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The specific heat at constant density of an ideal-Bose-fluid film of thickness L =l p
'", but infinite

lateral extent, is calculated analytically to order l '. Both hard-wall and periodic boundary conditions

are considered. Good agreement with the numerical calculations of Goble and Trainor for the total

specific heat under hard-wall conditions is obtained down to l 10. In the critical region, the large-l

behavior accords with the scaling theory of finite-size effects. The appropriate scaling functions and the

surface specific heat are explicitly calculated.

I. INTRODUCTION AND SUMMARY

Recent analytical calculations' on the spherical
model have given considerable support to the
scaling theory ' of finite-size effects in the
critical region. This theory appears also to pre-
dict correctly the effects of finite size and sur-
faces on the critical behavior of more realistic
models (see Refs. 3 and 4 for a more complete
discussion including various qualifications and a
review of the existing calculations).

It is well known that an ideal Bose gas in three
dimensions exhibits a phase transition with a sharp
critical temperature'; the correspondence with

other critical phenomena has been discussed, in

detail, by Gunton and Buckingham. Moreover,
like the spherical model, the ideal Bose gas is
mathematically tractable in all dimensions. Hence
the effects of finite size and surfaces on its critical
behavior may be investigated analytically, and
compared in detail with the scaling predictions.
Although the spherical model and the ideal Bose
gas are effectively equivalent in the immediate
critical region~ there are sufficient differences,
both in mathematical detail and physical applica-:

tion, that separate discussions are illuminating.
Thus the ideal Bose transition provides a model,
albeit a rather crude one, of the superfluid transi-
tion in real helium; in particular, ideal Bose

films are of interest in connection with real helium
films. Indeed, many authors have studied ideal
Bose films and other finite geometries. For the
most part, however, the previous calculations do
not reveal clearly (or at all) the nature of the
asymptotic behavior for large thickness L nor
provide very explicit expressions for the finite-
thickness thermodynamic properties. (There has
also been a tendency to attempt to identify par-
ticular "condensation, " "transition, " or "onset"
points rather than recognizing fully the absence of
a sharp transition in any finite geometry, and

acknowledging the consequent "rounding" and dis-
tortion of all properties. )

In this paper we aim to give a detailed discussion
of the specific heat C'„(T,l), at constant number
density p (or constant volume) of a two-dimension-
al ideal boson film of thickness L = lp

' ', and in-
finite lateral extent. We consider both standard
hard-wall boundary conditions (denoted by super-
script 7 = 1) and periodic boundary conditions ap-
plied across the film (denoted by 7 =0). The cal-
culations extend, and specialize, an earlier
analysis ' of the shift and rounding of the transi-
tion as a function of E in a d -dimensional ideal
Bose "film" which is infinite in d =d —1 dimen-
sions but of finite thickness L in the dth dimen-
sion.

To summarize our results, recall5'~ that the
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,
( )

dC„(T)
v dT

(1.2)

has a discontinuity given by

T,hC„'/pka = T, lim [C,'(T, e) —C,—(T,+ z)]/pka

= 27[/(12) ] /16m = S.665 769. . . . (1,.2)

In these expressions i (z) is, as usual, the Riemann

g function.
On the other hand, for a film of finite thickness

there is no true transition and we expect C'„(T,I)
to be analytic, the kink being rounded. Further-
more, the scaling theory of finite-size effects in
the critical region predictss'4 that the singular part
of C'„(T,l) in the critical region depends only on
the scaled variable z~ L/g(T), where ((T) is the
bulk correlation length. This, of course, diverges
at the bulk critical temperature T, according to

$(T) (T —Tc) ", T T, +. (1.4)

Since for an ideal Bose fluid in three dimensions
we have v=1, scaling theory leads to the form '

T, " ' =pkaY'(ft), l-~, T-T, . (I..5)
aC„'(T,l)

In this expression allowance is made for an effec-
tive displacements' '7 e(l) of the critical tempera-
ture through the introduction of the shifted temper-
ature variable

t=t+ e(l) . (1.6)

where, as usual, the reduced temperature devia-
tion is

(1.7)

To recover the bulk behavior (1.3) in the limit
I-~ the scaling functions Y'(Q should satisfy

bulk specific heat of an ideal Bose fluid in an in-
finite three-dimensional domain remains finite at
the critical point T= T, with value

Cv(T~)/pka = 4 f(2g)/f(12) =1 925672 ~ ~ ~, (l. 1)

where, here and below, C„denotes the heat capac-
ity per unit volume. However, C„(T)has a sharp
pointed maximum or "kink" at T, where the de-
rivative

evaluated numerically for various thicknesses by
Goble and Trainor. ' Inspection of their numer-
ical data reveals a striking feature; namely, the
specific heat of the film is enhanced above the
bulk value. Intuitively, one feels that the presence
of hard walls should depress the specific-heat
anomaly. To investigate this paradox we have cal-
culated explicitly the surface (or wall) specific
heat C"„(T)defined ' through

C (T, l) = C„(T)+(2/l)C"„(T)+~ ~ ~ (1.9)
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as l - with T fixed and unequal to T,. Above the
bulk critical temperature T„the surface specific
heat is found to be Positive, and hence tends to in-
crease the over-all specific heat. Indeed, when
T approaches T, from above, C"„(T)diverges
logarithmically. Conversely, below the transition,
C"„(T)is negative and approaches a constant at T,
as shown in Fig. 1.

