds on (W )
therefore play a useful and necessary role, even
if the error is of order 100%.

Rigorous upper-bound formulas for 8'~ have
been obtained, but no completely satisfactory
general prescription has been given. The results
are either very conservative or applicable only
to a restricted class of operators 8; including the
restriction that 8' be of a definite sign. We will
obtain a number of new results, and will eliminate
the definite sign restriction.

E„and g„are the exact energy and the exact »»th-

bound-state normalized wave function, respective-
ly, associated with the Hamiltonian H = T+ V,
where T and V are the total kinetic- and potential-
energy operators.

«I«„» is a normalized approximation to g„.
All inner products are Hermitian inner products.
8„= («I«„, g„») is an overlap integral.
E-„ is the energy eigenvalue closest to E~ that

is, for which I E„-E„-t is a minimum.
P„= I gg(g„l is the projection operator onto the

nth state.
Q„=1 —P„ is the orthogonal projection operator.
Go~= Q„(E„-H) Q„ is a Green's-function-like

operator.
A is an arbitrary operator.
A~-=(«t'~Abed«A. . «=-(«I'. A0 «)«An», =-(«I'n«AP )»

A.», «=(4.» A«I' «).
[H, A] is the commutator HA AH. -
n(A) = 2($0, A[H, Ago), where go is the ground

state.
u„(A) -=[«j„„(H E„)Go.AGo~(H-E„)g„]. —
C'» and C' ~ are upper and lower bounds, re-

spectively, on some number C.
8' is the Hermitian operator appearing in the

matrix element to be bounded.
««„ is a function for which g„ l««„ I =1, where

the sum is over some specified set of values. The
particular choice u, „=%,Y,„, with p. ranging from
-f to / for any /, and%«= [4»«/(2l+1)]'13, will be
used. / need not be related to the angular momen-
tum of any particular state.

r& is the position of the ith particle,

r, — r t, r„-r,—r» ~&, —Ir~»
s, is a component of r&.

p& is the momentum of the ith particle,

I»«= lp«l» p«»=p« —p«» I»««= lp«« I

N is the number of electrons and Z is the atomic
number.

The indices i and j are particle labels, while the
indices m and n are state labels. cr will denote
the set of states for which specified matrix ele-
ments are experimentally known and v will denote
the complementary set.

il}(II =- (}(,)f) is the norm of }f for any function

The inequalities to be used include, for any func-
tions f» f2, f~, .. ., the Schwarz inequality

I (f»«fa) I

~
IIfq II x II fall,

the "triangle" inequality, based on the Schwarz
inequality,

f, =f3+f,+ ~ - IIf» II
'- ll

frill

+ IIf» II +

which is also true in "tensor form, "

1/2
+ sl p 8$, +

and the Gram-determinant inequality, the non-
negative character of the MxM matrix 5 with ele-
ments 8««= (f„f&).

The ijth element of the square of A will be writ-
ten as either (A')««or A»««; the square of the»jth
element of A will be written as either (A««)' or
(A)»««.

HI. BASIC INEQUALITIES

The first bounds on 8" for a somewhat general
Hermitian operator W were obtained by Weinhold
using the Gram-determinant inequality. The
bound is a formal one, involving the unknown ele-
ment W~„, but multiplied by a factor which is very
small for reasonable trial functions. Further, in
one case, namely, W=g«z«, where an upper bound
on W~ was previously available, Weinhold was
able to obtain bounds on $VO„. One of our primary
purposes will be to show that moderately accurate
bounds on W„„, accurate to perhaps a factor of 2,
can be obtained relatively easily for a rather wide
class of operators 8'. We will at the same time
take the opportunity to rederive the basic inequal-
ities without having to make the seemingly artificial
assumption of Weinhold2'6'7 that the matrix ele-
ments are all real.

To limit the scope of the investigation, we re-
strict ourselves to an approach which is based on
the Gram-determinant inequality; which, further,
involves only three functions; which, finally, is
in a form which causes the bound to become the
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+ l(e„o}l'-(I-Isl')llell' .
Clearly we can rewrite this as

(3. Ia)

+ l(q„y)l'-(I- I&l'}llyil' . (8.»)
The allowable values of l (g, P) I must lie between
the roots of the equation obtained by replacing the
inequality in (s. I) by an equality. We find

l(e, e}l;-l&l&l(e @)I

~&(I —
I &I'}[llell'-

I (e„e}I']}"'
(s. 8)

Choosing g=tl~ q, =q„„an@d=Wy„, (8.2) becomes

exact value for the trial functions exact. The
inequality becomes an equality for the three func-
tions linearly dependent, which includes the case
for which two of the functions are the same, the
determinant then vanishing, and we therefore con-
sider our three functions to be f, f„and g, with

f, an estimate of f. To obtain W as one of the
matrix elements, we must have f„and Wg„or
Wg„and P„as two of the functions. The two cases
are equivalent, and we restrict our attention to
the choice g„and Wg„. The third function can then
be g„, or Wg„,. Preliminary investigation indicates
that the second choice is generally inferior, and
we therefore make the choice P |t„„and Wi/i„.
The matrix elements that arise are then W'

&~,mph'

sn=—(4~ tnt)

their complex conjugates, and 8' . Thus, in addi-
tion to the desired element S'~, there appear the
additional elements S„, W„„and 8'3 . S„is
rather easy to bound (see Appendix A), a simple
bound" on 8' will be obtained, and S'„, , will be
bounded by a second application of the Gram-
determinant inequality.

