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A careful discussion of the no-retardation (instantaneous) limit of the Bethe-Salpeter(BS)equation is

carried out, as illustrated by one-photon exchange in the radiation gauge for positronium. Comparison

is made with equations obtained by other authors, using the effective potential to order mn as a test.
Detailed analysis, using a new approach to the BS equation, recently proposed by the authors,

indicates that the equations do not give equivalent results to order me and that the arguments leading

to the experimentally well verified mo( potentials are sometimes defective.

I. INTRODUCTION

The purpose of the present paper is to go over
familiar ground with a view toward clarifying some
misunderstandings which have arisen in the cal-
culations of mn levels in the relativistic two-body
bound-state problem in quantum electrodynamics.
We shall restrict ourselves to positronium and to
the interaction involving single-photon exchange in

the radiation gauge and ignore virtual annihilation.
The point we wish to make concerns the proper
"instantaneous limit" (i.e., limit of negligible re-
tardation) to be taken in the interaction kernel of
the Bethe-Salpeter (BS) equation, and so our re-
sults have a wider applicability than to the illus-
trative example alone.

The Breit equation, ' with the Breit interaction
and one-photon virtual annihilation, 2" was first
used to deal with the positronium problem to the
order mn'. Although Breit was aware of the anom-
alous terms which arise to this order in his
pseudo-empirical development, ' and gave heuristic
arguments why such terms should be dropped, the
fact of the existence of these anomalies is ignored
in some later work. ~ 5 Since the methods used to
develop the effective potentials to order mo. ' from
the interactions are somewhat heuristic them-.

selves, the anomalous terms never appear. Little

attention was paid to single-photon exchange (where
these anomalies occur), since these terms were
well established before the positronium calculations
and the new aspect of the problem for positronium
was the appearance of the virtual-annihilation
term.

The same situation persisted after the introduc-
tion of the BS equation. ' Salpeter' introduced the
Breit interaction as a kernel in the BS equation.
The unstated implication is that this procedure
gives correct eigenvalues to order mo. '. We will
show in the present paper that this is not the case.
Fortunately, the emphasis in this and subsequent
papers by Karplus and Klein' and Fulton and
Martin' is on the calculation of higher-order cor-
rections to the energy. In order' '0 mo. ' and
mo. ' inn, these calculations are not sensitive to
the delicate considerations leading to m+4 anom-
alies since the approximate wave functions used
in the perturbation calculations are not affected by
these difficulties.

Barker and Glover, "using a technique developed
by Chraplyvy" which is based on the Foldy-
Wouthuysen transformation, "carried out a sys-
tematic development of the effective potential or-
der by order. Unfortunately, the BS equation with
instantaneous interaction kernels is not amenable
to treatment by this method and they find it nec-
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essary to "Hermitize" this equation, claiming
that this operation does not alter the final results.
As we shall show subsequently, this is not in fact
correct. However, to order ma', the application
of the proper limiting procedure to the case of no
retardation gives a result which is in agreement
with those arising from the unsubstantiated mod-
ifications introduced by Barker and Glover. In-
cidentally, these authors reemphasize once more
the disagreement between the correct effective
potential to order mn' and that arising from the
Breit equation with the Breit interaction.

Quite aside from the need for a more systematic
and clearer treatment of lower-order contribu-
tions, it becomes essential to clarify this some-
what confusing situation in order to carry out
higher-order calculations, starting with order
mo. '. The recent development of the treatment of
the BS equation by the present authors" presents
us with a convenient and systematic method which
is not restricted, as is the approach of Ref. 11, to
Hermitian structures. In fact, the difficulties
arising from the past approaches to the problem
referred to above were brought into focus through
the approach of Feldman, Fulton, and Townsend
(FFT), and the present paper can serve as an
illustration of the systematic nature and utility of
that approach.