The specific heat of an ideal boson film has also
been studied recently by Pathria" using different
mathematical techniques. His final expression is
valid for both T- T, and l-~; i.e., precisely

lim (Y ( —x) —Y (x)) = 27[/ (1~)] /16v . (1.8)
g~ 00

These expectations are indeed borne out by the
analysis we present in the following sections. In
particular, the appropriate scaling functions can
be calculated explicitly and their properties
checked.

For the case of a film confined by hard-wall
boundary conditions the specific heat has been

-0.50

FIG. 1. Surface specific heat C~z(T) of a three-dimen-
sional ideal Bose gas. For comparison, the bulk specific
heat Cz(T) is also shown (broken curve). Note that the
units of both specific heats are such that at high tempera-
tures Cz/phd tends to y.
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in the regime where scaling should be applicable.
However, it is not obvious from his expressions
whether or not C'„(T,I) may be represented in a
scaled form consistent with the general theory.
In fact, a relatively simple scaled form does exist
as we shall show in Sec. IVD.

Finally, one can test the convergence of the
asymptotic expansions for large L against the
numerical results of Goble and Trainor for finite
L. A partial comparison by Pathria, "of the
variation of the specific-heat maximum with thick-
ness, suggested that the convergence was rather
slow so that higher-order terms in l ' would be
required when I- 50. A crucial assumption in
Pathria's analysis, however, was that the temper-
ature T„(I)of the specific-:heat maximum was close
to T„'but the ratio (T —T,)/T, is not in fact small
unless l&60. In Sec. IVC we show that when this
assumption is relaxed, the asymptotic results,
even if truncated at order l ', are in remarkably
good agreement with the numerical data down to
L —10.

Our detailed arguments are organized as fol-
lows: In Sec. II we review briefly the formulation
and analysis of the free energy of an ideal boson
film, within the grand canonical ensemble. The
details will be available elsewhere, ~ and our aim
here is only to motivate the basic results, on
which the subsequent analysis is based. The sur-
face specific heat C"„(T)is calculated in Sec. III,
while in Sec. IV, the behavior of C'„(T,I) is ana-
lyzed. Our conclusions are summarized briefly
in Sec. IVE.

II. REVIEW OF BASIC RESULTS FOR IDEAL BOSON FILMS

A. Formulation

A= (2vR /m, kzT)'/ (2. 5)

F() Q n -ns

n~i
(2. 7)

The sum in (2.6) runs over a subset N, of the in-
tegers with

(2. 8)

For the boundary conditions of interest, namely,

(~=0) periodic, i. e. , g(z) =g(x+L}

and

(r = 1) free surfaces with P(0) = g(L) = 0,
where g(z) is a single-particle wave function, the
appropriate subsets are~

Z, =(0, 1, 2, +4, . . ., +~),

Z~ = (1, 2, 3, . . ., + ~)
(2. f))

B. Analysis of P&(Pz) for large n

For periodic boundary conditions we can obtain
an expression for

(2. 10)

The basic expression for P(p, , T) for a two-dimen-
sional film of thickness L and infinite lateral ex-
tent is thenv

1
A PP =Ps(g, n) = z/3 E F,[Q+ ,'n '(r ——r' }j,

T

(2. 6)

where the so-called Bose functions ' are defined

(2.2)

where p is the over-all number density. It is con-
venient to introduce the dimensionless thickness

n=L/v / A

and the reduced chemical potential

(2. 3)

For an ideal Bose fluid in a domain 9 of volume

V„the thermodynamic quantities may be derived
from the grand potential,

@'(» T}= —po ~ »{ explp-(zx —
.u-)1) (2. 1)

where p = (kzT), eI is the energy of the single-
particle state k, and the chemical potential p, is
determined by the density constraint

in the limit n-~, by noting that Fz(z) ha, s the ex-
pansion

Fz(z}=~v +zlnz —z+Q (-z)"1 2 „

t(2- n)
nI

(2. 11)

valid for I z I & 2p and I argz I & g. For constant
tt} &0, or equivalently fixed T& T„the summand

Fs(p+y ) of (2. 10) is thus an analytic function of

y in the strip

/imy/ (@"' .
Consequently, Ps(g, n) will approach its limit,

(2. 12)

exponentially fast in n when Q & 0. Specifically,
we find

limPs(g, n) = v
'/' J Fz(P+y ) dy =F,/z(P), (2 18)

n ~00

p= —p(p, —eo) &0, T&T,
=0, T&T

where the thermal de Broglie wavelength is
(2.4)