To be more precise, consider a system with a
Hamiltonian which satisfies H= 8'; for the mo-
ment, we make no other assumptions, allowing
systexns which are not invariant under time re-
versal, such as a system in an external magnetic
field. For three functions g, g&, and ft), where
llqll = iltlt, ll = I, and S=($,g,), the Gram-determinant
inequality becomes

0' l(tl, y) I'-8Re[s(q„y)(y, q)]

If, on the other hand, we choose g =g„, p, = p„„
and P = Wg„„(8.8) becomes

I w. ..tl =
I w.~..l & I&. l

&
I w.e,-el

[(I- Is. l'}( .'.. —
I w. .- I'}]'"

=- Iw„„ I'" . (8.4)

Since upper and lower bounds on I 8 I can be ob-
tained (see Appendix A), and since W„„„,can be
calculated once trial functions have been chosen,
the upper and lower bounds I W~, gg

I'" on I m'~, gg I

are calculable. Equations (8.8) and (8.4) can be
combined to give

+((I- ls„l')[w"' - (I w I' ')'y"'

(s.6)
e therefore have upper and lower bounds on

I in terms of bounds on S„andS„and anupper
bound on 9'

If we assume that all of the matrix elements
that enter are real, we can repeat the above der-
ivation, dropping Re and absolute magnitudes
everywhere, and arrive at

w =, s„w& „~((I—s'„)[w.".'-(w.';,'.)']]'",
(8.6}

where

w„",,'„=s„w„„„,+f(I -@[w„',,„,—(w„, ,)']j'~' .
(s.v)

Equations (3.6) and (3.7) represent Weinhold's
result.

The result contained in (3.6) is at least as good
as that contained in (3.5), but the requirement
that all matrix elements that enter are real can be
very restrictive. There are a number of physical-
ly interesting cases in which one can improve
upon (3.5), and these are discussed in Appendix
B. It is shown, for example, that (8.6), together
with (3.7) (with m replaced by n throughout), is
applicable for bounds on W for systems that are
invariant under time reversal and under rotation.

We have throughout assumed the possibility of
obtaining simple bounds on 8', and in particular,
the upper bound, P'@'~. In Sec. IV we turn our
attention to different possibilities of doing so.

IV. SMPLE BOUNDS

We assume that H is of the form
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and me assume further that the particles are
identical. (The latter restriction is a matter of
convenience; the various inequalities can be ob-
tained for nonidentical particles with little extra
effort, but the formulas are much more cumber-
some and the techniques are no different. ) In
Sec. IVA we establish formulas for simple bounds
on 8' for the ground state, which are then spe-
cialized in Sec. IV 8 for W=r~. In Sec. IV C gen-
eral results applicable also to excited states are
established. Finally, in Sec. IVD, me present
a miscellany of bounds on r, , r&&, p&, and p&&.
In all these sections me concentrate on simple
uPPer bounds because it is these that are needed
in the results of Sec. III. %e note, parenthetical-
ly, that simple loseer bounds can also be obtained
and may be useful as a guide to judge the quality
of the upper bounds. As an example, restricting
our attention to r&, we have

(&j)00=& ()j'0 ran) '()j) rj40)

the matrix elements for m, a member of the set
o, being known experimentally. Another trivial
result, namely, (W ) )(W ), may also be useful
in getting simple bounds on 8' when one has in-
formation on 5'„„.

A. Ground State: 8' Arbitrary

Our first approach is a technique which repre-
sents an extension a d adaptation of methods used
by Rebane and Braun to determine an upper bound
on the total electric-dipole moment. Vfe define
a function jj„such that g„ t jj„t = l. A convenient
choice is

(4. 2)

where E is arbitrary and where

(4. 6)

p, ranging from —I to /. With j))0 the ground state
and g the complete set of states of H, we can now
write

g ($0, Wjj*„[H, Wjj„]())0)

= Z (jj)0, Wjj~p )(g~, [HWjj„—Wjj„H]go)
$kyf5

(E)»» —Eo) (4o» Wu(»)|)»»») ()j)»)»» Wu»»$0)

The prime on the sum over m denotes the exclu-
sion of the m =0 term. %e have assumed that 8'
commutes with u„,' this assumption could be re-
laxed if necessary, but throughout this paper me
consider only 5"s that satisfy this condition.

