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identical results were obtained in cells filled with
both Ne and He buffer gases and with a variation
in buffer-gas density of more than an order of mag-

nitude. In addition, the same results were obtained
with both an rf discharge and H' as the source of
electrons.
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An approximate expression for the critical screening piesmeters associated with the attractive
generalized screened Coulomb potential (GSCP) is obtained by utIH~ng the variational principle and the
virial theorem. Subject to certain conditions, this expression is shown to represent a 1ower bound to the
true critical screeiiing paraineters associated with the GSCP. Specific results are reported for the bound

states n, l~' ——n- 1 of the Debye-Huckel potential and for the ground state and first excited state of the
exponential-cosine screened Coulomb potential.

I. INTRODUCf ION

B(ks)=e "',
and the exponential-cosine screened Coulomb
potential (ESCSP), with

(la)

The generalized screened Coulomb potential
(GSCP), mathematically expressed as

V(s) = —(Z/s)B(ks), B(0)= l,
where Z is the nuclear charge and & is the screen-
ing parameter, represents a wide class of poten-
tials often encountered in plasma physics" and
solid-state physics. " Typical examples of the
above potential are the exponential screened
Coulomb potential (ESCP), commonly known as
the Debye-Hiickel potential, with

of the total energy with respect to hydrogenic trial
wave functions that are forced to obey a subsidiary
condition, namely, the virial theorem.

II. CALCULATION OF g
We now consider the calculation of ~,""for the

general state n, l of the GSCP. The method con-
sists of minimizing the total energy with respect
to the appropriate hydrogenic wave functions sub-
ject to the virial theorem and then determining A,

"

by choosing ~ such that the total energy is equal
to its ionization limit. In general, the virial theo-
rem for this problem is established via the varia-
tional principle, whereby the trial wave functions
g, (Zs) and X are subjected to scale transforma-
tions"

B(Xs)= e 'cosmos. (lb)
r=gs (2a)

Recently, the bound-state properties of ESCP' '
and ECSCP ' have received considerable attention.
Particular emphasis has been devoted to the cal-
culation of the critical screening parameter ~„
the value of ~ for which a given energy level is
equal to its ionization limit. In this work, we pre-
sent a simple method whereby a lower bound to
&, can be obtained for the quantum states n, l =n —1
of GSCP. The method involves the minimization

p=Z/g.

The total variational energy then becomes

B (n, l, g, A.)=g~T+g ,V

(2b)

(4)

where

T ($„,(rZ) —,'V $„,(rZ))/($, (rZ), g, , (rZ))
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V = (0,, (vZ},{-Zs '"/~&4. , ,(&Z})/(A. (&Z} (I).. {~Z)).

(5)
In using the variational principle to determine

q we use Eq. (3) to obtain

8Z„—— aV 8p." =2qT +V+g——'=0.
8'g 8p 8g

Letting

8V——Vp y

and using the fact that

B,(n, I, A,")&B„
and therefore

(16)

corresponding to states of lower energy, then E,
for that state is an upper bound" to the exact en-
ergy and ~," represents a lower bound to the true
A., (now to be referred to as A,"). The lower-bound
theorem for ~, follows from the argpunent that if

(17a)

and, by the variational principle,

B„(s,I, ]I„A.) & B,(s, I, A, )

(Er referring to the true energy state for a given

q I, and A,"), then

(6) A" (n, I) & A, (s, I.}. (19)

Eq. (6) can be reexpressed as

2Tr]+ V —pVp =0.

The determination of q(p) from Eq. (9) ensures
that the virial theorem is satisfied {see Appendix}.
In addition, selecting A so that B, in Eq. (3) is .