PO(~ } F (~) 2 -1/2~1/2 -2rn~gy 2

n-~, P &0 . (2. 14)



SYSTEMS OF FINITE THICKNESS. III. IDEAL BOSON FILM

However, near T„when P is small, the con-
vergence will be slow, and there exists' an n-de-
pendent scaling of P, namely,

x=Pn = —apL m/h (2. 15)

Ps(x/n, n) =f(2—,') —xf (12)/n +v ~ ~IH (3x)/ n~

+ O(n~), (2. 16)

where

Hz(x) =2R~, O(x) -x[1—in(4x x)]+/(3)/v~, (2. 17}

in which the remnant function, of order (2, 0),
is defined by

for which the asymptotic behavior is distinct from
that at constant P. A detailed analysis7 shows that
in this scaled critical region the required expan-
sion of (2.6) is

Lpi(s n

elm[i�(I-',

))13(r/T,)-"2

= L[&(I-'.)]"'/A (2. 23)

which is proportional to the mean interparticle
spacing.

III. SURFACE SPECIFIC HEAT

In this section we calculate the surface specific
heat C"„(T},defined by (1.9). For T& T„wehave
from (2. 20), on introducing (2. 23),

heat in the central region. Although n=L/Av~~~
is a convenient parameter for the formal asymptotic
expansion of P~(P, n), it is a somewhat unphysical
length parameter since it depends on T. A more
natural and conventional choice, which will be
employed below, is

R~, o(x}=Q {(r +x) in[1+ (x/r )]-rQ
yw 1

(a. is)
A, p~p=(T/T~) ~ Fslq($) —2a(T/T, ) Fm(p)/1+O(l ),

(s. 1)

Tables and analytic and asymptotic expansions for
the general remnant function R„(x}have recently
been obtained. "

For hard-wall boundary conditions, there are
again two similar regimes of distinct asymptotic
behavior. In this case (2. 6) may be written, using
(2.9), as

1/2 2 1
PS(4&n) ~ F2 4+

4 2 4 2 ' (2. 1,9)S 4n 4n

where the subscript c denotes a quantity evaluated
at T= T~ and, for convenience, we have written

a = [g(I-'.)]"'=i. SVV 24V. . . (3.2)

(3 3)

From the definition (2.7) we find

The reduced chemical potential Q is determined by
the density constraint (2. 2), which may be written

For constant P&0, i.e. , fixed T& T~ we may, to
order n ', neglect the small term 4 n in the
argument of I ~. On converting the sum to an in-
tegral, for large n we then obtain

d
d, F.(.) =-F. ,( ),

so that in (3.1) Q is determined by

(3.4)

+ O(n~),

where, utilizing the remnant function again,

(a. as)

H,'(x) = & R3,0(4x —1) + (x ——.
'

) in(4v)+ g(S)/sv'

(2. 22}

These results suffice for discussing the specific
heat of a thick film. In Sec. III we derive, from
(2.20}, an expression for the surface specific heat,
while in Sec. IV, (2. 16}and (2. 21}will be used to
establish the scaling representation for the specific

PI(P, n) =F5 1q(Q) —~g Fm(g)/nv + O(n ) . (2. 20)

Note the occurrence of a definite surface contribu-
tion of order n '. However, as emphasized by
Fisher such an expansion is valid only away from
T,. In the critical region, specified again via
(2. 15), it must break down, and we find7 instead

PI(x/n, n) =g(22 ) —v I /12n+ (~ —x)g(1~ }/n

+v ' (x ——,) In /nn +v'"H, (x)/n

A~P = (T/T, ) ~ Fs(q($) —2 a(T/T~)Fg(P)/l+ O(l )

(s. 5}

The remaining thermodynamic quantities follow

by the standard relations. In particular, the

entropy density is given by

eZ', Z e
(s.6)

where we should note that all derivatives are to be
taken at constant L or, by (2. 23), constant l,
while P = —P(p —eo) and eo depends only on L.
Hence on differentiating (3.1), we find

A, S/ks ——2(T/T, ) [5F~I~(p)+ 2QF~II(y)]

—a(r/r. ) [F,(y)+-.' yF, (4)]/I+ o(l-') .
(s.v}

It is convenient at this stage to write
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4'=4'o+0' ~ (s.8)

F, =F,((t(o) (3.12)

The first term in (3.11) represents simply the
entropy density of a bulk three-dimensional ideal
Bose fluid. The second term yields the surface
entropy density, which we write explicitly as

S"(T)/ks = g (a/A, )(T/To)Q(go), (3.13)

where, recalling that there are two free surfaces,

(S.14)A((f(o) = 3(Fs1sFf /2Fg1 s) —2Fs

and a is defined in (3.2). The surface specific
heat is now given by

which, by (3.13), yields

A'.C",/k, = .' a(T/T, )Z(y, )-,

z (( g) = ((((,) ~ (('((,) 1'(
p

(3.15)