Though it is not necessary to do so (and we con-
sider in Appendix C the more general case}, we
mill assume that

((0» Wjj„po) = 0

For 8'u„=rY&„, for example, this is just the re-
sult that ($0, +0) = 0 for nondegenerate ground
states. %e then have

Woo p (x(W)(E1 —Eo) '
(4..6)

j))(W) =—2 Q (())()» Wjj~+[H» Wjj„]$0)

=Q (q„[Wn*„, [H, gf „]]q,); (4.7)

the last step follows trivially on writing out the
commutators in detail and replacing H by Eo
whenever it is adjacent to (j)0. The dependence of
a)(W) on jj„has been suppressed The bound (4.6)
is useful because n(W) can be evaluated for a
number of intexesting cases, including 8"different
powers of r&, as we mill see shortly. The partic-
ular choice u„=u» is reminiscent of a procedure
used by Aranoff and Percuss in a different context.
The formal result (4. 6) is applicable in both atomic
and nuclear physics. In what folloms, we will
mainly use the language of atomic physics. The
nuclear problem differs in two mays. Not all
particles are identical, and the difference between
neutrons and protons is particularly important for
large nuclei. On the other hand, the center-of-
mass corrections [an N-nucleon nucleus has only
(N —1) independent coordinates, unlike an N-elec-
tron atom] are particularly significant for small
nuclei.

Following a very simple technique used in bound-
ing the dynamic polarizability of a system, we
can often improve the upper bound [(4.6)] by using
experimental data. Assume, for example, that
W'=r„ the radial coordinate of the ith particle,
that we choose u„=u,», and that the dipole-oscil-
lator matrix elements,

»„Z r,» ) =Z (»„Z»'g»w, » ), (4. 8)

) (E

(4.4)

-Eo) Z Z' ((j)0» Wjj*„(I)~)($»Wjj„jj)0)
m

—Eo) Z [(())0, Wjj~Wjj„po) —
~

()1)0, Wjj„(j)0)
~ ]

-E.) ((».', -Z i (»., )»»„»,) i') (4. 9)

are known. The identity (4.6) follows on using

jjjj (rj)jjjj (j j) j j j j

where
jjjj»» +1 +1)»(Sj» A)
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The energy differences E -Eo are also assumed
known for the set cr of values of m. I et the ortho-
gonal set be denoted by v, 1st mo be the smallest
value of m contained in v for which (p„,r)u«„)t)„)
ls nonvanlshlng, and assume that E

0
—Eo also is

known. Then in the expression for a(r, ), which is

1
—,'a(r)) = ~ (40 [r)&Pi [& rp)1 ]]40)2

=~ {E. E-o)
I (eo, r)e.) I',

where we have introduced a complete set of states
and used (4.$), we can write

—.'a(r))'-~ {E Eo)-l (yo r)y )I

+(E., -E,) Z l(q„r,q.)l'

(E.-E-,)l{& or)e.)l'

+ (E„,-E.)(0., r',q.),
where we added and subtracted

(E., -E,) Z l(y„r,q.) l'

and used closure over m. [Note that (4. 5) is satis-
fied by parity considerations. ] We therefore have
the simple bound,

(y„r',yo)
' {E„E,)-'-

E -E,xg ' 4 10a

With a(r, ) = 21'/m from (D12) (with I =q =1) and the
usual definition of the atomic oscillator strength, '

2m
{E -Eo) Io ~ r)e, l

Consider the nth excited state, with wave func-
tion )t)„and energy E„, and define P(W) as

p(w)=-Z (y [we*„,z][e, wu„]y„) . (4. 12)

a(W) is then independent of the potential V and
can often be readily evaluated or bounded. Thus,
for W(r) =r'„using simple commutator analysis
(see Appendix D) we have the identity, valid for
l=1, 2,

a{r',) = (I'/m) [q'+l(l+ l)]()))o, r) ')I)o) . (4. I»)
[If we are to use the identity in the form (4. 6), we
must guarantee the validity of (4. 5). This is true
for all odd I, by parity, and it is true for I & 2I.,
where I. is the total orbital angular momentum of
the ground state, by conservation of angular
momentum. (I. is a good quantum number since
we took V to be spin independent; it is a trivial
matter to drop this restriction. )] To use (4.lla)
it may be necessary to iterate, until the bound
involves ()))o, r,)t)o) = 1. Thus, for the choice I = I,
we have

a(rt) = (I~/m)(q + 2)()))o r& )t)o) ~

It follows from (4.6) that

(eo ~i'4o) ' {I'/2m) [{q'+2)/(Ei Eo)]{-40 r')' '40) .
(4. 12a)

Iterating, this reduces to

()))o, r", )t)o)
~ [(PP/2m)/(E, —E())]'(q'+ 2)

x[(q —I)'+2]x x(I'+2) . (4 12b)

In Table I we compare this simple bound with the
exact values for H and He and for q = 1-4. For He,
for q = 1, we also calculate the improved simple
bound based on the use of experimental data"
(Table II). In determining the bounds on r+ for
He, the energy of the lowest excited state, a 1s 2s
state, plays no role for E ~ 1; for 1 = 1, for example,
the energy E~ is taken to be that of the 1s 2P state,
the lowest state connected to )))o.

C. Ground and Excited States

()))o, rg)to)'
2 (E -E,) '

1 Nt $50x 1 —yr Q f~ . (4. 10b)
o m 0

The use of experimental data to improve the
bound, while illustrated for two particular ex-
amples later in Table II, can clearly be given for
W arbitrary.

B. Ground State: Positive Powers of r.I
If W=w(r&, ro, . ,..), it follows that [JI, W]

= [T, W], where 7 is the kinetic-energy operator.