In Sec. II, we summarize and discuss briefly
the various equations which have appeared in the
literature for positronium, involving one-photon
exchange. In Sec. III, we consider the problem of
going to the limit of no retardation in detail, and
derive the equation, quoted in Sec. II, which yields
the correct eigenvalues to order mn'. Thus far
we use the more standard bispinor notation. In
Sec. IV, we rewrite our equations in the form
given by Kummer" and then apply the structure-
function approach of FFT. For reasons of brevity,
we only consider the 'S, state of positronium and
exhibit the different effective potentials our differ-
ent (but heretofore assumed to be equivalent) equa-
tions of Sec. II generate to order mo'.

II. POSITRONIUM EQUATIONS FOR
INSTANTANEOUS INTERACTIONS

where

p, =1 —pB ~

1 (2.2)

and B is the binding energy,

X,=II'" (p)+II" (-p) (2.3)

with

II& "(p) = a"' p+ P"', i = 1, 2 (2.4)

p= -iV . (2.5}

The interaction U(r) is'8

U =le+Is, (2.6)

Ic(r) =a/r, (2.7)

Is(r)=-(a/2r)(a ' .a ' +a ' r" a ' r) . (2.8)

The BS equation for one-photon exchange in the
rest frame is'

8p=-1V, po=i (2.10)

and

&=(u, o) (2.11)

The interaction 8„(x) is given by

g„(x}=go (x}+gr(x),

a, ( )=xf5(f)P'" P'"I-,(r),

Sr (x) = -[2ia/(2w) '] y' "y'"

(2.12)

(2.13)

[r'" (&+0) -1][r"' (b -P) -1]4(x) =8„(x)4(x),
(2.9)

where P is the relative four-momentum, which in
coordinate space is

In this section, in addition to introducing our no-
tation, we review and comment on the various
equations which have appeared in the literature to
describe one-photon exchange in the radiation
gauge in the limit of no retardation. We take the
mass of free electrons and positrons to be unity
(m=1) and take the center of mass of positronium
to be at rest. The Breit equation with the Breit
interaction, in the bispinor notation, is given by

x f d41 e ""1 (5,.2-t', k.),--
L, m=1, 2, 3

y(&) P(&) y(&) —P(&) ~(&)yo ~ yj

(2.14)

(2.15)

(3f -») V (r) = U(r) V(r), (2.1)
In the conventional approach of Salpeter' and sub-

sequent authors, one obtains an "instantantous"
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interaction [i.e., one which depends on the relative
time only as ()(f}]by neglecting the fourth compo-
nent of the photon propagator in Eq. (2.14) (i.e.,
one lets k'--R'). With this assumption we can
obtain the well-known result' "(see Sec. III for
derivations of similar expressions)

and in contrast to Eqs. (2.16d) and (2.16e),

V. =-(4u) 'A, U (q„-q ),
e-.=-(4u) 'A +U(V"-4) ) ~

(2.21d)

(2.21e)

(X,-2p)(( (r) =AU{r)q (r), (2.16a)

or equivalently

2((u+ p)q) =A U(y„+ y ), (p
—=A (p,

(2.16c)

2(& ())0'++ = A++ U(%+++ V--}~ 0'++=A++ A
(2.16b)

In fact, as we shall show in Sec. IV, Eqs. (2.16a)
and (2.21a} are not equivalent. They lead to differ-
ent effective interactions even in order me~.

The question we then ask is which (if either) of
Eqs. (2.16a) or (2.21a) correctly follows from the
neglect of retardation in the BS equation [Eq. (2;9)].
A careful limiting procedure is carried out in Sec.
IH. For purposes of comparison, me quote the
result here. Instead of Eqs. (2.16a) or (2.21a), we
obtain (correct to order ma') the equations

(2.16d)

(2.16e)

{X,-2)))y =(Afc+A„Is A„)cp,

or equivalently

(2.22a)

where 2(ar-)))y =A„[Ic(y„+rp )+Isy„], (2.22b)

A-=A„(p) -A (P

—A( ) (p}A( ) ( p) A( ) (p)A( ) ( p)

A, (p) =A(" {p}A'"(-p),

A, (P) =A'" {P)A,"(-P),

(2.IV)

(2.18)

2(~+()q =A f,(q„+q ),
and, in addition, just as for Eq. (2.16a)

(2.22c}

(2.22d)

(2.22e)

A',"(p)=[ +&"{p)]/2~, ~=(p'+1)" (2»)

In obtaining the above, me have made use of the
identity

A= -'[A(') {p)-A(" (p) +A'" (-p)-A(" (-p)] =X,/2(o

(2.20}

which immediately yields the result that A com-
mutes with K .

