
8. 8. BEHGMAN AND L. M. CHANIN

Phys. 43, 3080 (1965)] concludes that the temperature
dependence of the three-body conversion to form He~'may
range between T ""at low temperatures to T '" at high
temperature. G. R. Hays and H. J. Oskam (private
communication) have found that the temperature dependence of
the reaction-rate constant is small in the range 120-300 'K.

' The three-body rate coefficient P for the process
Cs++2Cs Cs2'+Cs was estimated by the authors (Ref. 2) to
be P 6&10 29 cm /sec. A calculation of the coefficient using
the equation derived by Bruce H. Mahan [J. Chem. Phys.
43, 3080 (1965)] yields a value of P 10 ' cm /sec. This
calculation of P depends upon the charge exchange cross
section. A value of the cross section, Qcm 7X10 '~ cm', was
extrapolated from the data of W R. Gentry, Yuan-Tseh Lee,
and Bruce H. Mahan [J. Chem. Phys. 49, 1758 (1968)]. The
only other reported value of the coefficient, P 10 ' cm /sec,
was given by N. D. Morgnhs and Yn. P. Korchevoi{Zh. Ehsp.
Teor. Fiz. Pis'ma Red. 9, 313 (1968) [JETP Lett. S, 192
(1968)]}.

' J. R. Peterson and D. C. Lorents, Phys. Rev. 182, 152
(1969).

' A. S. Schlachter, D. H. Lloyd, P. J. Bjorkholm, and L. W.

Anderson, Phys. Rev. 174, 201 (1968}.
' B. L. Donnally and G. Thoeming, Phys. Rev. 159, 87

(1967).
"D. K. Bohme, N. G. Adams, M. Mosesman, D. B. Dunkin,

and E. E. Ferguson, J. Chem. Phys. 52, 5094 (1970}.
G. Gioumousis and D. P. Stevenson, J. Chem. Phys.

29, 294 (1958).
"G. E. Chamberlain and J. C. Zorn, Phys. Rev. 129, 677

(1963).
'%. P. Sholette and E. E. Muschlitz, Jr., J. Chem. Phys.

36, 3368 (1962).
"K. L Bell, A. Dalgarno, and A. E. Kingston, J. Chem.

Phys. 36, 3368 (1962}.
"P. Langevin, Ann. Chim. Phys. 5, 245 (1905).
"The value of the dielectric coefficient of helium was taken

from the American Institute Of Physics Handbook, 2nd ed.
(McGraw-Hill, New York 1963).' A. M. Tyndall, The Mobility Of Positive Ions in Gases
(Cambridge U. P., Cambridge, England, 1938).

"A. P. Vitols and H. J. Oskam (private communication).
'R. Johnson and M. A. Biondi, Gaseous Electronics

Conference, London, Ontario, 1972 (unpublished).

PHYSICAI REVIEW A VOLUME 8, NUMBER 2 AUGUST 1973

Carrier-Frequency Distance Dependence of a Pulse Propagating in a Tvvo-Level System*

J. C. Dids~ and E. L Hahn
Department of Physics, University of Culifornia, Berkeley, California 94720

(Received 11 January 1973)

A study is made of the distance dependence of carrier phase and average frequency of an
electromagnetic pulse propagating through a quantum two-level system. Phenomenological differential
equations are introduced to describe the distance rate of change of first- and second-moment deviations
of the pulse carrier frequency from its original input frequency. In equilibrium the equations predict
characteristics of pulse propagation in steady state. For both absorber and amplifier cases, computer
plots are presented of the distance dependence of pulse shape, carrier phase, Fourier amplitude, and
pulse energy for selected types of homogeneous and inhomogeneous line broadening and for specific
input-pulse conditions. Off-'resonance formation of a single 2n hyperbolic secant pulse of self-induced
transparency may evolve from input-pulse areas less than m, as well as slightly greater than m',

accompanied by frequency modulation and pulse breakup. The amplification of pulsed carrier radiation
is accompanied by frequency pulling toward resonance. With and without phase modulation, stability
conditions for stable pulse propagation are obtained. Either frequency pulling toward or frequency
pushing away from resonance is dominant for an absorber, according to the dominance, respectively, of
homogeneous or inhomogeneous line broadening. In the slowly-varying-pulse-envelope approximation, a
steady-state solution is found for a symmetrically-phase-modulated pulse propagating in an amplifier
with scattering losses. The mean carrier frequency for the pulse is displaced off resonance by one
linewidth above the resonance transition frequency of a homogeneously broadened system.

I. INTRODUCTION

Little attention has been given to the distance
dependence of carrier frequency and phase changes
of traveling-wave radiation as it interacts non-
linearly with a medium which contains dipole tran-
sitions on or off resonance with respect to the car-
rier frequency. Cumulative carrier-frequency
shifts and spectral changes can result over long
distances of propagation. In the far-off-resonance
case, significant effects are expected if an infinite-

ly extended medium acts as an amplifier, with ex-
cited quantum states poyul. ated in excess over
lower states by virtue of some external pumping
mechanism. The initial off-resonance carrier fre-
quency is expected to pull toward the transition
frequency of the inverted system as the distance
of propagation increases. In the case of an absorb-
ing medium the spectral changes in the radiation
are of quite a different nature, particularly when
the radiation is in the form of a pulse. These
changes occur if the appl, ied carrier frequency is
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very near the resonance transition frequency of the
absorber. They may be observed before the radia-
tion has been comyl. etely absorbed because of in-
coherent scattering and damping mechanisms. In
the case of an emissive medium, if the input-rad-
iation power gain exceeds scattering losses, the
radiation wiLL propagate over very long distances
as the power gain and losses come into balance.

In this paper we introduce phenomenol. ogical and
computer calculations to show under l.imited con-
ditions that nonlinear spectral. changes can occur.
Cases are presented which describe the distance
dependence of spectral changes correlated with
initial. conditions. The model. applied is a two-
quantum-level system interacting with a single or
nearly single frequency radiation source in the
form of a pulse. In certain circumstances the
pulse may be descriptive of continuous wave radia-
tion in the limit of infinite pulse width. Although
this simplified two-quantum-level model is not
sufficiently realistic to apply generally to predic-
tions eoncernirg possible modifications of inter-
stellar spectra, it raises the question whether or
not in some isolated cases interstellar radiation
spectra might be affected by nonlinear interactions
with matter over long propagation distances. Our
results have more direct applicability to the pulse
behavior in lasex amplifiers where the pulse carrier
frequency is initially applied near the transition
frequency of the active laser medium.