)equal to B, (the ionization limit), we then obtain

Tg'+ Van=sr. (10)

Thus, Eqs. (9) and (10), together with Eq. {2b),
are sufficient to determine ~,". The simultaneous
solutions to Eqs. (9) and (10) can be easily shown

to yield

8 g
V(p, ) 1+p, —lnV(p) =2p, —,~)

8p

as the equation determining p„q, being given by

q, = — —' 1 —p —ln V(p)i
V(p. )'

2T 8p jp p

(12)

(p, and ](), refer to the values of p and ]i for which
A = A,"). It then follows from Eqs. (2b) and (12) that
the approximate expression for the critical screen-
ing parameter is

A.
"= —p. ( V(p.}/ &)[I—(EI/A,")(A:/ V(g))], (13)

where A. is determined from Eq. (11)." If the
specific form of B(As) in the GSCP dictates an ion-
ization limit of 8~=0, then Eqs. (11)-(13)simplify
and become

1+@ —ln V(p) =0,
8p PC

which satisfies the equation

——,
'

V,'g„(Zs}—(Z/s) y„(Zs) = ——,'(Z'/s') y„(Zs). (21)

Putting ]I).(Zs) of Eq. (20) into Eqs. (4) and (5), we
obtain expressions for T and V as

T = —,'(Z'/n') (22)

and

)'= —z[(Rzln)'"")(%)! ]f r'" '))(pr)e ' ')"dr,
0

(23)

where V depends on the explicit form of B(pr).
When B(pr) corresponds to the ESCP [see Eq.

(la)), V in Eq. (23) reduces to

V~ = —(Z'/rP) [Z/(Z+np/2) ]'". (24)

In addition, since the ionization limit for this po-
tential is zero, Eq. (16) is appropriate for deter-
mining ~,". In this regard, substituting VE~ of
Eq. (24) into Eq. (14) yields

If the above-mentioned orthogonality is lacking,
no such lower bound on X,

* can be claimed.
To take advantage of the inequality in Eq. (19),

we restrict our variational calculation by using
hydrogenie-state wave functions for arbitrary n,
but with /=n —1. In this way, the trial wave func-
tion with E=n —1 is orthogonal to all the exact
wave functions corresponding to states of lower
energy with E= 0, 1, 2, ..., n —2 due to the spherical
harmonics orthogonality. The explicit form of the
hydrogenic trial wave function for n, E=n —1 is

y„(Zs) =N„s ")"(Z-s)" 'I'„,-(e, 4), (20)

and
n, = V( p.)/ T', - (15}

p, = (Z+sp, /2)/s'.

A.
"= -p.«(p.)/ &). (16)

Vfe note that if the trial wave function for a given
state is orthogonal to all the exact wave functions

Solving for p, in Eq. (25) we see that

p, = 2Z/N(2n —1).

Utilizing Eqs. (24) and (26) in Eq. (16) results in
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A.,' = (2Z/w') [(2w —1)/2w] '" '. (27}

P = (2Z/w) +p. (29)

For this potential, the ionization limit is not zero,
but is given by

Comparing this value of &,
" to recently published

numerical data' (see Table I) shows that the lower-
bound theorem is indeed satisfied for the n, L=n-1
energy states.

When B(pr) refers to the ECSCP [see Eq. (lb)],
V of Eq. (23) reduces

'F~~ = [z/(sa)! ](2Z/ )*"" ..-.( . .)' (28

where

(A'/Z) ~

1.0000

0.2109

0.0893

0.0490

0.0310

p.,'/z) '
1.1906

0.2202

0.0914

0.0498

0.0313

Data obtained from Eq. (27)."Data obtained from exact numerical calculations of
Ref. 6.

TABLE I. Tabulation of X~/Z for the first five energy
states withl =n -1.

BI= V(s,), (30) Putting Vzcs~ into Eqs. (14) and (16), we obtain

where so is obtained from p, = 0.889Z (38a)

dV
dS, s =s

=0.

For the GSCP of Eq. (1), Eq. (31) becomes

(81)
X,
"= 0.644Z. (38b)

In addition, for w=2, V in Eq. (28) becomes

B(R ) —R dB(R) =0,
B=BO

with

Ao= &0.