(3.16)

(S.17)

where the prime denotes differentiation. For
T& T„the definition (3.9) yields

T = 3Fsf s /2F, Is
84o
8 p

(3.18)

and hence, using (3.17), we obtain the explicit re-
sult

T'((l(o}= 9(Fsjs /2Fxl s) l(F&

F-&Is�

/Figs} -Fo]

—2Fs+ 9(Esf s Fg /4Fgl s), T & T,
(s. 19)

goshen $o- 0, i.e. , T- T, +, we have"' "
F.(y.)-S(o),

where ((((o is determined by the bulk constraint

A'. p =(T/T,)"'F„.(y, ) =g(I-.') . (s.9)

On substituting (3.8) in (3.5) and expanding about

Po& which is positive for T & T~ we find

(t('= —s al (To/T) I F~(go)/Fels(go)+O(l ) . (3.10)

Similarly we may expand (3.7} about Qo to obtain

A, S/ks = s (T/T, ) (5F,Is+ 2goFs(s)

—a(T/To)l [Fs —4 (Fs/sF1 /F 11s)]+ O(l )

(3. 11)

where we have adopted the convention'

Hence for small (f(o the behavior is

& (((((o) = —9[1'(1-,')] (info)/8w+ O(1}

while from (3.18) we find

(f(o= 9f /16w (T- T, +),

(3.21)

(3.22)

Qo=-0 for T&T, .
It follows that (S.17) and (3.14) reduce to

Z(0) =II(0) =-2g(2) =--,'w',

(s.24)

(s.25)

which, on substitution in (3.16), yields the rather
simple result

C"„(T)/Pks= —Is w [f(12)] (T/To), T T,

(s. 26)

Note that in this case the surface specific heat is
negative and approaches a constant as T- T,—.
This result and (S.16) with (3.19) provide expres-
sions for Cv(T) valid at all temperatures. The be-
havior is plotted for 0 4 T/T, ~ 2. 5 in Fig. 1,
where, for comparison, the bulk specific heat
C„(T)=C„(T,~) is also shown. '

This completes our analysis of the surface or
wall specific heat for a three-dimensional ideal
Bose fluid. If we had considered a film with peri-
odic boundary conditions no surface or 1/l con-
tributions would have been found. Rather, from
(2. 14) the correction terms to the bulk behavior
would decay exponentially with I, [see also (4. 70)
below].

IV. SPECIFIC HEAT IN CRITICAL REGION

We now discuss the behavior of the specific heat
C'„(T,l) for a film of thickness L (= lp 'ls), in the
critical region. In this regime the grand potential
is given in terms of the scaled variable x (= pns),
by (2. 16) and (2. 21). On introducing (2. 28) these
results may be written for periodic conditions
(7 =0) as

t being defined in (1.7). It follows that the surface
specific heat diverges logarithmically according
to

C"„(T)/pkz= (9/16w)[g(ls)) 1n(t }+0(1) . (3 23)

Furthermore, since the prefactor is positive the
total heat capacity of a finite-thickness film will be
enhanced over the corresponding bulk heat capac-
ity. As noted in Sec. I this effect might have been
anticipated from the numerical results of Goble
and Trainor. '

To obtain an expression fcr C"„(T}beneath the
transition, we recall [see (2.4}]that

Fg((It'o) = —In(Po+ O((f'o)

F,(y,) = r(1 —
& )y,'-'+ O(1),

(s. 20) A P~P =f(2s)(T/To} —xwa (T/T~) l

+ waHs(s)w( T/T)l~ +O(l ) (4. 1)
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and for hard-wall conditions (v =1}as

I'. tt.P = C(2 ')(T-/T.)"*- 't;(-2)a(T/T. )'I '

+ (-.'-x)a'v(T/T. }"'t-'

+va (x —~)(T/T, )t [lnl+-, 1n(t/va )]
+«'e,'(x)(T/T, )t '+ O(l ) . (4.2)

The thermodynamic properties again follow by the
standard relations. %'e consider the periodic
case first as it is si.mpler.

correct to order E~; this yieMs

x = w, [e —x«1 (-.')/t]+ O(t~),
in place of (4. 10). Iterating this relation gives

x = W, (e) —«1 (-.')W, (e)W,'(e)/l+ O(t ), (4. 12)

where from (4. 11),

(e) = —
I
w (8) = v-'(I+4e") 'I'si~ '(-'ee/a)

ue&
2

(4. 14)

A. Periodic Boundary Conditions

From (4. 1) the entropy density

=( ).=( ).
is given by

{4.s)

On substituting this expression in (4.4), differen-
tiating with respect to T, and noting that

7+~~) =-'* a4([a+ (i'/i'. )"Ij(r/r, ) 4, (4. (ri)
(cfT

we finally obtain

J'.~/&, = .'t:(2.')(-T/T,-)"' ,'««'- (T—/T,)"'t
+«a'H, (x)t '+O(l ) (4. 4)