The semiclassical treatment of pulse propagation
in the analysis of self-induced transparency (SIT)
showed that phase modulation could be assumed
absent if a single carrier frequency within a pulse
envelope is applied at the exact resonance transi-
tion frequency of a quantum two-level system.
The spectrum of the system is chosen to be sym-
metrically and inhomogeneously broadened, and
is incorporated into the Bloch-Maxwell equations,
using the slowly-varying-wave approximation.
After entering the medium the pulse changes in
shape, intensity, and delay as a function of prop-
agation distance, but remains free of phase mod-
ulation because of the chosen initial conditions.
For distances large compared to the classical. ab-
sorption length, the pulse maintains a distortion-
less equilibrium 2» hyperbolic secant (h. s. ) shape.
The pulse area 2m, proportional to the product
of field amplitude and pulse duration, here signifies
that the first m portion of induced absorption is
balanced by the second m portion of induced emis-
sion, leaving both the pulse and medium with no
net change in energy. This ideal description ap-
plies only in the absence of incoherent damping ef-
fects, involving nondegenerate or special, types of
two-level states, and for complete forward scat-
texing of an infinite plane wave and minimal. or

zero baekscattering.
In real physical situations, a number of the

above idealizations are violated to some extent.
Here we are particularly interested in two-level.
systems more likely to be excited off resonance
than on resonance by pulses which may be initially
phase modulated as weLL. As a result of these
initial conditions, the phase and carrier frequency
of' propagating pulses will, also become a function
of time and distance, because of nonlineax energy
exchange between radiation and medium.

H. DISTANCE DEPENDENCE OF AVERAGE CARRIER
FREQUENCY

It will be convenient to develop a description of
the distance dependence of the average pulse car-
rier frequency while retaining some of the assump-
tions~ used to describe SIT. With the initial cax-
rier frequency ~ of the pulse now not necessarily
at the exact resonance of a symmetric inhomo-
geneously broadened Line, the propagating wave is
defined as

@(z f) g(z f) &lieut as+y&s, t)-)

where the instantaneous carrier frequency is
&u(t)=re+ p(», f). Averaging y(z, f) over the pulse,
the average carrier frequency is given by

~~, = ~+ (0(z)) (2)

(
~

( ))
f y(z, t)S»(z, t) dt

f"„8'( zf)dt

f" QJ g(z, Q) [zdQ
(Q)f ig(», Q) [zdQ

g( Q) j' g(z f) &)ot+Ey(c, t) df (4)

The average frequency shift (y(z)) =(Q) is therefore
the first moment of the pulse Fourier spectrum,
which follows for a finite pulse envelope 8(z, t).

In terms of

I"„P(z,f)8'(z, f) dh
f" tg'(z, f) df

the second moment is defined as

(Qz)
f" Q' t 8(z, Q) I dQ
f"„ I S(z, Q) tzdQ

f:.g'(z. f) df-(P(z))+ Jca g2( f) df

For a bell-shaped pulse envelope,

f"„8»(z,f) dt I
f"„8'( t)zdt

is a measure of the reciprocal mean square of the
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8u ~ Q

8t
—= (&~ —t)e-

T2
(8)

pulse width (in sec z).
The above definitions will be connected with the

semiclassical Bloch-Maxwell equations:

A. First-Moment Equation

An expression for d(y)/dz is sought by taking the
first derivative of Eq. (3) and combining it with
Eqs. (8)-(12). The following conditions are ap-
plied, with the pulse maximum defined at t=O for
z=O:

8v ~ K v—= —{he —p)u ——8W-—
8t COg T2

8S'
—coo gv

sg n ag -2~
l 65)d5

Bz c St roc

{lo}

8(z, f)=O

I= v=0

Wo(5) = + —,
'

Nlggog(5)

~W(5) = W(z, 5) —W, (5)

at t=+~

at t=-
at t=-
at t=+~

(14}

g —+ —g —=
l~ gg(5) d58+ g 8+ —2'

Bz c St rjc
aCI

(12)

The polarization components u and v are under-
stood to be functions of z, t, and the particular off-
resonance frequency difference 4~. These com-
ponents are, respectively, in phase and 90' out of
phase with the direction of the slowly varying
modulus field 8(z, t) which rotates at the instanta-
neous frequency v+ q (z, t}, where E(z, t) is
chosen~ to represent a circularly polarized wave.
Only the phenomenological damping term 1/T, is
included above. The energy expectation value of
the number density N of the two-level system is
given by W. The vacuum wavelength is g = 2vc/&u,
and the background refractive index q of the me-
dium is assumed unaffected by the pulse. The
dipole moment of the transition is po, defined in
K = 2p, /8; and g(5) is the inhomogeneous spectral
distribution function.

Figure (1) is a spectrum schematic showing the
parameters associated with off-resonance pulse
propagation. For an initial pulse at z =0, not
phase modulated, the off-resonance parameter is
Ll~=~o+ 6-co=Llaro+ 5. The inhomogeneous spec-
trum distribution function is chosen, for example,
to be

The minus sign is chosen for an absorber and the
plus sign for an emitter in the definition of Wo(5).
The inhomogeneous spectral width ™1/Tf [e.g. ,
Eq. (13)] is sufficiently small so that the ground-
state energy Q W(5) = ——,

'
(PUuoo) at t= —~ may be

specified in terms of the mean transition frequency
The energy absorbed or emitted by the two-

level system at position z is expressed as &W(5)
after the pulse subsides at t=+ ~, where

4W(5) = (u, f „v(5,z, t) 8(z, t) dt (15)

is understood to be a function of z. The result for
d(p)/dz is

~W(5)(~~ -(j)}g(5)d5+

(18)

where (q) and (k ) are also functions of z. The
pulse energy is

e Cl

&(z)= —
I 8'{z,t)dt .4v „I

The average contribution to the propagation vector
because of the two-level system is given by

(k)= —
($

8 dt) I
8dt

g(5) = (T~2 /Wm) e "r2
' (13) Ngg(5)d5dt .

