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The ordered state of a d-dimensional isotropic system with an n-vector (n & 2) order parameter is

considered. By the imposition of suitable boundary conditions it is shown how to define exphcitly a
helicity modulus T(T) which measures the free-energy increment associated with "twisting" the
direction of the order parameter. For a Bose system the superfluid density is seen tq be

p,(T) = (m/g )~T(T). A. critical exponent u is defined by 'p(T) IT- T, lu as T + T, ; for an

ideal Bose gas and spherical model (n ~ oo), u = 1 is an exact result for all d ~ 2. The difficulties of
defining a correlation length in the ordered phase are discussed. A full scaling theory of the
correlations avoids these problems and may be linked to a phenomenological hydrodynamic approach, to
clarify and rederive Josephson's relation v = 2P —gv =2 —n —2v. This reduces to & = (d —2)v
(used by some authors with d = 3), only if one accepts d-dependent, "hyperscaling" relations such as
d v = 2 —a; however, both these latter relations fail for the ideal Bose gas when d & 4. An

alternative derivation of the formula u = 2 —a —2v is based on the scaling theory for systems with a
large but finite dimension.

I. INTRODUCTION

Recent advances in the theory of phase transi-
tions and critical phenomena have indicated the
crucial role played by the symmetry of the ordered
phase. ' A mell-known example is that a two-di-
mensional Ising model possesses a critical point,
below which long-range order and spontaneous
magnetization exist, whereas a two-dimensional
Heisenberg model cannot display such spontaneous
magnetization or long-range order at any nonzero
temperature. In the first case, the order param-
eter is scalar, while in the second, the ordered
phase exhibits a rotational symmetry (the order
parameter being a three-component vector). Even
in three-dimensional space, where both models ex-
hibit a phase transition, the behavior depends sig-
nificantly on the symmetry. This is especially so
beneath the critical temperature.

In systems, like the Heisenberg model, which
possess a vectox' order paxameter 4, a uniform or
homogeneous thermodynamic phase is character.
ized by both the magnitude 4 = I 4 ) ggd direction
or (especially in the case of a two-component vec-
tor) phase awgle of O'. We use an underline to
stress the general vector character, since the
space in which 4' resides need not be the normal d-
dimensional geometrical space, which the system
eccupies. Thus in the case of a ferromagnet with
S'= M {the magnetization) the iwo spaces do coin-

cide, ~ but in the important example of a quantal su-
perfluid4'Cr) is the field operator normally denoted
|t(~)= g (F)+if '(r). This is usually regarded as a
complex number (or operator) but from our view-
point it is a two vector in a completely independent
"gauge" space.

This vector character of the order parameter is
normally reflected in an exact continuous symmetry
of the Hamilt:onian & (on the phase boundary)
which we then say describes an iso' opia system.
Thus, in the ease of an isotropie ferromagnet 3C is
invariant to spatial rotations of all the spins: In a
quantal system the relevant isotxopy is the gauge
symmetry, i.e. , invaxiance under the operation
y(r) ~e"y(r).

The basic ideas and concepts of the general the-
ory of critical phenomena are, of course, applica-
ble to the study of isotropic systems. However, in
the ordered phase, several conceptual problems
arise. For example, the isotropy implies that
there is a continuous infinity of ordered phases.
Furthermore, any two distinct phases may differ
only infinitesimally from one another (via an infini-
tesimal difference of phase angle). Consequently,
in the ordered phase, the decay of correlations is
not exponentially fast; this results in an inapplica-
bility of the usual moment-based definitions of a
correlation length. 3 5

In this paper we will discuss several aspects of
the eritieal behavior of isotropie systems eoncen-
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trating attention on the ordered phase. In partic-
ular, we will introduce the general concept of a
helicity modulus T(T}and analyze its role and crit-
ica,l behavior. On the one hand, the helicity modu-
lus may be considered as the analogy, for an iso-
tropic system, of the surface tension or interfacial
free energy betmeen tmo phases, which do differ
discretely, e.g. , the "uy" and "down" states in an
Ising magnet. More fundamentally, however, T(T}
is a measure of the response of the system to a
suitable helical or "phase-twisting" field. In addi-
tion, it may be used to define a pka8e coherence
leggy. This length, '.

,which generally diverges at the
critical point, may to some extent play the role of
a correlation length in the ordered phase.

Finally, for a Bose fluid, the helicity modulus is
simply related to the superfluid density p, (T) and,
indeed, provides a general, fully equilibrium def-
inition of p, (T). This definition of p, (T), perhaps
surprisingly, indicates that the superfluid density
is not solely a bulk property of the system, but may
rather be considered as "beyond the bulk" in the
same sense that the surface tension is not normally
regarded as a bulk property.

Our arguments are arranged as follows. In Sec.
II we formally define the helicity modulus, and dis-
cuss its relation to the superfhud density. The re-
sults of two exact model calculations are also re-
ported. In Sec. III we briefly discuss the problem
of the decay of order in an isotropic system and
consider the question of the definition of a correla-
tion length in the ordered phase. Section IV con-
tains a more detailed scaling analysis of the criti-
cal behavior of an isotropic system. Following the
important work of Josephson, this analysis alloms
a definite yrediction to be made for the behavior of
T(T) near T,. The analysis, which can be fruit-
fully compared with Widom's discussion of the in-
terfacial, or surface, tension is reviemed in Sec.
V. Since the helicity modulus is a "beyond-the-
bulk" property, an alternative derivationof its crit-
ical behavior may be obtained from the scaling the-
ory~' of finite-size effects. These arguments are
presented in Sec. VI. Section VII contains a con-
cluding summary.

II. DEFIMYION OF HELICITY MODULUS

To define the helicity modulus, we consider an
isotropic system in a uniform cylindrical domain
Q, of length L(Q) and cross-sectional area' A(Q).
Normally, in order to stabilize a specific thermo-
dynamic phase characterized, as we noted earlier,
by a definite magnitude and phase angle for the or-
der parameter, 0;—(l&'Qr), we require some exter-
nal ordering field g which couples via a term
-f~t@(r)dr in the Hamiltonian. However, we may

alternatively introduce a set of mall potentials,
~e, which mill establish a definite phase angle"
8 for 4 even in the absence of any bulk ordering
field g. (We will assume, in view of the symme-
try, that on the phase boundary we have g= I, =0.}
Specifically, we will require symmetry-respecting
potentials on the side mails of the cylinder, Q,
but on the end walls we impose either VP, e or
~ e (with [el &—,'v). [We may imagine the wall
potentials as being generated by an infinitely
strong symmetry-breaking field I{r), which acts
only in a thin layer at the boundaries of Q.] The
(+, +) or (-, -) wall combinations will yield uni-
form bulk phases in which {4(r)) has a constant
(mean) phase angle independent of position. By
symmetry the total free energies mill satisfy, in
an obvious notation,

r(r; Q, W", ) = S(r; Q, W;-) . {2.I)

((vy)) = V-„'J [vq (r)]„dr = 2e/L, (Q). (2.2)