To obtain the specific heat under the constraint of
constant density we require the temperature de-
pendence of x which follows from (2. 2), which now

becomes

p = —(t'/«')(TIT, )
8

sx /I

(4. 6)

On differentiating (4. 1) this may be written

A', p = a' = a'(T/T, )"' a(T/T, )l '-4,"(x)+ O(l '},
(4.6)

where, by using'

—„Z,,,( )x= ,t„t()x= l[nis~(»'I) »/'"], (4. V)
d

we find

r~(8 t) ~a vt- I (2+PI )W(8) (4. 17)

r~z(8, t) = —4a vt'I Wo(8)+~ a vt (2+t I )Wo(8)

+-'. aVg(-.')t '(2+ t'")(W, (e)W,"(e)

+ [w,'(e)Q,
(4. iS}

where, from (4. 14) we have

w,"(e)=-.' v"(1+4e")-'

+2« e (1+4e ) ~/~sinh"~{2 e~ ~) . (4. 19)

C'„(T,t)/pn, = [161(2-.')/41 (I-.')](T/T.)'I'

+ r', (e, T/T, )/t+ r', (e, T/T, )/t'+ o(t-'},
(4. 16)

where

4,"(x) = (—)a, (x) = i (n[R sinh(wx'i') j . (4.6)
Before discussing the physical significance of
these results we derive the analagous expressions
for hard-wall conditions.

It is convenient to introduce the reduced tempera-
ture variable B. Hard-7411 Boundary Conditions

8 =ta'[{T/T )"'-(T/T )-'] .

then combining (4.6) and (4. 6) yields

with

Wo(8) = v [sinh '(—,
' ee/')]'.

{4.9)

(4. 10)

{4.11)

Proceeding as in Sec. IVA, we obtain the entropy
from (4.2) and (4.S), as

a', S/X, = -,'1 (2-'. )(T/T,}"'- a1 (2)(T/T, )t '

+ ,' (,' x)va'(T/T.—P-"—I-'

+ «(» ——,')l [lnl+ 2+ —,'in(t/«)]

Note that while (4. 1) determines the entropy (4.4),
as a function of x correct to order t~, the density
constraint (4. 10) is valid only to order l '. Hence
when we eliminate g in favor of 8, the resulting
expression for the entropy will be correct only to
order E . The analysis of Ref. 7 may be extended
easily, however, to give the density constraint

+a «H~(«}t 3+O(t~} (4. 20)

The density constraint (4.5) now takes the form

as(T/T }s/8

—a(T/T, )l [lnl + 2 ln(T/T, ) —~ in(«)
+II~ (x)]+O(t~}, {4.21}
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where from (2. 22) and (4. 8),

de 2 sinhav(x — )
(4.22)

We now introduce the shifted temperature vari-
able

8 = 8 ——,ln(T/T, ) —ln(4lv I3/a) (4. as)

where 8 is still defined as in (4. 9). The density
constraint, (4. 21), can then be written

)(s'nba'(x ——')'
( )av(x -')"' (4. 24}

Finally, this expression may be inverted to give

x = 4+ W|(8) + O(l ) (4. 25)

where the function Wz(8) is defined parametrically

with, as before, u=u(8) determined by (4. 26).
C. Specific-Heat Maximum

We see from the results (4. 16) and (4. 30), that
the specific heat is, as expected, analytic near T,
for finite l; in particular, 8C„/BTis continuous.
However, the specific heat attains a rounded
maximum of value C'~(l), at a temperature T'(l).
Furthermore, T„'(l)approaches T, as 1-~ so
that one might consider T' as a "quasicritical
temperature. "

Although C', (T, l) is given correctly to order l
by (4. 15) and (4. 30), it is convenient and (as we
shall see) sufficient for studying the maximum to
truncate these expressions at order l ~. By dif-
ferentiation the temperature of the maximum,
Z„(l),is then determined by

15[1+2(T,/T„') I ] =v[1'(1—')]'W,"(8)+O(l ')
W|(8)=u/4vs, 8=in(sinhu/u} . (4. 26)

(4. 35)
As in the periodic case, the basic analysis' may be
extended to yield the terms of order l; we find

x=g+ Wi(8) —«f(g)(T/T, ) I
Wg( 8)W[( 8) /1 +O(l )

(4. 2V)

where, from (4.9) and (4.23),

8=a l[(T'/T } -(T'/T ) ]
—~ ln[4lx' '(T„'/T,)' '/a], (4. s6)

with v=0 or 1. These coupled equations may be
solved numerically for T' as a function of l. The
results are shown graphically in Fig. 2. For
large l we can write

(4. sv)Z„/T,= 1+e„'(1),
with a' «1. On substituting in (4. 35) and (4.36),
and expanding to linear order in a', we find this
quasicritical-point shift to be given by

4

e4(l}=sa l '[8„'+iln(4lx't ja)]+O(l ), (4.38)

(4.29)
On substituting (4. 2V) in (4. 20) and differentiating
with respect to T we finally obtain the specific
heat as