&EO

(18)

c(z~O}

~(j)'~
~ I&r

FIG. 1. Schematic of spectral
amplitudes of the pulse at initial
(z=0) frequency cd, at final (z=~)
average frequency co+ (tjt') ), and
resonance line at frequency ~o,
showing parameters and sign con-
ventions. A pulse off resonance
signifies that bazoo & 0.

cu+(ijl)

FRKQUE NCY

CPO QPO+ $
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and

/oI + 24&LIe
Z Z y

(d
Q' ~ 0'

~+ 2+o

) c

Appendix A presents Eqs. (10)-(12) in greater
generality for later reference, together with a
short discussion on the origin of neglected higher-
order terms. The slowly-varying-envelope ap-
proximation is justified under the conditions
8((l/8t « Id((I and 88/8z «k8. The resulting equa-
tions (ll) and (12) for the forward-traveling wave
are valid only if b&o/&d «1 and y/oI «1. These
restrictions may be removed and replaced by
next-higher-order restrictions (() Id/&d )s «1,
p/2&v «1, together with zg/cI, I/&oTte, p/cIA,
u/Idtu, I/IdTs, and (I/&d v«1 by simPly making the
followi. ng replacements:

These replacements are valid for 1/&dTg «1.
These changes apply to laboratory frames z and t.
The t transformation need not be applied to plots
given later where the retarded-time axis of ref-
erence t- I)z/c is used. However, the transforma-
tion for z is still necessary. A scattering param-
eter 0 is introduced later in a damping term
—o-,' (8) to be added to the right-hand side of Eq.
(11). This parameter does not affect Eq. (16).

8. Second-Moment Equation
4

An expression for an equation involving d((II )/dz
is derived in Appendix B. The procedure is
tedious but similar to that for obtaining Eq. (16),
except that one works with the z derivative of Eq.
(5) instead of Eq. (3). The scattering-loss term
—a-,' (J) is added to the right-hand side of Eq. (11),
and therefore a term involving v appears below,
to be referred to later. Therefore we have

I.O"

Ch

?
O.S-

X

—ANIPLITUOE—PHASE

(LORENTz LINE sHAPE s(8) ~ Q„yw(8~+8 );
PULSE INITIALLY OFF-RESONANCE-h~~ ca) -~&28avl

FIG. 2. Propagation of a pulse (initially two linewidths above resonance) through a Lorentz-broadened medium. The
initial pulse area is 8O=3. 64. The pulse is initially unchirped and h. s. shaped I.poise shape: sech(g/0. 8)]. In all figure
captions to follow, t is in units of ()A(v. The linear phase shift due to constant wave vector has been subtracted.
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dtd5g(5) a)vli(y )+ z
—a~ + —z'g~ 'g j g (o p g W W 2~5gu

dz T& (oo Tg 2 Tp

+4 '&I )- ——
i + ++(oo & 1 d ~F OV

III. CASE OF AN ABSORBER

A. Evolution toward Self-Induced Transparericy

The ideal limit of SIT can be deduced from Eq.
(16) for no damping and no scattering (T~ = ~,
o = 0). Equations (10) and (11), together with (17),
lead to the conservation equation

d W(5) g(5) d5
~ lO

letting ~o ~a&, Coupling Eq. (20) to (16) gives the
result

(2o)

&(z)l~~, —
&j (z))1- &(0)h~, -(i(0))1

= f' J'" 5t W(5)g(5)d5dz . (21

If (y(0)) = 0 and a 2w h. s. -shaped pulse enters the
medium at z=0, then from SIT, &W(5) = 0, &(z)
= 9 (0), and therefore (p(z)) = 0 for all z. Also, for
TI finite, Eq. (16) shows for a pulse applied at
exact resonance (ha&0= 0) that it is consistent to fix
(p(z)) =0 for all z if (p(0)) = jp(z, t) =0. This will
foUow from Eq. (16) if g(5) is an even function of
6, and therefore permits v and Wto be even in &,

and u to be defined odd in 5, referring to Eqs. (6)-
(12). If p(z, t) 40, these properties of even and
odd in 6 cannot be assigned to u, v, and W. Al-
though computer solutions will show later that a
propagating 2m h. s. pul. se is Stable against phase
modulation for an inhomogeneously broadened sys-
tem, this stability property has not been proved
analytically. The self-consistency argument
above is of no help in this regard.

if (p(0)) = 0 and &~ v 0 [g(5) not symmetric in 5

also has the same effect], or if (j(0))xo and 4+
= 0 (or &0), inspection of Eqs. (16) and (21) shows
that a finite value of (jo(z)) will develop. The pa-
rameters sketched in Fig. 1 relate to Eq. (16) by

- taking &+=coo-co positive for a pulse carrier fre-
quency applied initially below resonance. Equation
(16) implies that d( j)/dz is initially negative if
hu»)(p), y=o, and Ti= ~. From Eq. (2) the aver-
age carrier frequency w therefore recedes from
the resonance line at +~. Similarl. y, this happens
for negative scop when the pulse is applied above
resonance.

In the limit d(p)/dz 0 for z large, Eqs. (16) and
(21) imply that a pulse of initial arbitrary shape
may loose a finite amount of energy &(z) —V'(0)

v'( ) =r(0) z-"'=-',
where

(22)

5b, W(5)g(5) d5dz
&(z)la~o —(P(z)&l

(22)