Introducing a unit operator between the commuta-
tors in the form of the complete set of states p
of the Hamiltonian H, we have

p(w) =Q Z (E„-E„}'(y„,we*„q„)())„,wu„q„)

'(z. -z.-)'(z ((( (('~/u„(')„)

(4. 14)

where n is the state closest to n for which
{g„,Wu„)t)-„) is nonvanishing. Once again, as in
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TABLE I. Simple upper bounds on (r()+ with 9=1,2, 3, 4, for the ground states of H and He, obtained using Eq. (4.12),
with n (W) obtained from Eq. (4.11b). z is defined by s = )r/[m (E& -Eo)]. The true value of (r~) Dp for He was taken from
Ref. 12. The numerloal values are in units of the appropriate power of the Bohr radius so (= g /me ).

r2

4

6

r8

o(W)m/a'

6«g)oo

11(r;)pp

18(r])pp

Upper
bound

on

«)op

$(3s')

k(ss )

$(99' )

$(891m )

Upper bound

32

11300

H

True

22. 5

315

7087.5

Upper bound

1.92

7.40

52.2

603

He
True

1.1935

P(W) ~(E„-E„-)(g~ W g„)

providing an upper bound on V„„, n arbitrary, for
a wide class of operators W for which P(W} can
be evaluated. Consider, for example,

(4. 15)

&cs~ =Sit yt~(et& 4 «) ~ (4. 16)

We then have, from Eqs. (4.13), (4.9), and (D1),

P(r, ) =(q [r„ff] [a, r, ]q„)= (a'/m')(q„, p', y„)

Sec. IVA, we focus attention on the u„'s for, which

(g~ WN„P„) =0, though this restriction can be re-
laxed (see Appendix C). Equation (4. 14) then be-
comes

&
(2)f /m) IE„I

ll1 'I II +(E E )
(4. 16)

(If /m}IE„I g ( ) (( )(N

+Z (E„-E )'~(q, y„)~'

This bound can be improved upon, as in Eq.
(4. 10), when a set o of the matrix elements
(P r,g„) is known, as perhaps from experimentally
determined dipole-oscillator strengths. We
write

with the second equality due to the virial theorem
for an ion containing N electrons. The essential
feature is the interaction through Coulomb forces.
[Equation (4. 17) is the first relationship restricted
to the atomic case. ] Thus we get a simple upper
bound on (g„,r,g„},

or

+ (z-, —&.)' ((q H(J

Number
of fo
used

Upper bound on (rq)00/ao
(1s)"S 1s2s S

1.924
1.779
1.734
1.715

35.66
15.89
13.93
13.25

1.689

'True values: 1.1935, 11.46.

12.51

TABLE II. Improvement of the simple bound on (r&)op/

ap for He given in Table I by using additional experimen-
tal data; also a simple bound on the lowest triplet state
of He [see Eq. (4.10b)j. Data on the oscillator strengths
f and energy levels were taken from Ref. 11, and the
true values from Ref. 12. Notice in particular the con-
siderable improvement in the 3S value when the nearby
1s 2p-state contribution is accounted for. ap is the Bohr
radius.

[Z'„-Z'„-„-RE„(Z„-Z.—,}]f
)fy E

(4. 19)

with f defined as in Eq. (4. 10) and mo the value
in v closest to n for which (p-, r,g„) is nonvanish-

moy

ing. The choice of u&„fx: F» may result sometimes
in small energy denominators for certain excited
states. In such a case, a substantial improvement
can be made by choosing u&„ to be a higher
spherical harmonic so that mo lies far from n.

Note that Eq. (4. 19), though applicable to the
ground state, is in general inferior to Eq. (4. 10b)
of Sec. IVB. For example, in He, using these
formulas in the simplest manner by setting m0= 1
and dropping the term in Q, we have (gs, r,gs)
~ 4. 76us from (4. 19) to be compared with the upper
bound 1.92+as obtained from (4. 10b). It may,
therefore, be expected that for low-lying excited
states a result superior to (4. 15) will result from
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But

P(r'() = ((t „,[r'(r„a] [If, r(r" (]q„} (4. 20a)

a formula analogous to (4. 6) in Sec. IV B, involv-
ing a single energy denominator instead of a
square, with this denominator being bounded by
E„—E- after all the terms involving states from
0 to n have been accounted for by experimental
data (which may be feasible for small values of
n}.

To obtain an upper bound on (r,)~, we choose
W=r, and u(„=X,Y,„(8„$()in (4. 15). We have,
following closely the derivation of (4. 17),

angle inequality gives

p"'(r'() ~ (tf/m)[((t( r,p„, p, ,r (q„)' I'

+(0., p(r( r(p(y.)"'] . (4.»)
Using (D6} and (D7) we have

rp„p„r=p„r +2iItp, r, pr rp=p r +2i}fp ~ r
Use of the triangle inequality and p, cp now gives

(p„, r(p„p r(g„) - ((t'„, r((I(„) ($ p $„)

+ 2S(q„r'(y„)"'((t(„,p'(I(„)"'

(4. 22a)

[ff, r'(r, ]= ( —ih/m) (p„,r(+ r,p, )

where the Hermitian operator,

(4. 20b)