4

where 8'„is determined by

W,
' (8') =I.v '[f(1—)] =0.029 VSV. . . . (4.39)

C„(T,l)/phs = [15$(2~) Qj'(1 )2](T /T ) I

+r (8, T/T )/l+r (8, T/T )(lnl)/l

+ r~(8, t)/l + O(l ), (4. 30)
where the auxiliary functions are defined by

r,'(8, t) = ,' v'a-'t ,' a'x-t--'I'(2+ t'—t'—}W,'(e), (4.Sl)

r,'(e, t) = ,' «'t-~(2-+ t"') w,
' (8), (4. s2)

r,'(e, t) = —,' a'vt"'w, (e)—
+ —,

' « t '(2+ t ) [1+28+in(16vt/a )]W[(8)

+ -'. aVt (-;)t-'(2+ t'")(w, (e)w,"(e)

+ [w,'(e)]'j, (4. ss)

Solving this equation numerically gives

e'. =1.3080... , 8'=-1.8112... , (4.4o)

so that finally,

a'(l) = (T' —T,)/T,
=a /l+O(l ) (.=o)

=a„(lnl)/1+b'/l+0(l ) (v=1), (4.41)

where
4

a =&a 8 =0.4597. .. (4.4a)
where, from (4. 28), we have

W['(8) =km (ucosech u+cothu —2u ')(cothu -u ') ' (4. 43)a = 3a =0.3515...
b' = -', a [8„+1n(4s II/a)]

where, from (4. 26),

Wz(8) = a w u(cothu-u )
' (4. 28)

with u=u(8) determined as in (4. 26). Now from
the definition (4. 23) we have

T (de/dT) = —a l[a+(T/T, ) t2](T/T )
3 — (T/T )—

(4. 34} = —0.0607. .. (4.44)
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These asymptotic results have also been ob-
tained recently by Pathria following a different
route. The variation of T„'(I)with l, predicted by
(4.41), is shown as the dashed curves in Fig. 2.
Evidently, it departs significantly from the more
accurate solution of (4. 31) for I ~ 60 (which at a
density of 2.Ox 10~ particles/cms corresponds to
L=200A). However, for hard walls (v=1), the
solution of (4. 35) is in extremely good agreement,
even for relatively small values of l, with the
numerical calculations of Goble and Trainor, '
which are represented by the bars in Fig. 2.

A more subtle test of the convergence of the
asymptotic results is provided by the variation of
the maximum

C' (I)=C'„(Z., I). (4. 45)

Under hard-wall conditions Goble and Trainor ' 0

found that C (I) increased with increasing I until
an absolute maximum of

C ~ /pks = C ~= 1.970 + 2

was reached at

5 =l*=1V.5+1.5

(4.46)

(4.47)

For l & l* the maximum declines slowly towards
C„(T,); for all l~6, however, C'~ lies above
C„,= C„(T,). It is illuminating to compare this ob-

served numerical behavior with the asymptotic
results, (4. 30), truncated at various orders .The
simplest approximation is to truncate (4. 30) at
order I ', substitute with (4. SV), and expand to
linear order in the effective shift e„.Using (4.41)
and (4.40), which gives Wf(8') =0. 3291, we find

C ~(l) = C«[1+cf(lnf)/I+ c,/I]+ O(l~}

where C«= Cv(T,) and

c,*=a '=0. 5273. . .

(4.48)

(4.49)

c, =a ~ln(4v /n)+I'~(8„', 1) = —1.2849 (4. 50)

or

l=l*=31 . (4.52)
Significant improvement is obtained if one still
truncates (4.30} at order I ', but now substitutes
for T„'(I)using the full solution of (4.35) and
(4. 36). The results are represented by the dot-

This result, which confirms that found by Pathria, "
is represented by the dashed line (for r = 1) in Fig.
3. The qualitative agreement with the numerical
data of Goble and Trainor is satisfactory but the
quantitative agreement is poor; for example,
(4.48) predicts an absolute maximum of

C~~ = 1.9584 (4. 51)

(1y I I I

Tm(&) —1 x 100
T

[0
ll

8-l '

l

l

=1 hard wall conditions
= 0 periodic boundary

conditions

0
0

I

20
I I I l I

40 60 80 iooi 120
reduced thickness 4 = Lp&

l40 160
I

180 200

FIG. 2. Variation of the temperature T~~(l) of the specific-heat maximum for a film with hard wall (&= 1) and periodic
(v=0) boundary conditions. The solid curves represent the solutions of (4.35), while the dashed curves represent the
asymptotic expansions (4.41). The bars (I) denote values of T (l) obtained from the numerical calculations of Goble
and Trainor (Refs. 9 and 10); the error bars indicate their quoted uncertainty of + 0.1%.
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dash curve in Fig. 3 and yield the improved es-
timates

C~~ —1.9626 + 3

i*=27 .
(4. 53)

(4. 54)