(82)

(88)

Vscscp = ——,'Z'(- 4p' —8Zp'+4Z'p + Z')

x(p +2Zp+Z )

In this case, Eqs. (14) and (16) yield

p, = 0.175Z

(89)

(40a)
Notice that R, in Eq. (32) depends owly on the spe-
cific form of B(&s) and sot on the particular choice
of A.. It then follows from Eq. (30) that ~,"= 0.146Z. (40b)

B,= —XZB(R,)/R„ (34)

indicating that E& is linear in A..
The presence of a cosine factor in B(As) leads

to an oscillatory behavior in the ECSCP, thereby
allowing multiple values of R, to satisfy Eq. (32).
The explicit form of Eq. (32) for this potential be-
comes

1+tanR, + 1/R, = 0. (35)

Vzcsa = —16Z'(p+Z)/(p'+2Zp+2Z')'. (37)

The first five roots of this equation have been
given by Lam and Varshni, ' the first of which is
R, (l)=2.1712. Thus, from Eq. (34), we see that
E~ becomes

E~= —XZe "ot'& [cosR,(1)]/R,(l). (36)

This would necessitate the use of Eqs. (11) and
(13) in obtaining g. However, for purposes of
comparison with Lam and Varshni, ' we adopt their
criterion that Ez= 0 and proceed to use Eqs. (14}
and (16) to calculate X,

" for the ground state of the
ECSCP. With n = 1, the expression for V in Eq.
(28) becomes

Recently, Lam and Varshni' obtained critical
screening parameters for numerous energy states
of the ECSCP (with Z= 1) by utilizing Hulthdn-type
wave functions in a variational calculation. They
found, for the first two states with I,=n —1, that

A,
i "= 0.712, n = 1

X~ "=0.143, n=2.
(41}

(42)

The screening parameters obtained in the present
calculation for the ECSCP need not be lower than
the results of Eqs. (41) and (42). This follows
from the approximate nature of the calculation
presented in Ref. 9. In fact, comparisons of Eq.
(40b) with Z= 1 and Eq. (42) show this to be the
case.

APPENDIX: SATISFACTION OF
VIRAL THEOREM

The virial theorem, for a spherically symmetric
potential, is mathematically stated as

2( T &=(s,— (Al)
ds

where the brackets indicate an expectation value
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with respect to an egad eigenstate of the Hamil-
tonian, += T+ V. When the potential is taken to be
the GSCP [see Eq. (1)], the virial theorem is re-
expressed as

come

{T)(n)=n'T (A4)

2(T) = —( V)+X—dV
dA.

(A2)

In obtaining Eq. (A2), use has been made of the
fact that

dB(Xs) A. dV
ds Z dA,

(A3)

When the exact wave function for the GSCP is not
known, the virial theorem may still be satisfied
by utilizing a variational procedure whereby an
approximate trial wave function )j&„,(Zs) and A. are
subjected to the scale transformation of Eq. (2)."
If we use )j)„,(Z)js) as a trial wave function, with
)7 as a variational parameter, and let p= X/g, then
the approximate expectation values for T and V be-

( V) (q) =q l', (AS)

where T and V are defined by Eqs. (4) and (5).
The total variational energy then becomes

E, (s, l, q, A,) = q2 T + q V, (AS)

as stated in Eq. (3) and the minimum energy con-
dition of Eq. (9) follows directly. In multiplying
the expression in Eq. (9) by q, we obtain

2Tg + Vg - pg V =0. (A7)

Making use of Eqs. (2b), (8), (A4), and (A5), Eq.
(A7) becomes

2 &
)' ) (n) ()'&(n=&+-&(~„) (n) (A9)

Hence the virial theorem is established, provided
that g is chosen to satisfy Eq. (A7) .
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A previous paper by Starace showed that the length formula for the electric-dipole matrix element is

the only consistent one for calculations that solve for the exact eigenfunctions of an approximate
Hamiltonian containing a nonlocal potential. It is emphasized here that disagreement between such a
length-formula calculation and experiment indicates inadequacy of the approximate Hamiltonian and not
that the velocity formula may be preferable.

Starace' has shown that in oscillator-strength
calculations employing exact eigenfunctions of an
approximate Hamiltonian containing a nonlocal po-
tential, the matrix element for electric-dipole

transitions is correctly given by the length formula
and not by the velocity (or acceleration) formula.
Examples of such approximate Hamiltonians are
those of Hartree-Fock and configuration-inter-