(4. Pr '
(p (t.)'-((I'. '(}'.)"'(4.A.) "

+ 2}f(q„,r'((t„)"'(y P'(I„()'" .
(4. 22b)

is the momentum conjugate to r&. Use of the tri- Substituting in (4. 21) and using (4. 15) we have

((t(„, r4((I(„)'I'
~
E„-E„-~ 'Ok/m)((t(„, p2(y„)' '+ [(8'/m')(q„, p((q„)' '

+ (2g/m)(2}f)"') E„--E„(((I(„,r' I(„()"'(t„(,p'((I„)"']"') . (4. 22)

From the virial theorem in the form applicable
to the atomic case, (P„,P~(j„)=2m IE„I/N, and we
have a bound on (g„,r(g„) in (4. 18). A bound on
((t(~ p' p„)(is obtained in Sec. IVD so that (4. 23)
gives a bound on (p„, r4((t(„).

D. Miscellaneous Bounds for W =r;.&, r,, ,~p, , p,&

((I., (I/r()(I(.) ' (2/ff) (q p'((t.)"'(q., (I/r()q„)"'
or, squaring,

(y„, ( Ir/') ((I)'- (4/I')(y„, P'((I„) =6m~E„~/(S'N} .
(4. 25)

To get bounds on r,&, we start with

We here restrict our attention to atomic sys-
tems, for which the virial theorem assumes a
particularly simple form. Using the commutator
relationship

f']+ Tg

We therefore have

((I'„, r(((I(„) 2(g„, r((I „) 2($„,r(p„) (4. 26)

i(p r r" p)"=-2k/r

and the virial theorem, the following simple upper
bound on 1/r, is obtained':

((I(„, (I r/) ((I)(= (I/28)(g„, i(p, ~ r, —r, p()(t(„)

(q„,p~&q„)'('/g = (2m I E„I/Nn')'(';

(4. 24)

we used the Schwarz inequality and the relationship
r( ~ r( ——1. [Dropping the positive electron-electron
interaction energy, direct use of the virial theorem
for an atom or ion gives the other bound, namely,
(g„, ( Ir/)P(„~}2IE„I/(NZe ) ]Similarly, .

i(p (r/r) —(r/r) p) = I/r
leads to

we have, by applying the Schwarz inequality to the
term (g„,r(r(P„},

((I'n~ r(((I n) '- 4((I w r(4.), (4. 27}

and so forth.
It is clear from the derivation of Eqs. (4. 24)

and (4. 25) that these bounds must also hold for
I/r(& and I/r, » respectively; i.e. ,

so that the simple bound on (g„, r((I(„) obtained pre-
viously can be used to obtain a simple bound on

(q„, r((q„)
Bounds on higher positive powers of r,& may be

obtained in similar fashion. For example, since

2 & 2 2]++g+ 2f pf
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(q„, (1/ „)q„)'[2 lz„l/(MP)]'/',

(tt„, (I/r'„)q„) &smlz„l/(NI') .
(4. 28)

%e therefore have

(2m')'=g Pf+Z (P,P,)',

For the operator Pa&; one already has an equality
rather than a bound, since —for identical par-
ticles —the virial theorem tells us that

(q„,p', y„)=2mlz„l/x .
To obtain a bound on p„we first note that

2mr=g p', .

As stated above, these bounds —although they
may themsleves represent a considerable over-
estimate —can nevertheless produce bounds of good
quality when used in (3.6).

Of course it is not necessary to use a simple
bound for W„; any rigorous upper bound may be
used for this term where it appears in the basic
inequalities of See. III. An alternative method for
obtaining such bounds on W, based on a method
due to Aranoff and Percus, ' is given in Appendix
E. This method is more cumbersome to employ
than the methods of this section. Since the final
answer will usually be quite insensitive to the
value used for 8'~, the method of simple bounds
outlined above will usually turn out to be the pre-
ferred method.

so that

4m'(q„, T'q„) ~N(q„, p', y„)

Next, we note that

T=H- V,
so that the triangle inequality gives

(g Tag )1/2 &
(y If2~ )I/a (( VIP )1/2

(4. 29)

Finally, since

pgg -pt+pgC

bounds on powers of p&& can be obtained in terms
of powers of p& just derived in the same way that
bounds on powers of r&& were obtained in terms
of powers of rg.

From the foregoing, it is seen that bounds on
any operator which can be expressed as a poly-
nomial in the r„r«, p&, and p&&'s may be ob-
tained.

The first term on the right-band side is just IE„I.
To bound the second term suppose, for example,
that V is of the form

V= —Ze Z —+ —Z —= V+V,1 e
i&/ jj

In V = V + V, +2V V„we have V V, & 0. On apply-
ing the Schwarz inequality, we have

Va & Z'e'iV'(I/r', ), V,"—,'e'[X(V - 1)]'(1/r'„) .
Using (4. 25) and (4. 28), it follows that

(q„, v'y„) ' e' fz9r'+ —.'M{~-1)'](sm
l
z„l/~1') .