Since the right-hand side of Eq. (2.16a) does not
have a Hermitian structure, Barker and Glover"
Hermitize it and claim that they obtain an equiva-
lent structure, replacing Eq. (2.16a) by

We conclude this section with a number of re-
marks. In the first place, it is not surprising that
Eqs. (2.21a) and (2.22a) give the same mn' results.
We will nom briefly indicate hom the equival. ence
arises to this order. Although the functions y+
and y do not vanish for the set (2.21) [see Eqs.
(2.21d) and (2.21e)], nevertheless, to order mn',
we can still neglect them in Eqs. {2.21b) and
(2.21c). This is so since"

A„UA .=-,' {1+P('))(I+P')}U

x —,'(I-P ' )(1+P(' )=0 .

Looking at Eq. (2.22a), we observe that [see,
e.g. , Eq. (4.31)] to order mo. '

(X,-2p)(p(r) =,'- [A, U(r)], q&(r) . (2.21a)
[A„,I,]=0, (2.24)

Again, using the properties of the projection oper-
ators, this is equivalent to the set

2((u -p)(p =A U(()) + ~ g, + —' y, ), (2.21b)

2(re+ p)y =A U(y +-,'9), +-,' y, ), (2.21c)

so that rp drops out of Eq. (2.22b) to first order,
and Eq. (2.21b) is equivalent to (2.22b). The equiv-
alence does not exist for Eq. (2.16a), since A+,
and A do not commute, even in lomest. order,
mithI~, because of the presence of the n, ' e~.
terms in the latter. Thus, Eq. (2.16a} is a coupled
set of tmo equations for q, and q even in order
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mn', The equivalence of Eqs. (2.2la} and (2.22a)
and their nonequivalence to Eq. (2.16a) is explic-
itly demonstrated in Sec. IV.

Our final observation concerns the nonunique-
ness of the Hermitizing process yielding Eq.
(2.21a) from (2.16a). As an alternative, we define
the wave function X by the equation'

(2.25)

Equation (2.16a) thus becomes

G(1)G(2)g y+ G(1)G(2)g G(1)G(a)g (i (3.6)

If we now make the replacement

(3.V)

for the@„appearing in Eq. (3.6}, we will obtain an
equation correct to order mo)'. We work in mo-
mentum space and integrate the equation over Pp
to obtain the result

(3(o-2(1)A)(=AUAX . (2.26)
~(p)= fdp fG'"{P)G'"{p)f)'"f)'*'I{p p'4-{p)d'P'

The operators of Eq. (2.M) are manifestly Her-
mitian, since A and X are Hermitian and com-
mute; the technique of Ref. 11 can be applied. How-
ever, the analysis of Sec. IV yields, as it should,
exactly the same result for the effective potential
to order ma' in both Eqs. (2.16a) and (2.M} and a
different one for that arising from Eqs. (2.21a) and
(2.22a}.

+ fdp. fdp! fG("{P)G(*){p)&,{p,p')

)(G(1)(pi)G(2) (pi)p(1)p(2)

(pi pn)+Qti)d3pi+PIi

where

Ic(p)=[-i/(2w)'] fe 'P' Icgrd'r

(3.8)

(3 9)

y —G(1)G(2)g (3.1)

HI. LIMIT OF NO RETARDATION

We begin our discussion in this section by writ-
ing Eq. (2.9) as an integral equation: &r(p,p')=

(2 ), y'I)y( )-~( 5,„-5,k ), k=P-P'.
(3.10)

The first term yields
where 6,' is the free-particle Green's function of
particle i: A++ A

2(&u-P) 2((d+ )1)
(3.11)

G(1) [y(1)($+P) 1]-1 G(&) [y(2)(5 P) 1]-1
(3.2)

y(p)= fdpog{p) . (3.3)

We will work in momentum space and define the
function rp(p) by

after Pp integi ation. The second term has both a
Pp and P,' singul arity structure, due to both photon
and fermxon propagators.