We let T&= ~. This net energy loss is divided up
into energy which must account for a change in
average carrier frequency and energy which is re-
quired to excite the two-level system. The final
value of 7'(z) might be expected to be zero as
z-~. Indeed, according to Eqs. (16) and (21), a
phase modulation (chirp) develops for nonresonant
imput pulses, and only stationary 2w h. s. pulses
are free of phase modulation. One would therefore
be tempted to conclude the self-induced transpar-
ency cannot develop because it would be unstable
against frequency detuning unless only 2m h. s.
pulses are initially applied to the sample. A com-
puter analysis shows that this conclusion is incor-
rect. Bel.l-shaped-type input pulses of arbitrary
shape and area can produce unmodulated 2m h. s.
pulses, even off resonance, as seen in Figs. 2-5.
The pulse spectra corresponding to Figs. 2 and 3
are, respectively, displayed as a function of three
propagation-distance points in Figs. 4 and 5.
Figures 2 and 3 show that a smaller part of the
initial pulse breaks away at its own velocity c/g,
leaving the remaining pulse portion behind, which
evolves toward a 2m h. s. pulse of width ~, with a
slower pulse velocity V--,' ar ', where e is the
classical absorption coefficient. The delayed
second pulse envelope of Fig. 3 fits a 2m h. s. width
of 2. 5D„& sec, where Oqv is the inhomogeneous
linewidth. The smaller pulse with velocity ( c/ri
possesses a phase modulation which causes its
mean frequency to move away from vo with in-
creasing z, while at the same time its intensity
decreases toward zero. The remainder of the
pulse, which ultimately becomes a 2m h. s. shape,
first shows a tendency3 to pull toward the resonance
at ~0, but finally returns to the original input fre-
quency ~ as the 2m h. s. condition is reached at
large z. The first moment (p) of these two pulses
in combination still obeys the requirement that
(p) initially recedes from &oa with increasing z for
an absorber, according to Eq. (16) (2'z-—~). The
final pulse energy of the 2m h. s. pulse which re-
mains is
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The expressions "frequency pulling" and "fre-
quency pushing" will be used to indicate, respec-
tively, the change of carrier frequency toward and

away from the resonance line at mo. The computer
plots of Figs. 2 and 3 show distinctive trends in
frequency modulation at the leading and lagging
edges of the pulse near z =0. The leading edge
shows that ~+ p pulls away from aro, while the
~+ GI of the lagging edge pushes toward &de. In
fact, for t-+ ~, the tail of the pulse oscillates at
the frequency coo itself. This latter behavior is
justifiable, because the two-level system is left
excited and radiates at its own transition frequency
after the driving pulse subsides. The leading edge
of the pulse shows an opposite behavior because
of a transient nonlinear dispersive effect. For the
slowly rising portion of 8(z, t), where the absorb-
ers respond adiabatically to the field during the
condition 4w»xg, then u is proportional. to g,
B(p/Bz is a constant in Eq. (12}, and (p= 0. The (p

term of Eq. (12}may be omitted in the retarded-
time frame of reference, where t is replaced by
t- ))z/c. As $(z, t) rises rapidly, u can no longer
follow in proportion to g, which means from the
equivalent "precession" picture that the effective
polarization vector, of magnitude zW~/Ide, tends

2 211 /2to precess around an effective field [8 + (tx(d/a') ]

The effective polarization vector produces a pro-
jection polarization component u which now in-
creases faster than g. Dependi~ upon the sign of
tilde, the time rate of change of BGI/Bz is such that
frequency pushing occurs in the beginning of the
pulse. On the other hand, if T2 is very short, and

2(k )/Te is the dominant term in Eq. (16), the op-
posite effect occurs, and the carrier frequency
pulls toward wz for an absorber. This follows
from classical arguments, where line saturation
below resonance (Id «de), for example, causes a
decrease in the refractive index and a correspond-
ing increase in the wave velocity. With 2(k )/Te
dominant for an emitter the opposite behavior is
predicted for short propagation distances. Ulti-
mately the carrier frequency is pulled toward +0
for the emitter case (to be shown later}.

In the case of a Lorentzian absorption line (Fig.
2), with far-out wings in its spectrum, the "fast
pulse" moving at velocity ~ c/)), resulting from the
early phase modulation, has its Fourier compo.-
nents subjected to absorption in the spectral wings,
and will be absorbed quickly after a finite propaga-
tion distance. In the case of a shorter pulse ap-
plied to a Gaussian line (Fig. 3}with spectral
wings not as far out, the pulse modulation occurs
in a much shorter distance than in the Lorentz

—AMPLITUDE

—PHASE

0 2-
lh

z
D
R

Q I- (GAUSSIAN LINE SHAPE G(S) =(I/SxxW)7)exP[-(S/Sxx) ];
PULSE INITIALLY OFF-RESONANCE-h~*ca)-ca)o& Spy)

TIME IN UNITS OF Spy
IQ l5

FIG. 3. Propagation of a
short pulse (initially one line-
width above reso»~ce)
through a Gaussian-broadened
medium. The initial pulse
area is eo = 3.64. 'The pulse
is initially unchirped and h. s.
shaped [pulse shape: sech(t/
0.4)].
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case, because the Gaussian line shape falls off
faster as a function of frequency. In this case the
"fast pulse" is hardly attenuated over a long dis-
tance because it has Fourier components mostly
outside of the Gaussian line spectrum.

The general behavior of a "fast pulse" separatirg
from the mean pulse remains qualitatively the same
when the pulse is applied initially far off resonance.
In the case shown in Fig. 6, the initial frequency
of the pulse is four linewidths away from the ab-
sorbing line. Since the Fourier components of
the pulse and the absorbing line overlap much less
in this case, the propagation distance required to
form the 2m h. s. pulse is much greater. Figures
7 and 8 show plots of pulse energy, average car-
rier frequency, and Fourier amplitude versus dis-
tance z for the two cases plotted in Figs. 2 and 3,
respectively. Again, for reasons of greater over-
lap between pulse and line spectrum in the Lorentz
case than in the Gaussian case, there is a faster
returnof ~„toward ap in Fig. 7 than in Fig. 8, al-
though the approach toward a 2w h. s. pulse is con-

versely slower. No clear dynamical argument
can be given to explain the latter. Energetically
one might argue that more pulse energy remains
available in the Gaussian case to be converted more
rapidly into a 2m h. s. -shaped pulse.

From our computer data (not shown in any of
the figures) we find that the stabilization of the 2s
h. s. pulse at the original frequency e occurs over
a narrow time region during the pulse, where the
average value of 8' switches sign. The average
of N is then near its maximum value and is momen-
tarily proportional to the field $(z, t), when W
passes through zero. It is around this time point
that the symmetry of a future 2w h. s. develops,
when the transition from induced absorption to in-
duced emission takes place.