Nom by symmetry ~$ must be an even function of
u=((Vy)} and must vanish when u=0. On heuristic
grounds we hence expect aP ~ ((vy)} . Further-
more, me expect the gradient of y to induce a local
"strain" energy (or free energy) density so that the
total strain energy should be proportional to V(Q).
In summary me hence expect

nS(r, Q) = —,'T (r) ((vq)&' V(Q) = 2e'T(r)A(Q)/L, (Q),

(2.4)
where T(T) is a thermodynamic function which evi-
dently measures the "rigidity" of an isotropic sys-
tem under an imposed phase "twist. " The approxi-
mate proportionality of r 5 to ((vy)} should be-
come exact as ((Vq)) - 0; but for fixed 8 we see
from (2.8) that this corresponds to I(Q)- ~. Ac-
cordingly, from (2.4) and (2.2) an explicit formula

On the other hand, the mixed (+, -) wall potentials
must impose some sort of twist" on the system:
Presumably the direction of (Q(r)) will now vary in
a more or less uniform and continuous manner from
one end of 0 to the other. Let us consider the size
dependence of the resulting incremental free energy

n.S(T, Q}=r(r; Q, w, ,-) r(T; Q,—vv,"). (2.2)

When the cross-section area A(Q} is large, we can
expect approximate transverse translational sym-
metry so that n,F will become proportional to A(Q).
The length dependence of gF is, however, more
subtle. We can define the mean phase angle y(r)
of (4'(r)) explicitly since the expectation (4') is sim-
ply a classical vector whatever the microscopic
density or operator Cr(r) may be; the average gradi
ent of y(r) is then parallel to the axis of Q and equal
to
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y(r) = e'f ~y,(r),
which has a "twisting" phase angle

q&r) =q ~ r with vy=q,

(2.6)

(2. V)

describes a wave packet moving with velocity

v, = Ql p/m }y) = —iol/m) f y*(r)vy(r) dr

= (5/m)q = OI/m) ((v(p)) . (2.8)

Thus, in a superfluid the increment gF represents
the additional free energy of the superf low, which

may be written as a kinetic energy, viz. ,

ES = gp, (T)vaV(Q), (2.9)

where p, (T) is the superftuid density as normally
defined phenomenologically. ~1 By comparison we
see that

p, (T) = (m/}I}'T (T) . (2. 1O)

Thus in distinction to most previous treatments, ' '

we have constructed a microscopic definition of

p,(T), which requires only the calculation of the
standard partition function of a system under spec-
ified boundary conditions. Other definitions, in
terms of particular correlation functions, add to
one's insight and ean be advantageous, even
though, in principle, they call for the calculation
of more detailed properties of the system. Qn

the other hand, some definitions have involved the
construction of special ensembles (of "fixed"
superfluid velocity, etc.) which seem difficult
to define explicitly in purely microscopic statisti-
cal mechanical terms.

It must, however, be stressed that the existence
of a nonvanishing p, (T}, as we have defined it here,
does not ensure the stability of a macroscopic state
of superf low with finite superfluid velocity v, [of or-
der (5/ma), where a is a microscopic length]. In-
deed, our definition, in effect, entails the limit g,
-0. Of course, quite generally, a pure equi1ibrium
calculation, as involved in (2. 5), can say nothing
about the dynamical stability or, rather metastabil-
ity, ' of a state of finite superf low (or finite heli-
city). When the order parameter 4(r) is a two-com-

for this "helieity modulus" is

T(T) = lim [L,(fl}/2e'A(fl)][S(T fl ~'-)
—S(T;a, 'u',")]. (2. 5}

Note that this definition is phrased entirely in terms
of well-defined equilibrium free energies. For a
Bose superfluid one may now identify (0/m)((p y)),
where m is the particle mass, as v, the velocity of
superflom. This identification is, as usual, a di-
rect consequence of wave mechanics: If $0(r) is a
real normalized single-particle wave function, the
wave function

ponent vector (n=2), as for superfluid helium, it is
certainly plausible that a state with an imposed fi-
nite twist per unit length, i.e. , b,8a: I,(A), will be
strongly metastable, since there is no continuous
way for it to "untwist" unless the magnitude of
(4(R}goes to zero at some point. But this repre-
sents a large deviation from local equilibrium,
corresponding essentially to the incipient nucleation
of a vortex ring, 14 and hence shouldbe very improb-
able. The stability of superf low on experimental
time scales can thus be established only by time-
dependent calculations which estimate the rate of
such fluctuations and their effectiveness in "un-
twisting" the order parameter.

Qn the other hand, by considering the topology
of a sphere (in contrast to that of a circle) one soon
sees" that a three-component (n = 3) order param-
eter (4 (r)) can reduce its over-all helicity by con-
tinuous deformations (local changes of direction)
that leave the magnitude of (4) everywhere un-

changed. Thus even though (2. 5) provides a defini-
tion of the helicity modulus for this case, it seems
unlikely that a state of finite helicity in, say, a fully
isotropie ferromagnet would be dynamically stable
on any macroscopic time scale.

The basic approach we have taken here to define
the helicity modulus may also be applieds'8 to an
anisotropic system with a scalar (n = 1) order pa-
rameter. In that ca.se the boundary potentials 'N

cannot depend on a continuous angle 8 but can only
be of the form W, favoring an "up" or +phase, or
'N, favoring a "down" or —phase. The matching
end-wall conditions (+, +) and (-,-) then produce a
uniform system consisting of the +phase or the
—phase, respectively. On the other hand, the
(+, -) or (-, +) combination can no longer produce a
twist; rather, in these circumstances, the system
must develop a localized inhomogeneity, i.e. , an
interface, which separates the +phase at one end
of the cylinder 0 from the —phase at the other end.
The position of this interface will be essentially
arbitrary-it will fluctuate-but the incremental
free energy d 5 associated with the change ofbound-

ary conditions wiQ be constant and can be written~6

Z(T)A(A). This then provides an analagous defini-
tion of the interfacial free energy (per unit area} or
surface tensgon, namely,

Z(T)= Itm [A(&)]-'[S(T;fl,vv, ) ,'S(T;O,~„)--
y(Q), A(A)

—-',S(T; fl,m )] . (2. ll)
One might wonder if the possible presence of addi-
tional interfaces along the cylinder might not affect
this result. In principle, configurations with 3, 5,
7, ... interfaces are included in (2. 11), but in the
limit A(Q) - ~ such configurations are thermodynam-
ically highly improbable and so do not contribute.
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A similar remark applies to fluctuations in an iso-
tropic system which can produce extra twists of 2g
in addition to the imposed twist of 28.

In practice the definition (2. 5) may be difficult to
employ owing to the inhomogeneities inevitably in-
troduced by the presence of walls. An alterqative
approach~' considers the difference between the
free energy F'(T; A, L) of a system, in a domain,
0, with periodic (7' = 0) boundary conditions,

y(s, y, s) =@(s,y, s+L{G)), applied to the order
function and that of the same" system, but with
antiPsriodhc (v= s) boundary conditions along the
axis, i.e., e(s, y, s)=-e(s, y, s+L(tl)).