Let us consider the fermion propagators first.
We illustrate with three typical residues where we
integrate in the upper-half plane.

For Pp= p;~, pp= p;m' we have'

We exhibit the singularity structure of G, '~ Q,2 in
the Pp plane by writing

G(l) G(2) [+ (p) +) +Po] [&*'( p) +)1 Po]P'-"P"'-
[{Po+)1)'-O) +i&][(Po-)1}-&O +ie]

(3.4)

++ 12 ++
p. -co D p.-m'

12 +& +m (51sc ~1~sa) ~

(3.12)

(3.13)

The poles of Go' (p) Gon)(P) in the po plane are thus
at

—)1+((0-1e}
o )1 g((d 1e} {3.5)

D = {p-p')'-[{)1-oo)-((1-(o')]'=(p-p')' . (3.14)

For Po= -{)1+(d), P=-{)1+(o') we have

ln order to obtain an equation (accurate to order
ma') for the instantaneous wave function y(p), we
first write all equation equivalent 'to Eq. (3.1),
namely,

A Z12 A'
P.+ QP D P. + QP

For Po=)1-&o, Po= -(p+&a') we have

(3.15)
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A++ Z12 A--
+ ~

~ ~ Df ~+~I (3.16)

with

D'= (p-p')'-[(p-~)+ (u+ ~')]'=-4.

A similar expression, involving D, is obtained
for R, . Thus the (Pa-P,')' term cannot be ne-
glected in the photon propagator for R, and R +.
On the contrary, it provides the dominant part of

the propagator and guarantees that the y„ to y
coupling becomes negligible to first order owing
to these terms.

The residues due to the photon propagator poles
also yield results which are negligible in compar-
ison with R+, . We illustrate with what should be
one of the large terms: that arising from the pos-
itive energy projections of both fermion Green's-
function products. We integrate over Po first, and
examine the residues at the fermion poles. We
obtain

A'
R&,- jdP, ++ 12' ++

'(p, + p-(o+ is}(p,—p+ a)+ i&)[(p, p+—(u'}'-(p-p'}'+is](p(u', )-
(3.1'l)

The poles of the photon propagator are at

p;~ ~"(Ip p't--i~), (3.18)

necessary to make contact with the formalism of
FFT and Ref. 15. In order to do so, we have to
redefine our wave function [see Eq. (1.6} of Ref. 15]
to be

and the contribution from the photon pole in the
upper-half plane is the residue c-' (4.1)

R ) A+ ~ Z12 A~+
&' lp-p'I ~-~' ' (3.19)

with

&"= [2i -(~+ ~')-I p-p'I] [(~-~')-I p-p'I ]

and take transposes of the e ',y, P, etc. , ma-
trices. This enables us to drop the superscripts
(1) and (2) and utilize the Dirac matrix trace tech-
niques of FFT and Ref. 15. The modifications re-
quired are

(p-p')' . (3.20)
(1) (1)+aa ' naa' t Paa' Paa~

(4 2)

Comparing R+, with R+&, for small ) p (
and )

p' [,
we find that

(2) (2)+ bb' +b'b & ~bbt ~btb

As an example, we have the expression
R„»R~

since

0 ~ &&p

(3.21)

(3.22}

defoe'(p) =(ct "P+P'" &*'p+-P")q(p) (4 3)

which goes into

[(o' 9 +0), V(p)], (4.4)

A similar argument can be made for all contribu-
tions due to poles of the photon propagator.