To obtain higher accuracy one must retain terms
of order l~ in (4. 30). In order to be fully consis-
tent to this order, one should recalculate T„(2)
from (4. 35) including these extra terms. How-
ever, in view of the close agreement of the solu-
tion of (4. 35) (which is exact to order I ) with the
numerical calculations (see Fig. 2), the resulting
changes in T (l) will be small. Accordingly, one
should be able to obtain a good estimate of C ~(f)
by substituting the solution of (4.36) into the ex-
plicit terms in (4. 30). The resulting prediction
is shown by the solid line (r =1) in Fig. 3. The
agreement is remarkably good: in particular, we
obtain

C ~ —1.9675+2

l =i*=20,
(4. 55)

(4. 56)

which compare well with the numerical estimates
(4.46) and (4.47). The residual differences can
probably be reduced by recalculating T' (I) to order

l~. However, one should also note that for
l ~ 100, where all three asymptotic predictions es-
sentially coincide, the numerical data appear to
deviate significantly. This probably indicates that
the uncertainties in the numerical estimates are
somewhat greater than the + 0. 1% quoted by Goble
and Trainor.

A similar discussion is possible for periodic
boundary conditions. The corresponding results
are included in Fig. 3 (x=0). The variation is
less dramatic, and for l ~ 30, well represented by

C' (I}=C„,[I+c,jt+O(f-')] (4. 57)

c = n ()„—[3va'/5t;(2 —,')]W'(8„)= —0.1025. (4. 58)

This is the analog of (4.48), being obtained by
truncating (4. 16) at order I t and expanding to first
order in the shift s„(l).Since ca is negative, the
specific-heat maximum for a film with periodic
boundary conditions increases as / increases and
always lies beneath the bulk value (see Fig. 3).

It is important to realize, as already noted by
Krueger and Pathria, ' the absence in the periodic
case, of any enhancement, or length l*, such as
found with hard walls. Goble and Trainor did not

1.98

1.96—

c,„(s)
P~e

Cv(T )/Pks

(.92 —
i

1.90—

20 40
I I I I I

60 80 )00 120 3 140
reduced thickness S = Lps

)60
I I

180 200

FIG. 3. Variation of the specific-heat maximum C~~(l) of the specific heat of an ideal Bose film with hard-vrall. (r =1)
and periodic (v'= 0) boundary conditions. The dashed curves represent the asymptotic results (4.48) and (4.57); the dot-
dash curves are derived from (4.16) and (4.30), truncated at order l ~, together with T~~(l) determined by solving the
first-order equations (4.35) and (4.36); the solid curves represent the full secondmrder expressions for Cz~(T, l), (4.16)
and (4.30), evaluated with T~~(f) again determined by(4. 36) and (4.36). The bars indicate values of C~~Q) obtained from
the numerical calculations of Goble and Trainor (Refs. 9 and 10).
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consider periodic boundary conditions: Had they
done so they might not have made the rather
cd hoc conjecture that the enhancement was a con-
sequence of "a new statistical correlation length of
about VD A" which distinguishes between "thick"-
and "thin"-film behavior. Rather the anomalous
behavior, which is connected to the unexpected
sign of the surface specific heat noted in Sec. III,
presumably has the same origin as the enhance-
ment of the critical temperature, which occurs in
both ideal Bose fluids and the spherical model for
d 4. '~ Elsewhere ' ' we have argued that these
anomalous features of the behavior of ideal Bose
and spherical models are an indirect consequence
of the constraints on the particle density (in the
ideal Bose fluid) and on the mean-square spin
magnitude (in the spherical model). These con-
straints must be imposed for all thicknesses and
lead to an enhancement of the off-diagonal (short-
range) order and specific heat. However, the
presence of hard walls at fixed chemical potential
tends to depress the specific heat through the dis-
ordering effect as the wave function goes to zero
at the boundaries. In a very thin film this latter
effect should dominate while the first effect be-
comes important in thicker films. Ultimately,
however, the enhanced maximum must decrease to
the bulk critical value. The value L*= /*p then
corresponds merely to the thickness at which there
is an optimum balance between the effects. While
in this particular sense, l* does distinguish be-
tween "thick" and "thin" films it is hard to believe
that any special significance attaches to this
length. On the contrary, the range of correlation

((p, T) of the off-diagonal order does provide a
basic length scale as will become clear in Sec.
IVD where the scaling properties are established.
Last, it should be stressed that the marked
specific-heat enhancement in the films with hard
walls seems to be a rather special feature of
ideal Bose fluids which is not likely to be repro-
duced in more realistic systems.

8= —,'a if+0(/P) (4. 59)

Then the basic result (4.16) for periodic boundary
conditions may be truncated at order l and ex-
pressed to leading order as

C„(T,f) = C„,[1 l+X (ft) + O(l~) ] (4.60)

which is valid for all z=lt as E ~ or t 0. From
(4. 17) and (4. 14) the scaling function may be given
explicitly as

X'(z) = -', z —b(1+ 4e ) '~' sinh '(-', e"I')
with

a= ~(y =2.845214. . .
b=3n /5'(2 ,') =1.3—38128.. .