The periodic boundary conditions yield a uniform
system with no "bvist. " But the antiperiodic bound-
ary conditions effectively force a phase heist of
28 =+w over the length I.. Hence if we intxoduce the
over-all free energy densities,

F'(r L)= 0'(r tl L)/v(tl) (2. 12)

and first take the limit A(Q)- ~, we obtain the al-
ternative and usually more convenient definition,

T(r) =iim(2L'/2) [F"'(r J.)-F'(r L)] (2 12)
gm Wl

This prescription has, in fact, been used recent-
ly ' s' to calculate the helicity modulus for the
spherical model~ and for the ideal Bose gas. For
these models the periodic and antiperiodic boundary
conditions are applied, respectively, to the lattice
spins st and to the single-particle wave functions

g~(r) used to construct the underlying Fock space.
Both models were studied for general dimensional-
ity d. For d&2 there is a bulk critical tempera-
ture T, ~ and, as expected, T (T) is found to vanish
identically for all T & T, ~. Beneath T«, the heli-
city modulus for the spherical model on a hyper-
eubical lattice (spacing a) with nearest-neighbor
exchange (of strength J') is found to be~a

T(r) = (da'/m') [hf,(r)]',
=ra'fi- (r/r. „)] (r& r„,), (2. 14)

where Mo(T) is the spontaneous magnetization (per
spin) and m is the magnetic moment per spin. The
corresponding expression for the ideal Bose gas
lsl9

r(r) = h, rA' n,(r)/2s,
=p[i- (r/r. ,)"'] (r & r„,), (2. is)

where no(T) is the density of the condensate in the
bulk system, p is the over-all number density, and
A = (h /2smhsr) ~ is the thermal de Broglie wave-
length.

Both these exact model calculations yield T pro-
portional to [+ (T)], the square of the spontaneous
order. [For the ideal Bose system, (2. 10) reduces
simply to p, (r) = no(T). ] Although such a conclusion

is also suggested by a naive application of the
strain arguments leading to the general definition
of T(r), it is not justified in general. However,
the model calculations do correctly predict that
T(T) vanishes rather rapidly as T- T,. An appro-
priate exponent g may be defined through

T(r)-i(r- rp/r. i" as r- r, — . (2. 16)

From (2. 14) and (2. 15) we find, for the spherical
model and ideal Bose gas, that

u=2P=1. (2. iv)

The only experimentally measured value of p,
namely, in heliuml yields g ~-', . This value is
close to 2p if p =-', as is found in most other sys-
tems; for helium, however, koand hence P has so
far proved unobservable. A more definite and gen-
eral prediction for g is possible, however, on the
basis of the scaling theory developed in Sec. 1V.
Before considering this we digress somewhat to
discuss some related features of the behavior of
ordered isotroyic systems.

HI. DECAY OF ORDER IN ISOTROPIC SYSTEMS

It is clear from our derivation that, ina sense,
7{T)is the inverse of a susceptibility measuring a
response to a suitable helical or twisting fieM. By
standard arguments (see, e.g. , Refs. 2 and 5}
T(r) might then be related to the fluctuations of a
microscopic phase uariabte p(r) and to a corre-
sponding phase phase cor-relation function
g(r}p(r')). Such an explicit microscopic charac-
terization of 7 would be of both practical and
theoretical utility in the further stydy of isotropic
systems. However, a serious technical difficulty
for quantum-mechanical particle or spin systems
{which are of principal interest) is that it is dif-
ficult to give a completely satisfactory micro-
scopic definition of the phase operator p(r) or its
local gradient Vp(r). This problem has been dis-
cussed by many authors" ""and we mill not
enter further into it. %e will, however, discuss
a related problem concerning the decay of the
order-parameter correlations in an ordered
isotropic system.

First notes'ss that in the absence of a symmetry
breaking field, i.e. , for l pl =- g, = 0, we should have

limi'ss(r; T) = lim (4'(0) 4'(r))r~ lg

=T(-, r)=~+(r)~', (2. i)
in which i+el is the spontaneous order. On the
other hand, in the limit l gl - 0 we can define the
net order-order correlation function,

G(r; r) =I „(r,r)- r(, r) (1 =t.+) (2. 2)
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which, of course, describes the fluctuations of

4(r) about the mean value 4, which must be pre-
sumed to lie in a fixed direction (determined by f).
Now among the fluctuations in 4 {v) are those which
result in nothing more than a small rotation of
q (r) over some more or less extended spatial
region =. Because of the isotropy of the Hamilto-
nian such fluctuations will be very probable: In
the phenomenological language introduced above,
the incremental fluctuation free energy may be
written —,'T{{Vy))2sV(=}. On developing this picture
either phenomenlogically (as in Sec. IV} or by
microscopic calculations (see Refs. 11, 12, 22,
and 24) one is led to the conclusion that G(r;T)
decays to zero very slowly, explicitly, as

G(r, T)-I/&'-' (g- for T& T., d&2). (3.3)

[For d & 2 the fluctuations turn out to be so large as
to destroy the order altogether (see below). ] For
particular models one can, in fact, prove rigor-
ously an inequality of the form~'

C%, T) =c,s'-') ~'(T))'/u' Ws-c, ) (3.4)

where go and gz are dimensionless parameters pos-
sibly dependi@ on T. This supports (8.3) since it
proves that G(r, T) cannot decay any more rapidly
than I/s~~ whenever the spontaneous order I + 1

does not vanish. In addition, this inequality can be
used36 when d=2 to prove that I+el must all}eye
vanish, i.e. , spontaneous order cannot occur in a,

two-dimensional isotropi. c system.
The difficulty with {3.3) and (3.4) comes when we

attempt to define a finite correlation length $(T)
which will diverge at the critical point. Clearly,
the usual definitions of $ based on momentss'~3 of
G(r, T) fail, yielding $

=- ~ for all T «T, . A way
out of this dilemma has been suggested by Halperin
and Hohenberg. The idea is to make G(r) dimen-
sionless by normalizing it with I'(~) = )4'0( 3, and

then to fix the scale p,. of the asymptotic decay
by writing

G(r, T)=(4'('(&,„/~)" ~ ~--. (8. 5)

Nore generally this prescription may be written,
up to an arbitrary numerical factor, as

[g,„(T)]'-'=Iim G(r, T)dr/R')e'~'. (3.6)
8- «„ l~l&s

This definition of g~ is obviously special to the
case in hand and makes sense only if (8.8) is ri-
gorously correct {although it could be adapted to a
different but a priori known power law).

Alternatively, since from (2.4), T{T)has the di-
mensions of (energy)/(length)~ ~, we may evidently
define a "phase coherence length, "or "helicity
length" by

A' T'(T)=[usT/I'(T)]+'4 + (d&2) .

This clearly diverges to infinity as T- T„with by
definition an exponent

v'" =u/(d-2) (3.8)

u = (d —2)v {d& 2) . {8.10)

This is, in fact, one of the conclusions of the scal-
ing treatment of the superfluid given by Josephson
provided one accepts the d-dependent, two-expo-
nent or hyperscaling exponent relationsa'~' such
as

dp=2- a or 2- g=d(5- I)/(5+I) . (3. 11)

On the other hand, (3. 10) does not follow if these
relations fail. Vfe wQ1 now review Joseph-
son's arguments in a setting somewhat more gen-
eral than he originally employed.