This somewhat tedious argument establishes the
validity of Eq. (2.22a) to order maa, and shows the
incorrectness of going to the limit of no retarda-
tion by merely dropping the (pa-p,')' term in the
photon propagator. The latter step leads to the
incorrect Eq. (2.16a). Essentially the correct lim-
iting procedure leads to a suppression of pair
terms, leaving only y„ in Eq. (2.22b).

IV. COMPARISON OF EFFECTIVE
POTENTIALS IN So STATE

Before calculating the effective potentials which
arise from the various equations in Sec. II, it is

rp =S+PV+0. pT . (4.5)

We now substitute Eq. (4.5) into the various
equations of Sec. II for y or X and take traces after
multiplication by 1, P, and a p to obtain the re-
sults which follow below.

in the new notation.
If we now restrict ourselves to the 'So state and

introduce scalar structure functions, as in FFT,
the requirements of parity invariance, charge con-
jugation invariance, and Lorentz invariance, as
well as the vectors naturally prescribed by the
problem, restrict us to the most general form for
fd(} given by21
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We note initially that for the y's which appear in
Eqs. (2.16a) and (2.22a) we have the property

The effective Hamiltonian, correct to order mo.
is thus23

0'+ -= 9'-+ = 0
y &(,) =H-H', (4.18)

which is equivalent to the condition

V=T . (4.6)

~40 p, e , r,r,«=p —-4 -r«s(r) —p+, p,«i),
(4.19)

}(=S+PV+a, p T (4.7)

and defines

V+P T =u$ (4 8)

This condition arises naturally" from field theo-
retical considerations.

Next, we observe the complete identity of the
contents of Eqs. (2.16a) and (2.26). In fact, these
equations reduce to coupled equations for two
structure functions. If one lets

Qf
2

Hf
r2 ' (4.20)

Equation (4.19) is the correct effective Hamilton-
ian for 'S,. Thus Eqs. (2.16a) and (2.26) yield the
same anomalous result, which differs from the
correct result by the spurious term -H'.

We turn now to the analysis of Eq. (2.22a), the
equation obtained by taking the correct no-retar-
dation limit. We again obtain two coupled equa-
tions for S and V, of the form (4.10) but with

I(» -I(», where

S =wV, (4 9)

1 coo' Ic+ 2R+ vP
I +8: S'w (4.21)

one obtains identical coupled equations for S and
V from Eqs. (2.16a) and (2.26). These equations
can be written in the matrix form

with

(4.22)

Mo @=I(i)4,
where

(4.10)

5= (1/4(u)[2((dIc(d-Ic)-2R+Q] (1/&u) . (4.23}

(4.11) It is not difficult to show that to order me4, one
obtains

(4.12) 1 1
V=—1-—Ic-.P $ .

2p,
(4.24}

1 0 -Ic+
C (4.13)

rr
Q=N p ~ ep (4.14)

We can establish the identity

V=(1/q)[1-(3/2 )I,]S, (4.15)

which is the analog of Eq. (3.17) of FFT.
Elimination of V yields the analog of Eq. (3.15)

of FFT:
Mop=I(„) 4, m=3, 4 (4.25}

One can once again eliminate V. However, this
time one obtains to order ma the correct effective
Hamiltonian H. This same result can be obtained
more directly by using Eq. (2.22b) and neglecting

The remaining Eqs. (2.1) and (2.21a) lead to
three coupled equations for the structure functions
S, V, T, since the Eqs. (2.22d} and (2.22e) and
their consequence, Eq. (4.6), do not hold. They
are of the form

(i)9 =0y

with

(4.16)
with

4=(S, V, T), (4.26)

1 3 1
Ic Ic+ Q —Ic ~

4G0 40 4G0 co
(4.17)

1 p'
SXO= 1 -p 0

&
p' 0 -p, p'i

(4.27)



CORRECT NO-RETARDATION LIMIT IN BETHE-SALPETER. . . 1155

In the above,

(4.28)

=2A, Ic(S -a&V)=A, II' cp, (4.34)

arises from the Breit equation [Eq. (2.1)] and

1I =- —I -I—(4) 4 C c+

3p' 1
e+q

1 1 p2 1
3I —-- I 3I —+ —

Q
CO (d

(4.29)

arises from Eq. (2.21a).
lf we analyze Eq. (4.25) in coordinate space,

using I(3) eliminate $ in terms of V exactly and
~pT in terms of S (and therefore of V) approxi-
mately, we obtain an effective Hamiltonian to or-
der mN of

(3)~H+H', (4.30)

with the anomalous term H' having opposite sign
to that in Eq. (4.18}. Approximate elimination of
V and p'T in terms of 8 leads to the correct effec-
tive mo. Hamiltonian H, using I~4) .