(4.61)

(4. 62)

(4. 63)

For hard-wall conditions the basic expression
(4. 30) may similarly be truncated at order l ~.

D. Scaling Representation

To establish a scaling representation, we recall
from Sec. I that scaling is expected to apply
asymptotically when l»1, and t=(T- T,)/T, «1.
In terms of t, the scaled temperature variable
introduced in (4. 9), which is essentially L/$(T),
becomes

X (z)

FIG. 4. Scaling func-
tions 2P(g) for the spec-
ific heat of a bvo-dimen-
sional Bose film with::

,
hard-wall (v =1) and
periodic (v =0) boundary
conditions.



li34 M. N. BARBE R AND M. E . FISHE R

However, to obtain a scaled form we must now in-
troduce a shifted temperature deviation

t=t--,'n l In(4lw I /a) (4.64)

in which case (4.23) becomes
4 ~

8 = —,
' azlt+ O(lt'} (4.65}

The expression (4. 30) may then be written in the
more complex scaled form

C„(T,l) = C„,[1+a zl ' In(4lv z/a)

+l-'x'(lt}+o(l )] . (4.66)

On introducing (4.31), (4. 28), and (4. 26) the scal-
ing function X (z) may be written parametrically
as

X (z }= g z —c —2 bu (u cothu —1}

z =a 'ln(sinhu/u},

where

(4. sv)

X'(z) =-,'z+O(e '"), Z

= —,'(3 —ab)z+O(e '), z-+~
Substituting these results in (4. 60}yields

(4. 68)

C'„(T,l)/C„,= I+ 2t+O(e ""), - l ~, T&T

=I+~(3-ab)t+O(e "), l-~, T&T,

(4.vo)

From this one easily recovers (1.3). Note the
exponentially fast approach to the limiting be-
havior ' ' alluded to at the end of Sec. III.

For hard-wall boundary conditions the analysis
is similar. The asymptotic behavior of X (z)

c"=2v (&a) I /45/(2&) =0.450341. . . , (4.68)

and a and b are given in (4.62) and (4.63). The
scaling functions X'(z), which are always negative,
are shown graphically in Fig. 4. Somewhat para-
doxically, the scaling function for hard-wall condi-
tions exhibits a maximum below z = 0, i.e. , for
t& 0, even though the specific-heat maximum lies
above T,. This arises, of course, because of the
logarithmic shift" in (4. 64) which dominates the
relation between t and t for large l.

Finally, it remains to check that these scaling
forms, (4. 60) and (4.66), reproduce the bulk be-
havior, (1.3), in the limit l ~, with T fixed near
T,. From the relation z =lt, we see that the limit
l-, with t fixed corresponds to

(i) z -—~ if t & 0,
(ii) z-+~ if t&0

in the scaling functions X'(z). For periodic
boundary conditions, we immediately obtain from
(4.61) the asymptotic forms

X'(z) =-', z -c"+O(e ") as z-~ (4.v2)

The leading terms in these expansions of X'(z} are
identical to those for X (z); hence the bulk be-
havior, (1.3}, is again reproduced. With hard
walls, however, the corrections far t fixed are,
as expected, of order l '. Furthermore, on re-
calling the definition (1.9) of the surface specific
heat C"„(T),we see that (4. Vl) and (4. V2) imply

C"„(T)/C„,= —-', c" as T T~-
=-', bin(t ')+O(1) as T- T, +, (4. 73)

where c" is defined in (4.68) and b in (4.63). It is
easily checked with the aid of (1.1), (3.2), and
(4.62} that these asymptotic results are the same
as those obtained directly from the evaluation of
the surface specific-heat in Sec. III [see (3.23}
and (3.26)]. Thus the scaling formulation de-
scribes correctly not only the bulk critical be-
havior, but also the surface terms.

E. Conclusions

This completes our analysis of the specific heat
of an ideal Bose film. It seems overly optimistic
to expect such an idealized model to be applicable
in any detail to films of real helium, as has been
suggested in the past by several authors. In
particular, the simple product z=lt, correspond-
ing to v =1 in (1.4), is unlikely to provide the cor-
rect scaling variable, nor is the shift in the (quasi)
critical point likely to vary as (lnl}/l as we have
found for the ideal fluid. What is significant,
however, is the rather complete verification pro-
vided by the ideal system of the predictions of the
scaling theory of finite-size effects. s'~ It is this
general theory that one would hope might be ap-
plicable to the behavior of real helium films. In-
deed, some data already exist which are not
inconsistent '~ with scaling. A future experi-
mental priority should be accurate measurements
whi~h will allow a more detailed evaluation of the
scaling theory for real systems, and, in particular,
lead to estimates of the true exponent v for the
correlation length and the exponent X for the shift
in critical (or quasicritical) point. ~'4
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