IV. SCALING IN ISOTROPIC SYSTEMS

To explore further some of the questions raised
above we now develop a more detailed sealing
formulation. For simplicity we will restrict at-
tention to the n= 2 case where 4 = (4",4"') is a iwo-
component vector (or equivalently a complex num-

ber), as is relevant to superfiuidity in a Bose sys-
tem and to magnetic systems with planar isotropy
(XF systems) ~

First we note that in the presence of an ordering
field

&= &ni) (l=~lL&0), (4. 1)

we may unambiguously distinguish the longitudinal
and transverse (or parallel and perpendicular) com-
ponents

which we distinguish from the correlation length
exponent~ ~ v. (See further below. } Recalling the
identification of T with p, , we find for a real (d=3}
superfluid that

A'"(T) = (4',T!a')!p.(T) . (3.0)

This is essentially the definition of the 'correlation
length' adopted without discussion, by Ferrel
et al. ~s in their treatment of dynamic scaling.
Both the definitions (8.6) and (3.7), of an effective
correlation length in the ordered isotropic phase,
are distinctly different in character from the
standard definitions ' of g which, however, still
make sense as soon as the symmetry breaking
field f does not vanish. Hence we cannot, on
a priori grounds, reasonably expect that $(f, T),
defined for f 40, will approach $,~(T) or A~~'(T) in
a continuous fashion, even though G(r, i:, T) is it-
self presumably continuous through g = 0.

If, however, we insist on the identification of
A' '(T) with $(T), we may immediately conclude
that the helicity modulus exponent is given by
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'k,
i
= + ' n(i and 'kg= 4' ' n~ . (4.2)

G„(r, g, T)=D&(rltl";L/lfl ')/r'

for t=(T- TP/T, &0, (4. 5)

as f and t approach zero; a similar definition for
D&' with t & 0 applies. The exponents v, P, 5, and ())

are defined in the standard way. ~'5'~ The pair of

In the case where 4 (r) is considered to be a com-
plex (Iuantal field p(r), as for a Bose superfluid,
we can take g real and then

%)= Re& =-,'(0'+P), +,= imp = ,'i(-g' g-). (4. 5)

Correspondingly, the correlation function tensor
will have two nonzero (diagonal) components

G„(r, f, T) = (4'„(0))14,)(r)) G4(r 0 T) ((i44(5)+4,(B).
(4.4)

When f = 0 above T, we may conclude from the iso-
tropy of the Hamiltonian that

G ((r)( 0, T) —= G4(r, 0, T), (T & T,)
-e '"j'&/r" "~'as r-~, (4. 5)

where the second line is the expected asymptotic
Qrnstein-Zernike decay law. ~'~3 The two parts of
the correlation tensor should also be equal at the
critical point but there is no need for the two com-
ponents to agree below T, in the limit f- 0.
Indeed, various approximate arguments suggest
they will be different, although in the quantum-me-
chanical case the possibility of a distinction when
/=0 is not very clear on a microscopic basis.

A homogeneity or scaling hypothesis may now be
introduced for both components of G by

lim D& (x, y)= lim D& (x, y) =Do.
X y 0 & Xey 0

(4. S)

This is essentially as far as general considera-
tions can take us. To proceed further and, in par-
ticular, to examine the behavior of the helicity mod-
ulus we will, following Josephson, 6 use a phenome-
nological or "hydrodynamic" description of the free
energy changes in a nonuniform system. Thus we
suppose that 4(r) is a slowly varying coarse-
grained average of 4 (r) and postulate the existence
of a total free energy functional of the form

scaling functions D'& (x, y) and D'& (x, y) for f &0 and
t& 0, respectively, must satisfy matching conditions
on the critical isotherm, i.e. , in the limit x 0,
y- ~ with x~~y" (-r Bg") positive and fixed These
conditions (which we will not write explicitly ) are
needed to ensure that G)((I, f, T) is continuous and
analytic through T= T, for all f &0. Furthermore,
this basic requirement forces the same value of
the correlation length exponent v above and below

T, . One may postulate a similar form for G~ in
terms of a different pair of matching scaling func-
tions Q(x, y) and D&(x, y) but the same set of ex-
ponent values. Then by virtue of (4. 5) we should
have

D&(x, O) =D&(x 0) e*-x~ ~"+~ '~ as x- ~ . (4. 7)

In this relation we have assumed, for simplicity,
that r is measured in units chosen so that the "true
correlation length" [specifying the exponential decay
in (4. 5)5 ~] is given by $0(T)- f" for t & 0.

The uniqueness of the critical point behavior is
ensured by

&«» +r» = (dr A(T I +(r)l )- f d t(~)~ ()r +4 b( T)k drl(~k)„ 'i+lb, ( )fo rl (~k)J' ~ (4.9)

which embodies the isotropy. Such a functional is
expected to provide an asymptotically valid de-
scription in the hydrodynamic region below T;. that
is, for T fixed, less than T„wave numbers ka
« I and f not too large. (For large f the inhomo-
geneity coefficients b„and b, should be allowed to
depend on f as well as on T. )

The e(Iuilibrium order parameter )I' (f, T) is to
be found, as usual, by minimization of P(414). We
will assume that A(T, 4'), which for consistency
must just be the canonical free energy density for
a uniform system, has an expansion

A(T, e) =o-'l e- e'(T)l (A,(T)+A, [e- +0(T)]+ ~ ~ ~ )
(4. 10)

where the value of the new exponent 0 will be dis-
cussed. Then, in a uniform field, the equation of

state is

=A,(T)l e.,—e'(T)l"'+ ~ ~ ~ . (4. 11)(eA

From this we see that @ (T) must be the spontane-
ous (f- 0) order —as the notation indicates. The
low field isotherm is thus

e„(t', T)=e'(T)+~0(T)c + ~, (, =I/(o- I)
(4. 12)

where Xp =A, '; the longitudinal susceptibility is
hence

)4((, T)=(4 "l =(X (4')/(' ', (4-0). (4. (3)sf]r
The simplest and the traditional phenomenologi-

cal assumption for the new exponents is 0 = 2, a = 1.
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In that case the longitudinal susceptibility XI(f) has
a finite zero-field (or initial) value below T, ~ This
is generally the appropriate situation for a scalar
(n = 1) order parameter, i.e. , for the case of axial
anisotropy. On the other hand, the spin-wave ap-
proximation and other improved micxoscopic cal-
culations, ' indicate 0 = 3 and c,= —,

' for three di-
mensions. This means that XI(t) diverges as t'- 0,
the 4'(g} isotherm thus having an infinite initial
slope bsloso T, (just as it always does at T, ). In-
deed there is some expeximental evidence for
reality of this effect in neax -isotropic ferro-
magnets. "

Further evidence on the values of 0 and & is pro-
vided by the spherical model, ~0 which, for the pres-
ent purpose, should properly be regarded as an
isotropic g-vector model in the limit n- ~. 3 This
yields the exact result

o=d/(d-2) and c= —',d-1 for 2&d&4 (4. 14)

(4. 15)

The divergence as f oand 4-'„- 4'0(T} simply rep-
resents the freedom of rotation of the spontaneous
order vector 4' in zero field. (The expression for
~ is also reproduced correctly by the spin-wave
and related approximations. 4'0)

To study the momentum-dependent transverse
susceptibility }t„(k,t', T) = )'ti or, equivalently, the
Fourier transform

Gi(k, g, T) = J e' "'Gi(r, i;, T) dr, (4. 16)

we calculate the increment in free energy asso-
ciated with the establishment of a small transverse
oscillation in k{r), namely,

4(r) = (4„,0)~(@„,F54'~ costk ~ r}.
From (4. 9) and (4. 15) with

(4. 17)

with additional logarithmic factors in/, present at
d=4. For d&4 the values stick at 0=2, q=1.