B. Small- and Large-Signal Behavior of d(y)/dz

Expressions can be obtained for the initial rate,
d(p)/dz I&~ at z= zo, where $(zo, t) and jo(zo) are
given, and T~ = ~. The approximation

(LORENTZ LINE SHAPE gS) = Sgv/)y'(Sqq+ 8 );
PULSE INITIALLY OFF-RESONANCE -A~ = ru-~= 28~„}

Z
CURVE IN UNITS

0—
-2

(Mo)

FREQUEN. CY IN UNITS OF Spy

FIG. 4. Fourier amplitude of the pulses shown in Fig. 2 for three propagation&istance points. 0.'(~}is the absorp-
tion coefficient at initial frequency co.
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J W(6, ze, t= ~)g(()) d6 ™We
mes

can be made if $(ze, t) is small. Equations (8) and

(9) yield the solution

Introducing a 6 function for the inhomogeneous
broadening, and combining Eq. (27) with Eq. (16),
one finds the weak-pulse sharp-line limit for the
frequency pushing to be

~
N(ze, ba&, t = ~) —iv(ze, 4v, t=~)

~

~

~

e
gW -elide)'t'-w )] df (24)

co

In the small-signal approximation, it follows
that

W —Wp =2WphW

from the conservation relation

= 2 v «oeF (4&ac)
dz g 'QC

(28)

where F(&)= (I7c/4v)18e(A) I /g is the normalized
spectral power density. All terms in (28} are un-
derstood to apply at z= zp. The initial frequency
pushing can also be evaluated analytically for an
inhomogeneously broadened line in the weak-pulse-
signal approximation. Suppose we choose a Gaus-
sian pulse spectrum

W2+ + v2 W2 (26) (29)

Therefore, combining Eqs. (24), (26), and {26)
gives

4W= ——,(zeWo)l $(&~)
I

(27)

where g(4&@) is the Fourier transform defined in

Eq. (4) a,nd h&o here is redefined as 4+=a&e —&u

—(j(z,))+ ().
(3O)

where 6 is the assigned area of the pulse and v is
the pulse width. The inhomogeneous spectrum of
g(&) given by Eq. (13) is chosen in evaluating the
integration over 6 in Eq. (16). The result is

d(p) yfe/z We 1, $ ~ +Be
p'rS e

dz g ( gc ]Cp

LU

O
D

Q.
1T-

Z
CURVE IN UNITS OFa"(u))

I 0
2 0.4

{GAUSSIAN LINE SHAPE

g (8) = (Ik,„~a)exp [-(8/3,„)');
PULSE INITIALLY OFF- RESONANCE

-d(uo= ~ u)o = 8av)

-I O
{~) 4))

FREQUENCY IN UNITS OF Q~

FIG. 5. Fourier amplitude of the pulses shown in Fig. 3 for three propagation-distance points.
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where

r.*
(y g 2+ vz)1/8

The maximum of this function (at «sory = I/s&2} is
proportional to 8~. The highest "frequency push-
ing" occurs therefore in the sharp-line limit
(s =1).

In the ease of weak pulses, d(p)/dz li does not
depend on the amplitude of the signal, as can be
seen from Eqs. (28) and (30). This is no longer
the case when the small-signal restriction W'- S'0
is removed. Equation (16) was solved by numer-
ical integration for various pulse shapes and am-
plitudes. The function below gives a simple fit to
the computer plot, where h. s. pulse shapes are
chosen to be unchirped:

the general function s(d,&uo, v), nor could we derive
analytically the e dependence of (32) from Eq. (16).
The oseiBations of d(jo)/dzI, as a function of 8
become damped in the case of applied asymme-
trical pulse shapes (Fig. 9). The periodicity in
the integer s(e = 2nv) which holds in Eq. (23) has
disappeared in the case of a doubly humped pulse
(Fig. 10).

The frequency pushing for unchirped-input h. s. -
shaped pulses of area m was calculated for a Gaus-
sian and a Lorentzian line at various values of
4coo off resonance, and plotted as a function of the
pulse width in Fig. 11. The general behavior of
the curves agrees qualitatively well with the case
of a Gaussian pulse given by Eq. (30).

C. Influence of Initial Chirp

ds
l 4O

s W 1 —eos8)= g 4Qlo~ T (32)

The dependence of d(cp}/dz lgo on other pulse shapes
is more complicated. No analytic fit was found for

As shown in Figs. 12 and 13, the magnitude of
d(p)/dz at z= zo is strongly affected if initial phase
modulation y(zz, f) or chirp exists in the applied
pulse. The general behavior of the curves can be
understood in terms of the weak-pulse approxima-

E
CURVE IN UNITS OF

co (calp)

I 0

I

I

I
t~

asj
I

I
(GAUSSIAN llNE SHAPE

-IO «4
{cd)

-IOI
Au)

IO

FREQUENCY IN UNITS OF $~„

FIG. 6. Propagation of a pulse (initially four linevridths above resonance) through a Gaussian-broadens(I medium.
The Fourier amplitude spectra are shorn for five propagation~stance points. The initial pulse t1) is unchirped and
h. s. shaped tinitial pulse shape: sech(t/0. 12)].
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tion applied in Sec. IIIB. For a given 4,&0 off
resonance, Eq. (28) shows the frequency pushing
is maximum if the pulse spectrum has a peak at
the line frequency. This occurs for the phase
amplitude parameter g ~+ 3 in Fig. 12. For a = 0,
frequency pushing is a minimum, With initial
chirp, these cases show that d(y)/dz is always of
the same sign, signifying frequency pushing (with
T, = ~). This is in contrast to the results of Figs.
7 and 8, where the sign of d(p)/dz is seen to change

during propagation, when no initial chirp is pres-
ent. The choice of symmetry of the pulse modu-
lation function y(t) relative to the pulse envelope
function g(t) is critical in determining the nature
of d(y)/dz. If p(t) is in advance of $(t), it is
strongly affected, as shown in Fig. 14. In the
case of Fig. 15, d(p)/dz is shown to reverse sign.