(4. 30)

Substituting (4. 30) in (4. 29), we have

(q„,p', lt„) ' (4m'/x)(
l z„l

+e'[z'N'+ —,
' w'(w —1)']"'

x(smlz„l/~a')'/']' . (4. 31)

V. NUMERICAL EXAMPLE: HELIUM ATOM

As an example, bounds on (Po, r,go) and (Po, r~go)
were calculated for the ground state of helium.
The results are shown in Table IG, together with
the true values.

Column A shows the results using the simple
bounds on r', and r', given in Table I for the term
W„„(=W~oo) in Eq. (3.6), and using as trial func-
tion the normalized one-parameter function

q, = ( c' /v) e'"& 2' (5. 1)

{The unit of length is one Bohr radius. ) The single
parameter c was varied to give the best bound; the
optimum c in each case is shown in the table.
Upper and lower bounds on 8 3'1 were taken from
(A1) and (A2).

To obtain the results of column 8, the three-
parameter HyQeraas wave function was used for
g„with the numerical coefficients kept fixed at the
same values that lead to a minimum energy:

P, = 1.3299[1+0.294r,a+ 0 132(r, —. ra) ]
iesU(r ara) (5. 2)

(No variational paxemeters were used in this part
of the calculation. )

The required upper bounds on the terms Wo()

were obtained in the following manner: First, an
upper bound on r~ by means of (3.6) was obtained
using the simple bound on rz given in Table I. This
bound on r, was used for W00 in Eq. (3. 6) to obtain
the bound on r, shown and this, in turn, was used
to obtain the bound on r, .

A lower bound on S = (g, P,), with g, given by
(5.2), was computed by means of the inequality'~'8
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I 2 & E1 Hot. ot
!SI Ez —E

and the upper bound for the ground state,

+os.oa +ot oe&.SII P ~

+ot, o~
—3&o&o~,o~+ &o

(Al)

(A3)

Bounds of higher accuracy and bounds for excited
states can be found in Refs. 13 and 14.

Another simple lower bound on S„for arbitrary
n that does not seem to have been recorded can be
obtained from the following inequality satisfied
by the Green's function (Goo)o. From its definition
it follows that we can write

E„—E

where the prime indicates that we are to sum over
all values of m other than n. We therefore have

(& .)'=Z' " "
o '(E„--E„)'Z'!g )(g !

where g«can be a more complicated but more ac-
curate trial function which need not appear in any
other part of the analysis. We have used for g «
the ten-parameter function of Chandrasekhar
et af." In the use of (5.3}we needed to compute
only (g„,g, ), since bounds on (g, g«) are known. "'

The considerable improvement obtained in
column B over column A represents only a modest
increase in calculational effort and illustrates the
improvement that may be achieved by going to a
somewhat better wave function. We emphasize
that the three-parameter function was used with
fixed parameters and no variation done to deter-
mine the optimum value for these parameters,
whereas the results of Ref. 6, given in column C,
were obtained by determining the best values of
three (different} parameters.

APPENDIX A: BOUNDS ON OVERLAP INTEGRAL

Bounds on the overlap S„=(P„,P„,) exist in many
places in the literature. ' '4 Two of the simplest
are the Eckert lower bound' for the ground state,

!3„!'= I —IIG"(~-E„)|I„,II' .
Therefore, from (A3}, we have

!o& (H —E )g
n -

(@ E)2

(A4)

(A5)

APPENDIX B' REMARKS ON BASIC INEQUALITIES

In Sec. IG it was shown that the Gram-deter-
minant inequality leads to bounds on I W I for
Hermitian W and complex functions g„and g„with
no further assumptions about the system of in-
terest. The result (3.5) is, therefore, completely
general and, in particular, independent of the
choice of the phase of the functions, a choice that
is left arbitrary by the defining equations for these
functions, namely, (P-E„)(„=0, (g„, g„) =l. It
is, however, to be expected that one can improve
on (3.5) by imposing certain conditions, as can
be done for a number of physically interesting
systems. Assume, for example, that the system
is invariant under time reversal and rotation.
Then it is well known" that, by an appropriate
choice of phases of the known orthonormal spin-
orbital angular-momentum functions y ", the
radial functions f™(r)in the expansion

pJM(~) Q fZM(y)~JlC

can be chosen to be real. This serves to fix the
arbitrary phase mentioned above. gP is here as-
sumed to have well-defined values J and M of the
total angular momentum and of its z component,
the spin dependence of g„has been suppressed, r
represents the totality of coordinate vectors, and
r the totality of radial coordinates. Suppressing
the superscripts J and M, we write

tt„(r) =g f„,(r)}(. , (Bla)

or, finally, as our Green's-function inequality,

(G')" (z„-z-„)'q-„&(E„-E-„)

where E„- is the eigenvalue closest to E„.
Now to get a bound on IS„I', we notice from the

definition of Go" that [see Eq. (El) belowj

TABLE III. Variational but nonstationary upper and lower bounds on (r~)pp and (r~)pp for the ground state of He. All
quantities are in a.u. . True values were taken from Ref. 12. The one- and three-parameter trial functions are given
by Eqs. (5.1) and (5.2), respectively. The former gives a poor lower bound which is not presented. The lower bound
in column C was obtained by Weinhold, using a formula which employs two trial functions and three parameters which
are varied to give the best bound.