For d = 3 the formulas (4. 14) agree with the spin-
wave calculations and, as a matter of fact, the
spin-wave approximation for general d yields the
same general expression. The recent renormaliza-
tion-group calculations of the e = 4 —d and 1/s ex-
pansions about the spherical model by Brezin, Wal-
lace, and Wilson 3 strongly suggest that (4. 14)
should apply for all g & 1 as a rather direct reflec-
tion of the continuous rotational symmetry.

Although the low-field behavior of X„ is thus not
completely settled there can be no doubt about the
behavior of the transverse susceptibility since this
follows rigorously from the observation that the
free energy can depend only on ) 0 j. On putting f
= (f„,bt', ) this leads to

kgT 1
b,(T)b'+ ~,' ' (4. 2o)

~'(g, T}= I/] {3t T}=L/4'. ,('e T)b.(T)

= C/~'(T) b.(T) . (4. 21)

The result for }L(k) reduces to the rigorous expres-
sion {4.15) when b- 0. Inverting the Fourier
transform for the case d = 3 yields

5 jTj 4m'
(4.22)

which replaces the previous Ornstein- Zernike pre-
diction (4. 5), which should be valid for T & T, .
More generally the decay in sero field is predicted
to be the pure power law

G,(r) =A,/b, (T)r'-', (4.23)

as anticipated in Sec. III.
The expressions (4.20) and (4.21) are confirmed

by microscopic calculations which should be valid
away from T,. For example, they follow from
random-phase and spin-wave approximations for
the isotropic Heisenberg model. More systematic
approaches as developed by Stinchcombe ef eE. and
Vaks, Larkin, and Pikin, ~ also contain these re-
sults in the low-temperature regime.

%e may make a completely analagous calculation
for the longitudinal correlation function by consid-
ering the fluctuation

4(r}=(4„,O}~{@„+Wbegcosk r, O}.

This yields an expression for C„{k,f, T) precisely
like (4.20) but with bi(T} replacing bi(T) and ai re-
placed by

~'(~, T) = I/t'„(r, T) = X-„'(t, T)/b„(T)

(4.aS)= t' '/~X, (T}b„(T).

It follows from this that GI(k f T) reduces correct-
ly to X„when b- 0. Again, in the zero-field limit
G„(r, 0, T) decays only as I/r~ [see (4.23)] and dif-
fers from Gi(r, 0, T) only insofar as bi may differ
fx'om Qi,

On the other hand, microscopic calculations for

(V4')„=V4'=0 and (V4'), =V%', =-Ak54'~sing. r},
(4. 18)

we find

r g =![{C/~.,)+ b.(T)~'] V.(5~„-)'. (4. 19)

By the principle of equipartition the mean free en-
ergy associated with such a fluctuation is ~A~ T; in
the standard way 'I' 3 we hence conclude that

Gi(k, f, T) = ks Txi(k, f, T) = Vo ( (5%'~)~}
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V. CRITICAL BEHAVIOR OF HELICITY MODULUS

To discuss the critical behavior of the helicity
modulus T(T) and, in particular, to relate its ex-
ponent g to other critical exponents we mill first
base the argument on the phenomenological ap-
proach expounded in Sec. IV. To this end we take
(=0; then the components (V%)„and {V+)~in the
free-energy functional (4. 9) must be taken relative
to the local direction of 4 Qr. If we introduce polar
coordinates or a complex-number representation,
1

+(r) =[~ +(~)~, q(r)], 4(R=
~
+(r)(e'"'", (S.1)

we find

(v&)„=y~4'~ and (vk), =%my . (s.2)

Then if we establish a twist in the order param-
eter, the uniform solution

) {+(r)&~ =@„=+'(T), q (r)=Z. r, vq =e, (5.3)

will minimize the total free energy. The resulting
incremental free energy is found to be

~S=!5.(T)(+')'~'I; . (s.4)

On comparison with (2. 4) which defines the helicity
modulus, we obtain Josephson's identification

&(T)=[+'(T)]'l,(T) = [@'(T)]'lime T/k X (k, 0, T).
(s. s)

It should be noted that this does not really amount
to a microscopic definition of T(T) since it is not

Q„are not as direct as for G~, and spin-wave ar-
guments and more systematic treatments~ lead,
for fixed T & T„ to the distinct form

G„(r, g, T)- [G,{r,g, T)]'/(40)' as r- ~, (4.26)

where the factor (4 ) is inserted for dimensional
reasons. For d=3 this leads to

G„(r, l, T)-e-'"~"/r' (d = 3)

which is clearly inconsistent with the phenomenolog-
ical results, although on integration it leads via the
susceptibility/t'luctuation relation to (4. 13) with t

More generally (4.26) implies t = —,'d —1 for d
& 4, in agreement with (4. 14). [For d = 4 it yields
g„(l', T)-Int: ' as f 0.-] These discrepancies in the
predicted behavior of G„(r) cast doubts on the va-
lidity of the phenomenological approach, even in the
long-mavelength limit below T, where it is normal-
ly expected to apply. On the other hand, to discuss
the helicity modulus, to which me now turn, no ap-
peal need be made to the behavior of the longitudinal
correlation function; the phenomenological descrip-
tion mill be needed only for the transverse fluctua-
tions.

clear, in general, how one can actually distinguish
X, from g„, in a strictly vanishing field.

We may now compare the phenomenological ex-
pressions for G,(r, f, T) and G„(r, f, T) valid for r- ~, small g, T& T„miththegeneralscaling forms
(4.6). Thus in order to reproduce (4. 20) to (4.23)
me must have

(s. 6)

where f~ is a constant. This conclusion is valid for
all d. But then, for r- ~ and fr -0, the scaling
form gives

G (, g, T)™D1f1""r [1-fJrL+ Itl" + .].
(s. 7)

Comparison with (4. 22) and (4. 23) leads at once to
the crucial identification

5,(T)= (~.T/~:) in -"" (f-0- )

which reveals the T dependence of S~. Pn the sca-
lar (n = 1) case the equivalent result, namely, 5
= $ /)f- I tl ~ follows from the phenomenological
approach taifhouf a direct appeal to scaling. ] On
substitution in (5.5) we obtain the central result

T(T)- i ~'(T)i'i fi- - in'~"", (s. 9)

which implies Josephson's relation for the expo-
nent of the helicity modulus (or superfluid density),
namely,

u=2P- gv

=2P+y-2v=2- a —2v. (5. 10)

In the second part of this relation we have used the
standard (d-independent) scaling relations which
are implied by the scaling forms '" one might, in
principle, write v' and a' in place of v and o. but,
as mentioned, there can be a distinction only if the
scaling functions below and above T, do not match
properly across T= T„g&0.