Computer plots, similar to those shown in Figs.
2 and 3 for no initial chirp, show that self-induced
transparency will occur in spite of the presence of

MI-
z
Z
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K
4J

4J

+
3
o 0.05
UJ
D
LLI

LIJ

—,p(u)) 0
V
z
+ -3(~2

FIG. 7. Pulse energy, mean
carrier frequency, and Fourier
amplitude (at u) as a function of
propagation distance for the case
shown in Fig. 2. f Lorentz line
shape g(6) = ~Av/~~~Ay+& ); pulse
initially off-resonance —6Q) p
=co-a

0
-—26AU i

LIJ
O

0

K
LIJ

K
D
O
4

0 I I I

2 4
DISTANCE IN UNITS OF a '(ru)
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initial chirp. Figures 16 and 17 show the evolu-
tion of an applied chirped pulse with its average
frequency at exact resonance mp. It is remarkable
that the chirped pulse remains at resonance. For
this to occur, the function hW({)) must be an even
function of 6 for all symmetrically chirped pulses
at resonance. We could not prove this property
analytically, but accurate computer calculations
of this function for h. s. -shaped pulses with Gaus-
sian phase modulation at exact resonance showed
that &W({))was indeed an even function of {). In
the case of a symmetrically chirped pulse off
resonance, a 2m h. s. pulse ultimately is formed
at frequency co. As in the case of off resonance,
the chirped pulse at average frequency ~p splits
into two parts with increasing z. The pulse por-

40

O

R 4-
C9

5
LLJ 2
LLJ

d8(z) ~a . 8( ) (33)

tion earlier in time contains the enhanced phase
modulation, while the later remaining pulse por-
tion evolves toward a 2w h. s. pulse at the central
line frequency. Compared with pulse modulation
of the input pulse, the earlier pulse portion de-
velops a much larger phase modulation with in-
creasing distance. This is seen in terms of
Fourier components which peak symmetrically
about the resonance line, but overlap the wings of
the resonance line spectrum only slightly. While
the 2m h. s. pulse is expected to propagate without
loss, the phase-modulated pulse will propagate
with anomalously low loss. With increasing dis-
tance the Fourier component of the "fast" pulse at
~p approaches zero as the pulse modulation in-
creases. The "fast" pulse is therefore attenuated
at a slower rate, which is similar to the same ef-
fect which occurs in "zero-area" pulse propaga
tion. '

We remind the reader that the area theorem

with

X
D
O
LLJf ))(~)o

hIJJO

Z
~Jl~)

8(z)=» 5 g(z, f)df, (34)

8me~ P ~g(0)
Op=

is invalid in the presence of continuous phase
modulation. The linear absorption coefficient at
resonance is defined as

3

I-

rr-
R
O

00
I I I I

2 5 4 5
DISTANCE N QUOITS OF a (caI)

FIG. 8. Pulse energy, mean carrier frequency, and
Fourier ampj. itude (at or) as a function of propagation dis-
tance for the case shown in Fig. 3. [Gaussian line shape
g(5) = (16~&v z ) exp [- (i5/i5~~) j; pulse initially off reso-
nance —&oro = or —oro = 6~vj.

Equation (33) may be applied to the case of zero-
area input 8(0)= 0 if the carrier is always nomi-
nally at constant frequency ~+ but subjected to a
sudden phase shift of w at z= 0, so that 6(0)
=8(z) =0.

D. Off-Resonance Threshold for SIT

The process of phase modulation for a propagat-
ing pulse initially applied off resonance is inevi-
table (unless it is initially a 3»h. s. pulse) during
its evolution toward a 2n h. s. pulse. In this case
the question remains as to what the initial thresh-
old area 8,(0) should be, above which SIT will
occur. In the on-resonance non-phase-modulated
case, 6, (0) = ». Off resonance, there is strong
evidence that 8, (0) & w is allowed. Here 8, (0) is
determined by pulse shape and the off-resonance
parameter 4app, whereas there is no such depen-
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FIG. 9. Product of pulse energy
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as a function of initial pulse area.
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)Cg(t) = (I~) SECH (t~)
q)(t)= O

(t IN UNITS OF SAy )

GAUsslAN LINE sHAPE g(8) =(I/8A„/Tl)exp[-(8/8A„) ]
LORENTZ LINE SHAPE g(8) = SAy/IT (SAy+8 )

hcuX = 0.5

0.5

(A

Z'

FIG. 11. Initial frequency pushing
for input h. s. -shaped n pulses (un-
chirped) as a function of the amount
off resonance (n(x)g) and Pulse width
(7). The value of the product rkop is
indicated.

A
~g N
V 'O

O. I

0
O. OI O. I

PULSE WIDTH W IN UNITS OF 8~v

dence for the on-resonance case.
Integration of Eq. (11) yields

de 2 war
dt tI(8, z, t)g(8) d8

dz roc
~x ac[I

Figure 18 plots numerical values of d8/dz from
Eq. (35) for increasing values of 6, but with the
restriction that the pulses are always h. s. func-
tions in shape. Care was taken to define correctly
the phase and frequency of the polarization at the
end of the pulse, where the dipoles begin to radiate
at their natural frequencies. The first intersection
of the d8/dz function versus 6 with positive slope
at d8/dz= 0 gives the value of 6, (0). Other pulse
shapes give similar results, indicating that 6, (0)

Allowing for naturally changing pulse shape
may or may not contradict this behavior. How-

ever, the validity of 6, (0) & z behavior is favored
from evidence given by the computer plots of Figs.
6 and 19, where changiag pulse shape is taken into
account. Figure 6 shows the change in Fourier
spectrum versus specific z values for 8(0) = 0. 99s,
and Fig. 19 shows a similar behavior for 6(0)=2.
The peak of the Fourier transform increases
monotonically with distance, and particul. arly at

--- -&~ = ~- fa)o = SAy/2

~~o=fai ~o= 2~Ay

K S(t) = I /'0. 87T) SECH (t/0. 8I

(8 =I)

I)I(&) = a exP [-(I/I 2) ]
GAUsslAN LINE sHAPE g(S) a(I/RaqW)exp[-(8/SAxI) ]

l.5—

N
4

I.O-
ViI-
R

K
o, 0.5

A
~ Q eeD //

O.I—
0 I

-20 -IO IO
I

20

PULS E CHIRP AMPL IT UD E COEFFI C IENT 0

FIG. 12. Initial frequency pushing for a symmetrically
chirped pulse off resonance, as a function of the ampli-
tude (a) of the chirp. The resonance line is Gaussian
broadened.
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FIG. 13. Initial frequency
pushing for a symmetrically
chirped pulse off resonance, as
a function of the amplitude (a)
of the chirp. The resonance
line is Lorentz broadened.
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a very low rate for large LL~D. The computer plots
show that e, (0) & tt only occurs for input pulse
widths T & (6Av) Te.