Operator Optimum c

1.75

1.77

Upper bound

1.338

2.079

(A)
One-parameter wave function

Upper bound

0.9579

1.268

Lower bound

0.8937

1.090

(B)
Three-parameter wave function

(c)
Lower bound

from
Ref. 6

0.864

1.024

True
value

0.9295

1.1935
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and we take g„, to be of the same form:

t.~(~& =~ f-~«)x (Blb)

P t, and W|t&„t, the use of (3.1) leads to

ReW;S„i W„„.i&'&

with the f„,also real. It follows that S„can be
written as

s„=(t|„,q„,) =Z (f„., f„.,),
where the inner product is ovex the radial coordi-
nates. It follows that S„is real. If, further, me
consider the diagonal element 5"~ it follows from
the Hermiticity of W, without even appealing to
time-reversal invariance, that W„„and (W )„„are
real. Even with time-reversal invariance, W«, „
need not be real. Choosing g=P„, P, =P„„an d

P = Wg„, (3.1a) therefore becomes

(W„)'-2S„W„„ReW„,,„+
~
W„,,„~'- (I -S'„)W„'„'0 .

(82)

The inequality (82) is preserved if we replace
by I Rew„„„l . We then obtain

W„„&S„ReW„,,„+((I—S„}[W„„—(Re W„,,„) ])'~

(83)

Returning to(S.la), choosing tt& =g„, g, =g„„and
&I» = Wg„„and again replacing W„,,„in the inequality
by Be%'„,,„, me obtain

(84)

where W„",,~„ is obtained from (3.4) by setting m =s
and dropping all absolute magnitude signs. Equa-
tions (BS) and (84) combine to given (3.6) again.

Considering the diagonal case once again, but
dropping the restriction of time-reversal invari-
ance, me can, formally, adjust the arbitrary
over-all phase y„of g„ to make S„real. 8'„„will
of course still be real and mill be independent of
the choice of y„. Once again we can obtain (3.6).
In other words, for the diagonal case, the result
(3.6}, originally obtained under the assumption
that 8 and W«, „are real, follows without those
assumptions.

For the off-diagonal element 8' and for sys-
tems that are noninvariant under time reversal,
me choose g«and P, such that lV„~ ~ is real.
Formally, we then choose g„such that S„ is real
and positive and g„such that W„,,„is real. (We
have four functions, g„, g„„|I&„&and |g&„„eachwith
an arbitrary phase, but me can only arrange to
have three matrix elements real since all matrix
elements are invariant under the same change
of phase. ) It is useful to choose W„„„real since
it occurs in each of the two Gram-determinant
inequalities used in bounding W~.

Choosing first g„, g„„and Wg, and then g„,

+((I —s„')[w."„'—(~ w„„.)' ')'])'", (85)

where I W„,, I'" is given by (3.4). The fact that
we do not know the phases y„and y required to
make S„and 8'„,, real is irrelevant; l 8' I, is
independent of y„and y, and (85) is therefore
valid for any choice of y„and y . The lower-bound
result (85) is slightly better than the result (S.5).

APPENDIX C: BOUNDS WHEN u IS CHOSEN SUCH THAT

0 wu„&0~~0

As mentioned above Eq. (4.5), it is not neces-
sary to choose Wu„such that (ga, Wu„ga) vanishes
in order to obtain bounds on (ga, Wga). To illu-
strate the procedure to be adopted when this matrix
element does not vanish, suppose we wish to ob-
tain a bound on (ga& r,ga) = (r, )aa, and suppose we
make the simplest possible choice, u„=1. %e
can then write

(ga, [r„[Z,r, ]]ya) = ( I/m)(y„[r„—iP„]pa) = I'/m

Using (4.7), (4.4) then becomes

Ot'/m) = 2(fa,

ran

[If, r~l fa) -'2«i -za}[(~i)aa —(rf)DQ]

or

(r',)„'()I'/2m)(Z, —Z,)-'+ (r,)'

Next consider the Gram-determinant inequality
(S. la}, with the particular choice

4=Ca& 4&=Pa~& 4'=WPQ &

and, for convenience, assume that all quantities
are real. The resulting inequality is seen to be

(r&)oa - 2sa(r&)a a, (r&)aa+ (r&)a Q&
- (I - SQ)(r f)aa 0

(C2)

The sense of the inequality (C2) is preserved if
we substitute for (r,)aa the upper bound (Cl). One
obtains

So(rr)oa 2SQ(r&)a, ag(r&)ao+ (r&)o,ag

—(1-S',)(I'/2m)(Z, —Z,)-"O .
The true value of (r,)aa must lie between the roots
of the equation obtained by replacing the inequality
in (CS) by an equality. We find, upon replacing
(r,)a Q, by the appropriate bounds,

(r,)„;'(1/s, )&(r,)Q', Q,

+ [(1—S',}(a'/2m)(Z, —Z,)-']"Q .
(C4)

If the upper and lower bounds (C4) are calculated using
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the trial function (5.2), with (»'»)2", 2»» computed from
(3. 'l), with unity taken as an upper bound on 82,
and with a lower bound on 80 computed as described
below E»1. (5. 3), the following bounds on r» a,re
obtained:

O. SeO'(q„r,q,)'-O. 952 (a. u. ) .
These results are not quite as good as the best
values published in Table III. On the other hand,
less computational effort was required to get
them. [We did not have to calculate the matrix
elements (r'»)2» 2» and (r'»)2» 2». ] It is therefore
reasonable to expect that this type of procedure
may sometimes represent a useful alternative to
those described earlier.