Josephson's relation may be checked for the
(s =2) ideal Bose gas and for the spherical model
(s ~)'" "'8 in general dimensionality d&2. In
all cases one has g=0, P= ~ and, as mentioned in
Sec. II, v=1 in agreement mith the first line of
(5.10). The second line, involving the thermody-
namic and correlation exponents a, P, y, and v,
also holds quite generally in these models.

For superfluid helium Josephson's relation dem-
onstrates that the correlation length exponent v can
be found from observations on the specific heat,
which yield u = 0.00 (corresponding to a close to
logarithmic divergence), 3~ combined with experi-
ments to measure p, (T) which givem' u ~0.67. We
conclude that v is close to 3. This method of es-
timating v for helium is one of the few methods
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u = (d- 2}v (s. 12)

or, in the real three-dimensional worM, u = v.
Now this is precisely the relation (8. 9) obtained by
identifying the phase coherence or h9licity length
A~T'(T) with the correlation or sealing length $(T).
Converseiy, the postulate A'v'(T)- g(T)- I tl
would lead to hyperscaling r'elations for isotropic
systems. The fact that for helium one observes
dv=-,'d(2- a- u) —,'8(2--', )=2=2- a must be
viewed as strong evidence in favor of hypersealing
in three-dimensional isotropic systems. However,
the exact results'8' '6 for the spherical model and
ideal Bose gas when d) 4, for which u = 1 and v = 2,
cast doubt on its general validity. In addition one
should recaQ the well-known difficulties in the
three-dimensional Ising model where numerical
estimates '5' 3 indicate dv & 1.91 but 2- 0', & 1.88.

It is instructive at this point to compare the der-
ivation of Joseyhson's relation (5. 10) with Wi-
dom's arguments38 for the critical behavior of the
surface tension in the scalar (n = 1) situation (e.g. ,
Ising ferromagnet or lattice gas). Widom's anal-
ysis leads to the very similar expressions

p=2P+y- v=2- e- v

(s. 18)

for the surface-tension exponent p, which is de-
fined through

(s. i4)

Note that the equivalences in (5. 18) again involve
only the standard d-independent scaling relations.
In fact, Vhdom employs a completely analogous
phenomenological approach. However, an appeal
to sealing is required only at a later stage, when
it becomes essential to postulate a form for the lo-
cal free-energy density within the two-phase re-
gion. Nidom adopts a scaled form equivalent to

a(T, {+})= I tl 8({+}/Itl'), (5.15)

available; another is via finite-size effects on the
specific heat (see Ref. 8). The exponents p, y, or
g, however, remain unknown.

The exponent of the coefficient of st~' in (5.V)

may be transformed via the standard exponent
relations' "as

v- Rpb=g [2-n)v+nv- (7+tI)]= a(tlv ti-) . (5. 11)

This agrees precisely with the phenomenological
analysis [see (4.21) and (4.22)] according to which
the coefficient should be proportional to [4'Ob,] +'

It is clearly of interest to attempt to reduce Jo-
sephson's relation (5. 10) by using the hyperscaling
or d-dependent exponent relationsa'~ such as
(8.11). If we use dv=2 —u we find

A'E'(T) =[0 T/Z(T)]~" ". (5.18}

If one then insists that this length should be propor-
tional to the correlation length ((T)- I tl -" the rela-
tion (5. 1V) is immediate l Such an identification
thus again forms a route to hyperscaling. For the
two-dimensional Ising model the surface tension is
known exactlya~ and boN (5. 18) and (5. 1V) are con-
firmed. More recently calculations of 0., p, , and v
for the eight-vertex model~~4~ (d= 2) also confirm
(5. 1V) and the second relation in (5. 18), although the
exponents themselves are now functions of the inter-
action parameters. On the other hand, as already
mentioned, the hyperscaling relations are in some
doubt for three-dimensional Ising models (and also
for some real systems}. a'

Returning to isotropic systems the phenomenolog-
ical analysis has confirmed that there is, in fact,

where, in the symmetric case (under 0 -—L) the
scaling functions(y) has two equal minima corre-
sponding to the two distinct phases with (+)=a W (T).
Then on solving the minimization equations under
boundary conditions which impose {4')=+4'(T)
at one end and {4}= -4'(T) at the other end of
the domain Q [compare with (2. 11)], an equilibrium
interfacial profile +' 'Qr is found. This is char-
acterized by a definite interfacial thickness Ao(T),
which diverges aa I tl - 0 with an exponent —,[2 —a
—2P+gv]= v; in other words, one finds that A (T)
is proportional to the correlation length $(T) [which
is now definable in the standard way by moments,
etc. , because the correlation function G(r) decays
exponentially rapidly below T,]. In parallel to (5.4)
the incremental free energy associated with the in-
terface is found to be determined by

Ar ,'b(T}[f'/—A'(T)]'Ao(T)~,

(s. is)

where A& is the cross-sectional area of A. This
expression may be understood physically by noticing
that the incremental free energy comes only from
a volume of dimensions A'(T)Ao in which the inho-
mogeneity contributions, proportional to 2b(T}(Vw}a
0-2b(T)(4'0/Ao)a, and the bulk contributions, propor-
tional to A(T, + ), must be of the same magnitude.
Widom's relations (5.18) follow directly from
(s. is).

If, at this stage, one accepts in addition one of
the hyperscaling relations, say, 2- e=dv, one
finds

(s. lv)

which is the direct analog of (5. 12). This result
follows alternatively by defining, in parallel to
(8.V), a "surface-tension length" or "phase coher-
ence length"
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~DO/r at T= T„ (5.aS)

which means that the decay laws at and below T,
may well be distinct. In (5.20), $(T) may be inter-
preted as the distance r at which the semimacro-
scopic hydrodynamic behavior, valid for k$ «1 or
r» g, changes over to the distinctly microscopic
or "critical" behavior appropriate for k$» 1 or $» r» a. (Such a matching of hydrodynamic and
critical regimes, used originally in this context by
Josephson, 6 has been used extensively by Ferrell
ef ar,. and Halperin and Hohenberg~ ~ |n their der-
ivation of dynamic scaling. )

Finally, as regards the longitudinal fluctuations,
we remark that the scaling hypothesis implies the
limiting (f 0} am-plitude 'for g„(1, T) in (4. 13) var-
ies as

x,(T)- I
tl-'"-"' (t- 0- }. (5.22}

(The exponent ~ is not, of course, determined by the
scaling arguments. ) If the phenomenological form
(4.20) is accepted also for G„ then, in parallel to
(5. 8}, we find b„(T)- I t I

""-b~(T). Recall, how-

ever, that this form is not certain and that (4. 26)
might apply instead. [The amplitude (5. 22) will
still be given consistently, with t.=2d-1, if the

hyperscaling relations are valid. ]