IV. CASE OF AN EMkr-m;R

A. Computer Results with Inhomogeneous Broadening

The choice of a plus sign in the definition of
W(6) in (14) corresponds to an amplifier. There-
fore AW(6) is negative and finite for all z in Etl.

(16). For Tx=~, a=0, and specified initial con-
ditions off resonance, computer plots in Figs.
20-22 show, respectively, (y(z)) versus z, 8(z, t)
and Ia(z, t) versus t for specific values of increas-
ing z, and g(A, z) versus fI for specific values of
increasing z. As dictated by positive d(lp)/dz
from Etl. (16), Fig. 20 shows that &o+(y(z)) ap-
proaches ~0 with increasing propagation distance.
The 8(z, t) envelope develops oscillations during
the approach, and the Fourier transforms g(Q, z)

o O.OI 5—
$7i

y) O.OIO—

D
x

O
II
H 0.005—

~Q' NQD

-i54ly= 4)-GJ = 4 SAy
){'E{t)= {I/O.6Tr) SECH (0 6 )
(e= I)

(Jl(t) =+ 0.2exP [-( 2 ) ]
(t IN UNITS OF /Ay)

GAUsslAN LINE sHAPE g(8) = (I/gA&/Tr)exp[-(S/gA&) ]

/
//

/
/

/
/ /

FIG. 14. Initial frequency push-
ing for an asymmetrically chirped
pulse off resonance, as a function
of the time position t~ of the chirp
function f{{)(t,g~) with the amplitude
of envelope 8 centered at g = 8; the
case of a symmetrical pulse chirp
corresponds to g~ = 8. The line
broadening is Gaussian.

O.OOI-
O

4
I I

5 6 7
tII IN UNITS OF LAv

l
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show the development of bumps on either side of
v+(jp(z)). At d(jo)/dz=0 for large z, it can be
postulated from (16) that ((p) = Atua if AW(6, z) and

g(6) are even functions of 6, or if 6=0 (sharp-line
case, no inhomogeneous broadening). This on-
resonance pulliag effect, accompanied by complete
disappearance of phase modulation y(t, z-~) =0
at (p) = b,&0, has been confirmed by Hopfx in a
computer analysis of the inhomogeneous-broaden-
ing case, taken up to large values of z. At the
emitter resonance frequency the pulse is character-
ized by a Fourier amplitude of m at exact reso-
nance, and by symmetric Fourier components '

greater than n on either side of wo.

B. Steady-State Propagation

Although a form of equilibrium has been spec-
ified by d(y)/dz-0 as z- ~ during propagation,
there is an indefinite power increase

gc d8~
4m' dz

A scattering parameter e is now included so that
finite pulse energies &(z) may be reached. The
case of homogeneous broadening is first consid-.
ered. The equilibrium conditions to be applied to
Eqs. (16) and (19) are as follows:

(dz dz dz dz &T

(ovSdt-e 8 dta

(37)

~&= /~wf,
where &o =too with use of Eels. (10) and (17). It
follows that

A QJO = (d GUO = 4 SAy

KE(t) =(e/0. 6TI) SECH ( 0 6 )
(II (t ) = - 0.6 ex p [- (

I
&" ) ]

(t IN UNITS OF SAV)

,le =I
IGAUssIAN LINE sHAPE g(8) = (I/SAyyITr)exp [-(8/SAy) ]

O.OI—

O 0.005—
MI-
Z'

)LORENTZ LINE SHAPE g(&) = &Ay~(SAy+8 )

FIG. 15. Initial fre-
Quency pushing for asymme-
trically chirped pulse off
resonance, as a function
of the time position t~ of
the chirp function y(g g~)
with the amplitude of enve-
lope 8 centered at )=8;
the case of a symmetrical
pulse chirp corresponds
to t~= 8. The line broad-
e~&~ is Lorentzian for 9=5
and Gaussian for 9=1, with
p(t) common to both cases.
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FIG. 16. Propagation of a
chirped pulse at resonance
through a medium which has
Gaussian line broadening. The
initial pulse area is ep=3 64.
The initial pulse has h. s. enve-
lope [sech(t/0. 4)] and a Gaus-
sian phase modulation [y(t) =
0 8 &

t/0. 42]

IS &«OO

Wtt'dt=-o ~ tg'dt .
etc I

~& « «co

I
After eliminating the term containing (k ) from

(19) by using (16), and adding —(&I&&)~ to both sides
of (19), the equilibrium condition is found to be

(36)

q=&j'& &i&' -Q-+ ~a-+&~~=a &&&&')-
2

P
oo 8
O
lh

2 4

R
2

o I I I I I I I I I I I I I

The mean-square frequency deviation is defined
only for q~0. For the medium gain to compensate
scattering losses, the weighted averages of W and
—W over g2 must be net positive.

If q &0, chirping is defined as possible if the
pulse intensity 82 is sufficiently large that the in-
tegral in (39) will dominate as a positive term, to
make the right-hand side of (39) net positive. The
condition (39) would also allow the existence of two
or more pulses or of complex pulse shapes, and

yet permit that widely differing spectral frequencies
should average together to give q &O. The term
I/v "an be replaced by the more general expres-
sion given by (7).

If q=0, then (&&&&~) =(&I&&)~, and there is no frequency
modulation. Applying (36) to (39) to eliminate W,
and defining the mean field intensity

I-

IL 7l'—

o&
0

l t 1 i f I

5 IO

DISTANCE IN UNITS OF erg)

FIG. 17. Pulse energy and pulse area (defined here
as the Fourier amplitude at resonance) as a function of
propagation distance, for the case presented in Fig. 16.
(Gaussian line shape g(6) = (1/6+v v x ) exp f —(5/5&v) ]).
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(gg) l~ 8 dt
f" tf'dt

(39) reduces to

x'(&')
+«Z,

~

8'Wdt= p+ Z
we

(4o)

and

1 t8 = sech—
K'TQ TQ

1 1 t'
W= W,o

TP TQ TQ

(41)

(42)

where

T I 0 I
TQ= O' = —Tp t =t-z

Q C

4«'WQTa
0'p—

(43)

Previous investigators have obtained a steady-
state m h. s. pulse envelope solution which satisfies
(40), and propagates at wave velocity V = g/c.
The pulse envelope is given by

We note that if (41) is substituted into Eq. (16) as
an initial pul. se under the assumption that the
carrier is off resonance by a small amount gawp,
the carrier frequency will pull toward arp during
its rise time, provided that o & 8oo/(8+ v'). This is
a condition for phase stability if a m pulse is to ap-
pear at exact resonance. It is independent of
small 4~Q because the frequency-pushing and
-pulling terms in (16) are then each proportional
to 4+Q, which cancels out. The stability test ap-
plies for initial @=0and for —~~t~0. The con-
dition for initial amplification of the input pulse is
specified onl.y by e& e.