APPENDIX D: COMMUTATOR RELATIONSHIPS AND 0.(fY)

The following are useful commutator relationships:

(Dl)

(D2)

0

[H, » 2] = — —(p ~ r + r p)

z=-
l st, l' Q [I *,„,[I.', r,„]]

= l&, l'Z [y*,„((L,'I,„)+2(Lr,„) I.)
-((L,2r, „)+2(KI',„) L)r', „]

=2lst»l'Q [I',„(LI",„) L-(LI,„)~ (Ly', „)
—(LF, )Y „K]

=-2lst»l' L' ~ I'»~L&»~ -~ I'», I'&i~

=21 l(l+1) (Dlo)
since it can be shown by angular-momentum
algebra that

L Z (I,„LI*,„)=o .
Furthermore, using the commutation relation-

ships given above, we find

[»'t [I", »'t]]=- »'» q(q I)-»'»

s& 2
+ 2q»'»

'
l

+ —q»"»
'

Br») f'»

[&,p„]=»a,
[»,p„]=N, (D5)

(D11}

Using (D1O) and (Dll) in E»I. (DQ} we have finally
[r p, l=,

Nr
[~, Pl= r

(D5)
P [W»»*„, [H, W»»„]]= —[q'+ l(l+ I)]r»'~,

from which E»l. (4. 11) for a(»"») follows.

(D12)

We next wish to evaluate a(W), which involves

Z [W»»~, [H, W»»„]] (Da)

V commutes with W»»„. Therefore (D8) reduces to

APPENDIX E: ALTERNATIVE MEMOD FOR OBTAINING
BOUNDS ON V

An alternative procedure to that described in
Sec. IV may be based on methods for evaluating
the term S„(W ) as given in Ref. 5. This per-
mits an alternative upper bound on 8'„„to be cal-
culated. For convenience, we will assume real
inner products. Then, starting with the identities

&A.»
= SA.= 4.» @A.» =4.—»+ f.""(H-E.)»t.»

where we have written

(D9) (El)G"(H -Z) -=—q„,
oneobtains the following identity for the matrix
element (g„, W g„):

W2 =8„2[W„»,„»+2($„„WG ~(H-E„)g„»).(e.„O.W'q~. ,) l .
The last term on the right hand side is -just &„(W').
The middle term may be bounded using the Gram-
determinant ine»luality involving g„„W y„„and
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Gun(H —E„)p«. The result is

I//'nn (2-S-n') ~a~. n~

+2S„((1—S„)[W„,,« —(W„,,«) ]}'/~+S„S„(W).
W'QA« Q=.W QA«+ (t)'w W'QA«)t)'. ~ (E5)

Now assume that the parity of g„ is known and that
t)/„, is chosen to have the same parity as g„. Since
Q„+P„=l., we can write

Q„W'= —G W'(nH-E„) —G n[H, W'] (E4)

B„(W ) may now be bounded by methods similar to
those in Ref. 5. The bound in (E2) will in most
instances represent a considerable overestimate,
so that its primary usefulness is as an alternative
upper bound on W'„„ to the simple bounds of Sec.
IV for use in Eq. (3.6).

A few words are perhaps in order at this point
on the evaluation of B„(W ) for those cases in
which 5' has the property of becoming large at
infinity. An alternative derivation of the bound on
B„(W ), which avoids some of the difficulties that
seem to lie in the treatment of Ref. 5, is as fol-
lows: Let W' be a vector operator of odd parity
satisfying

W' ~ %'= W (E3)
(More generally, we could employ the tensor op-
erator Hk„as we did previously. For the present
case, however, Wu„must be of odd parity; it is
not sufficient in the argument below for its diagonal
elements to vanish. )

An operator identity connecting the operator W'
with the commutator [H, W'] is readily seen to be
[using (El)]

Since W' is of odd parity, W'Q„ is too. The last
term on the right-hand side of (E5) vanishes,
and we remain with

W'QA. ~
= Q.W'QA « (E6)

Multiply (E4) on the right by Q~ operate with
the results on g«, and use (E6). We find

W'QP„, =-Gem'(H E„)q-«-Go [H, W']QP„, .

xiE„-—z„i ' . (Es)

~~/ ~([W",H] . [H, W']) may now be bounded by
methods similar to those in Ref. 5.

Equation (E6) differs from a similar equation in
Ref. 5 primarily in the use of the operator G~~

(making the argument rigorous) and in the use of
the more convenient vector operator W'.

Use of the triangle inequality, together with
(A3), now yields

(~ q gP2Q~ )1/2 ~1/2(gr2)

' [(g„(H-Z„)W'(H-Z„)q„,)'"
+m"'([W" H] [H W'])1
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