VI. ALTERNATIVE DERIVATION OF HELICITY MODULUS
EXPONENT

no really direct way of defining $(T) in zero field.
Combination of (4.22) with Josephson's identification
of T(T) leads to

G (r, 0, T)/[4 (T)] -c [A '(T)/r]

(t, T& T,) (5. 19)

which relates to Hohenberg's definition of g, (T) in
(3.5) and (3.6}. More generally the scaling rela-
tion gives

G, (r, 0, T) =D&[r/$(T}]/v' ~, (5.20)

so that even if q= 0 we would have

G,(r, 0, T)™D'/r"' as ~-, T& T, I = L/a- ~, (6.4)

where a is a convenient microscopic length (such
as the lattice spacing). The shifted temperature
variable f is defined by

t=t+ e(l}=[T- T(l)] /T(~), (6.5)

where T,(l) is the finite-size critical temperature
or, more generally, in case there is no sharp
transition for finite L, a pseudocritical tempera-
ture. "'8 The reduced shift e(l) is expected to
vary as~'8

e(l}= [T,(~)—T.(l)]/T.(~) = 5/I" (I- ~), (6.6)

where A. is a shift exponent. For the time being we
will assume 5 and A. do not depend on the particular
boundary conditions.

The exponent 8 is now fixed by the postulate~' that
for large L the finite-size effects are determined
only by the ratio L/$(T}, where g(T) is the bulk
(L = ~) correlation length This y. ields the relation

e= I/v . (6.7)

(7n the other hand, the exponent ~ is determined
by the requirement that when L- the relations
(6.2) and (6.3) both reproduce the correct bulk be-
havior, that is,

F'(T ~)=F'i'(T, ~) =F,(T)- itI (6. 6)

where o, is, as before, the specific-heat exponent.
Hence we must require,

F '(T, L) and F~'(T, L) of a system of length L with
periodic (v= 0) and antiperiodic (v = 2) boundary
conditions, respectively. For large L we may re-
write the definition as

F"'(T,L) —F'(T, I,) = ,'(v/L—)'T(T)+ ~ ~ (6. 1)

We now introduce the basic scaling postulates for
the singular part of the free energy7'8 in the form

F (T, L) = l"X (I t ), (6.2)

(T, I.) = l"x"'(l'B (6.3)

as t-0 and

x'(x) =x x" as x-- (6.9)
Section V completes our discussion of bulk scal-

ing in an isotropic system. With regard to the he-
licity modulus the basic result is Josephson's rela-
tion (5. 10) for the helicity modulus exponent u. On

the other hand, since, as shown in Sec. II, T(T)
can be regarded as the expression of a finite-size
correction to a bulk free energy, it is natural to
ask if the relation for v could not, alternatively, be
derived from the scaling theory for finite-size ef-
fects developed recently. ~' To show that this is
indeed so we make direct use of the second defini-
tion (2. 13) of T(T) in terms of the free energies

and

x"'(x)=x~" as x- (6. 10}

while

(o = —(2 —a)8 = —(2 —u)/v. (6. 11)

The expressions (6. 9) and (6. 10) represent the
leading terms in the asymptotic expansions of the
scaling functions about x= which, in turn, cor-
responds to L = . Large L corrections to the bulk
free energy must thus be described by higher-or-
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X'~ (x) —Xo(x)=Y~ o+ ~ ~ ~ as x-~, (6. 12)

where Q is some new exponent. On substituting in
(6. 2) and (6. 3) we find, as T-T„

F (T, L) —F,(T, L)=Y t /" + ~ ~ ~ . (6. 13)

lf this is compared with (6. 1) we see that Q must
be determined by

(6. 14)w —ay= —2 or $=2v+a —2,

in order to produce a 1/L behavior as L- ~. On

the other hand, the comparison then yields

T(T) = (2/v ) Y„t o, (6. 15)

so that, in conclusion, the helicity-modulus ex-
ponent is

der terms in these expansions. For example, the
corresponding scaling function X'(x) for a sys-
tem with two free surfaces should contain a term
which will generate in F~(T, L}a surface free ener-

gy term proportional to 1//. ' In the present case
we are interested only in the difference of free
energies entering (6. 1). Accordingly, we may sup-
pose that the higher-order terms in (6. 9) and (6. 10)
combine to give, in leading order,

u= —Q= 2- n —2v. (6. 16}

X(x)=Xx ~+Y x o+

X (x)=X x +Y x + ~ ~ ~

Then in place of (6. 13), we obtain

(6. 17)

(6. 18)

This relation agrees precisely with the previous
result (5. 10). Note that the derivation has made
no direct appeal to a phenomenological or hydro-
dynamic formulation or to an explicit scaling of
the correlations.

As a matter of fact, however, this derivation is
open to criticism since we used the assumption that
the same t variable could be used for both periodic
and antiperiodic boundary conditions. Had we been
willing to make the "extended-scaling" assump-
tions ' ' which replaces t in (6.2) and (6.3) by
t = [T—T,(~}]/T,(~) our argument would still have
been valid. On the other hand, in practice, the
shift amplitudes, at least, are found to depend sig-
nificantly on the boundary conditions. ' ' Accord-
ingly, let us suppose that bo and b, &&, and Xoand

Xj&3 are distinct, and postulate the separate ex-
pansions

,' '(T, I, ) F,(T, L)-=X/2 n)t' [5-,/ / '»o-bo/ "] oY+' /" «ot 'I' Y„/"- (6. 19)

Now by comparison with (6. 1) we see that Xo

and X»o cannot be less than 2 (otherwise lower-
order terms than 1/L' would appear and dominate}.
If, on the other hand, we have X.o& 2 and X,&~ &2,
then the previous conclusion remains valid since
one or both of the last two terms in (6. 19) must be
of order l

The only new possibility arises if

Xo= 2 and/or &»o= 2. (6. 20)

u= 1 —0'.. (6. 21}

However, if one still finds Qo or P&&o equal to
2 v+ a —2, the helicity exponent will be

u=2- n-maxj2v, I]; (6. 22)

since 2v normally exceeds unity this will once
again reduce to the Josephson relation. We may
comment in passing that for periodic boundary
conditions the corrections to the bulk free energy
may be expected to be exponentially small ' ' in
L so that Y„-=0. Thus, as might reasonably be
expected, the helicity modulus will be determined

In that case the first two terms make a contribution
to T(T) which varies as (f [' . This will be the
only contribution if Po, Q~lo &2 v+ a —2, in which
case we find

In the foregoing we have introduced the concept
of a helicity modulus T(T}for the ordered phase
of a d-dimensional isotropic system with a vector
order parameter of n= 2, 3, . . . components. The
helicity modulus measures the incremental free
energy resulting from an imposed spatially vary-
ing "phase twist" on the order parameter. Ex-
plicitly the relation is

A$ = ~T(T) «gy» (7. 1)

wher«& &p» is the mean gradient (assumed small)
of the phase of the order parameter and V is the
total system volume. For a Bose fluid, we saw
that T(T) is simply proportional to the superfluid
density, namely,

by the free energy of the system with antiperiodic
boundary conditions.