Using the techniques of this section, it is not
difficult to confirm in detail the arguments of Sec.
II which lead to the establishment of the equiva-
lence of Eqs. (2.21a) and (2.22a), and their non-
equivalence to Eq. (2.16a).

Consider Eq. (2.22a) first. We obtain, using the
techniques of FFT,

(4.31)

which gives rise to an effective potential of order
mo. ', and is thus negligible.

Turning to Eq. (2.21a), we find

(4.32)

A„ II(y, + y )=-~ (Icp'+Q)—,(V-T) (4.33)
A 2 1

which again gives rise to a negligible mn' effec-
tive potential. Finally, consider the A + projec-
tion of Eq. (2.16a). It differs from the A, projec-
tion of Eq. (2.22a} by a term A++ UA y. The
Coulomb interaction part of U gives an me' effec-
tive potential by Eq. (4.31). The remaining termis

which is precisely the anomalous term our previ-
ous calculation has generated.

V. DISCUSSION

The ease with which effective potentials to or-
der ma can be generated in a systematic fashion
in Sec. IV for the various two-body equations of
Sec. II underlines the utility and straightforward-
ness of the structure-function approach of FFT.
The agreement of our Eqs. (4.30) and (4.19) with

Eqs. (14) and (15) of Ref. 11 for 'S, states serves
as a check of this method, since the only fully
systematic method for generating effective poten-
tials other than that of the structure-function ap-
proach of FFT is the Foldy-Wouthuysen transfor-
mation technique of Refs. 11 and 12. It is thus
gratifying to see agreement between the results of
the two approaches, criticize as we may the
starting equation [our Eq. (2.21a)] of Ref. 11.

It should be emphasized that we have no essen-
tially new result to offer. %e do not presume to
question the original formulation of the BS equa-
tion in its covariant form, which is a direct con-
sequence of quantum field theory. Qur criticism
is solely directed at the way in which the no-retar-
dation limit has been hitherto carried out for this
equation. " Nor do we obtain a result for the ma~

potentials which differs from the widely accepted
(and experimentally confirmed) results of many
years standing. %e only claim to put the deriva-
tion of these potentials on a sounder footing than
has been done previously. This "tidying up" is
essential if one is to carry calculations to higher
orders, specifically to order me . It is true that
in principle any of the equations of Sec. II could be
used as a basis of perturbation theory to higher
orders. They all give the correct eigenvalues to
order mo. '. In practice, it is preferable to use the
equation obtained through the correct limiting pro-
cedure from the covariant BS equation. In this
way, one avoids the appearance of spurious terms
in various orders in 0.. These subsequently have
to be canceled by other terms which arise later in
higher-order perturbation theory. It is more than

likely that they can be overlooked in an insuffi-
cently systematic approach.

A final comment: making the potentials instan-
taneous as an input to the BS equation appears to
present us with a paradox that the instantaneous
radiation "gauge" gives us different m0.4 energies
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from the radiation gauge proper, with Eqs. (2.9)
and (2.14) as starting points; it appears to contra-
dict the gauge invariance of the eigenvalues at first
sight. This is in fact not the case. The only proper
interaction kernel in the radiation gauge is repre-

sented by Eqs. (2.9) and (2.14). The instantaneous
radiation-gauge interaction Eqs. (2.6)-(2.8) is not

a gauge at all, but is the result of approximations
carried out, and carried out improperly, with Eq.
(2.9) as a starting point.
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