In this last connection it is interesting to remark
that Lebowitz and Onsager some time ago dis-
cussed the fluctuation ((&P) ) in the total linear mo-
mentum of a system, concluding that with periodic
boundary conditions ((4P) ) is proportional to the
normal part of the density, p„= p —p, , while for a
system confined by walls only the total density p
enters.

VH. CONCLUSIONS AND SUMMARY



1122 F ISHE R, BARB E R, AND JAB NOW

p, (T)= (m/K ) T(T) . (7. 2)

In contrast to previous microscopic definitions
for p, (T), we have given explicit formulas for the
calculation af T(T}, that involve only the equilibrium
free energies (derived from standard partition func-
tions) for the system with well-defined boundary
conditions. The simplest expression for T(T)
[Eq. (2. 13)] involves antiperiodic boundary condi-
tions in addition to the customary periodic condi-
tions.

As T- T, the helicity modulus is expected to
vanish continuously and an' exponent v was intro-
duced according to

Exact calculations for the ideal Bose gas and spher-
ical model (corresponding ton ~) give u= 1 in all
dimensions d &2. For these two models T(T) turns
out to be merely proportional to the square of the
spontaneous order fI (T) [for the superfluid: p, (T)
=n0(T)]. However, our formulation allows
calculation for interacting systems. The most
tractable models seem to be the Heisenberg and
XY models at low temperatures and the weakly in-
teracting Bose gas within the Bogoliubov type of
approximation. We expect the difference between
T(T) and [4' (T)]3 to appear in the low-temperature
behavior but confirmation of this must await the
detailed analysis.

In Sec. IO we indicated that owing to the slow
decay of correlations in the ordered phase of an
isotropic system, there is no obvious way of de-
fining a correlation length ((T) throughthe moments
or exponential decay of correlations, as is done in
an anisotropic (n = 1), or in an isotropic system
above T„or in the presence of an ordering field.
One can, indeed, define formally a phase coherence
or helicity length

(v)
A '(T}=[ksT/T(T)]~ ~ '-

~t
~

(d &2)
(7. 4)

but there are no very convincing reasons for iden-
tifying this with the correlation length or for equat-
ing its exponent v' ', which by definition satisfies

u= (d —2) v' ', (7. 5}

Q = 2P —'gv = 2 —Qf —2vy (7 6)

which was reviewed and presented in the general

to the correlation-length exponent v. On the other
hand, we showed in Sec. IV how the correlation
exponent v enters a general scaling, or homogeneity
description of the correlation functions without the
express need to define a correlation length in the
ordered phase. 'This then clarifies Josephson's
derivation of the exponent relation

context of a phenomenological approach to the fluc-
tuations in an isotropic system. However, the in-
consistencies of such a phenomenological approach
with microscopic calculations of the longitudinal
fluctuations were pointed out. Further theoretical
exploration of this point would be worthwhile. The
close conceptual analogy of Josephson's arguments
with Widom's discussion of the surface-tension
exponent p, was also explained.

If, but only if, the d-dependent or hyperscaling
relations, such as dv=2- 0., are accepted, Jo-
sephson's relation (7.6) reduces to

u = (d —2}v. (7.7)

This would then justify the acceptance of the helic-
ity length A' ' as an effective correlation length
in the ordered phase, and would confirm the con-
jecture v' '= v. The experimentally observed val-
ue of a = 0 and u = 3 for superfluid helium lead,
via (7.6), to v ——', and hence confirm the hyper-
scaling relation (7. 7). 44 However, this relation
fails unmistakably for the ideal Bose gas in more
than four dimensions and, in addition, the hyper-
scaling relation dv= 2- o still seems open to seri-
ous question for the three-dimensional Ising model.

Finally, in Sec. VI we presented an alternative
derivation of the original exponent relation (7.6)
which made no appeal to a hydrodynamic or phenom-
enological approach. Rather, the argument was
based directly on the definitions of Sec. II in terms
of the free energies of systems with finite dimen-
sions. A straightforward application of the re-
cently developed scaling theory for such systems'
[which embodies the idea that for large finite L
the critical behavior should depend only on the
scaling ratio L/((T)] reconfirmed Josephson's ex-
pression. However, in certain special circum-
stances, probably not realized in practice, the
relation might be replaced by u = 1 —e.
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The specific heat at constant density of an ideal-Bose-fluid film of thickness L =l p
'", but infinite

lateral extent, is calculated analytically to order l '. Both hard-wall and periodic boundary conditions

are considered. Good agreement with the numerical calculations of Goble and Trainor for the total

specific heat under hard-wall conditions is obtained down to l 10. In the critical region, the large-l

behavior accords with the scaling theory of finite-size effects. The appropriate scaling functions and the

surface specific heat are explicitly calculated.

I. INTRODUCTION AND SUMMARY

Recent analytical calculations' on the spherical
model have given considerable support to the
scaling theory ' of finite-size effects in the
critical region. This theory appears also to pre-
dict correctly the effects of finite size and sur-
faces on the critical behavior of more realistic
models (see Refs. 3 and 4 for a more complete
discussion including various qualifications and a
review of the existing calculations).

It is well known that an ideal Bose gas in three
dimensions exhibits a phase transition with a sharp
critical temperature'; the correspondence with

other critical phenomena has been discussed, in

detail, by Gunton and Buckingham. Moreover,
like the spherical model, the ideal Bose gas is
mathematically tractable in all dimensions. Hence
the effects of finite size and surfaces on its critical
behavior may be investigated analytically, and
compared in detail with the scaling predictions.
Although the spherical model and the ideal Bose
gas are effectively equivalent in the immediate
critical region~ there are sufficient differences,
both in mathematical detail and physical applica-:

tion, that separate discussions are illuminating.
Thus the ideal Bose transition provides a model,
albeit a rather crude one, of the superfluid transi-
tion in real helium; in particular, ideal Bose

films are of interest in connection with real helium
films. Indeed, many authors have studied ideal
Bose films and other finite geometries. For the
most part, however, the previous calculations do
not reveal clearly (or at all) the nature of the
asymptotic behavior for large thickness L nor
provide very explicit expressions for the finite-
thickness thermodynamic properties. (There has
also been a tendency to attempt to identify par-
ticular "condensation, " "transition, " or "onset"
points rather than recognizing fully the absence of
a sharp transition in any finite geometry, and

acknowledging the consequent "rounding" and dis-
tortion of all properties. )

In this paper we aim to give a detailed discussion
of the specific heat C'„(T, l), at constant number
density p (or constant volume) of a two-dimension-
al ideal boson film of thickness L = lp

' ', and in-
finite lateral extent. We consider both standard
hard-wall boundary conditions (denoted by super-
script 7 = 1) and periodic boundary conditions ap-
plied across the film (denoted by 7 =0). The cal-
culations extend, and specialize, an earlier
analysis ' of the shift and rounding of the transi-
tion as a function of E in a d -dimensional ideal
Bose "film" which is infinite in d =d —1 dimen-
sions but of finite thickness L in the dth dimen-
sion.

To summarize our results, recall5'~ that the