In Appendix C steady-state conditions for pul. se
propagation in the emitter case are presented
without the use of time averages. Wave and pulse
velocities must remain constant for all z and t.
In the case of pure homogeneous broadening, if the
wave velocity is to be fixed at V = c/p, there can
be no chirping and the carrier must be at resonance
(du&0= p). From the phase factor of Eq. (1), the
wave velocity is defined as

++p
n (sq/s—s) (44)

at z and t. Therefore at equilibrium if

where ep is the linear absorption coefficient at
resonance for a homogeneously broadened line. v =--~QP

c

d

dz

tr I
I

f

FIG. 18. Initial area in-
crease de/dz as a function of
e for various amounts off re-
sonance. The input-pulse
shape is sech(g/0. 12) (unchirp-
ed). The line broadening is
Gaussian. The amounts off
resonance are two linewidths:
2~~v~otted curve; three line-
widths: 36&v~ashed curve;
four linewidths: 44~v —solid
curve. de/dz is in units of
~Av &p/2'(0).
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FIG. 19. Propagation of a pulse (initially four linewidths above resonance) through a Gaussian-braodened medium.
The initial pulse has area 2, is unchirped, and is h.s. shaped [initial pulse shape: sech (t/0. 1)) . The Fourier-ampli-
tude spectra are shown for three propagation-distance points.
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FIG. 20. Propagation of a pulse through an inhomogeneously broadened amplifier showing mean carrier frequency vs
distance. The line broadening is Gaussian. The initial pulse is h.s. shaped [sech(t/0. 8)], of area 0.5, and one linewidth

(4A ) below resonance.
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FIG. 21. Pulse shape and phase modulation as a function of propagation distance, for the case of Fig. 20, at four
distance values. Field amplitude 8 and phase p vs time.

then Bp/Bz = 0 must hold at resonance. The slight
change in g due to host-medium dispersion is
neglected. If

V 4~=const
u

is allowed, the existence of chirp is possible within
the restrictions imposed by Egs. (Cl) and (C2) in
Appendix C, applicable only to the case of homo-
geneous broadeniag. If inhomogeneous broadeniag
is included together with homogeneous broadening,
it is possible to have

0

v
k k —{Bg/Bz)

so that

kp
COp 8Z

must be true at resonance. Now p is no longer
constant, but keeps track with the profile of the
propagating pulse. In Appendix C it is shown in
the case of pure homogeneous broadening, when
V„=c/g(1+ co/&og) ~zoic/g, that a chirped steady-
state solution exists for a pulse at a mean carrier
frequency T~' sec ' above resonance.

For any existing chirp, the uncertainty relation
[ (Q ) -(y) ]T &1 would pertain to a pulse of width
v, where (fl ) is defined in (6). The observed
variation in pulse outputs of laser pul. se outputs is
usually attributed to the effect of nonliner changes
in host-medium refractive index g, owing to high
laser pulse powers, for example, from neodymium
glass lasers. Our observations suggest that the

nonlinear response of the two-level system itself
might be a significant contributiag factor.

27r- C
Oe
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O
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p I
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FIG. 22. Amplifier off-reso»~ce: Fourier-amplitude
spectra for six propagation distance. (Gaussian line
shape g(5) = ~1/'6Av~~) e~ & &~/~hv) ]l pulse initially off
resonance Geo& ——(A) -u = g )

C. Pulse Evolution with Homogeneous Broadening and e 4 0

Computer calculations show that the pulse carrier
frequency in the emitter case approaches the
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resonance at ~o. %e have chosen a few examples
here which take into account scattering and inco-
herent damping parameters 0 and T~, but not in-
homogeneous broadening (5= 0). According to the
previous discussion, Fig. 28 shows what is ex-
pected typically. Here the pulse energy K(z) at
s-10ao begins a slow approach toward a constant
value at s= ~, while the carrier frequency slowly
approaches &uo. The shape of 8(z, t) at the same
time (not shown) approaches the w h. s. shape given
by Eq. (41). Figure 24 demonstrates that an in-
itially applied pulse of greater width (T~ sec) ex-
hibits a different history before the final slow ap-
proach begins. The guise envelope and its Fourier
transfox m are plotted in Figs. 25 and 26 for various
propagation distances. Although the pul. se ulti-
mately approaches the solution of Eq. (41) at reso-

nance, there is an initial approach and then reces-
sion of the carxier frequency towards and away
from ~0. A curious breakup into multiple pulse
structure appears after the recession away from
resonance. With the same pulse parameters used
in Figs. 24-26 but applied off resonance by Tz'/
10 instead, and with greater scattering )oss, the
pulse seems to stabilize over a longer distance in
the off-resonance condition [and with shape and
phase modulation quite different from the w h. s.
solution of Eq. (41)]. For this case Fig. 2V shows
f' and A&so-(p) versus z.

D. Effect of Higher~er Terms on Pulse Propagation

For no scattering losses, the right-hand sides
of Egs. (11) and (12) indicate that significant
changes in rates 88/sz and sy/sz are of the order
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I:G.23. Propagation of an initially short pulse through a homogeneously broadened amplifier. The mean-square
deviations, the mean carrier frequency, and the pulse energy are plotted as a function of propagation distance. The
h.s. m pulse expressed by Eq. (41) has an energy corresponding to ST &~ for z& 10 0.

&
. [~=~-co=T&~, 0=&o/5; initial

pulse shape &8 (t ) = (T2 «/0. &) sech (t/0. 2T2)].
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of a(ar)$ and pa(co). Neglected higher-order rates
are smaller by factors of 1/~ Tz, («o/&o)~, p/&u,

and zg/&o, whichever is dominant. Our computer
results show that steady-state pulses form in dis-
tances of order n (ap) in an absorber, and of the

order of 0 in an emitter, taking cr«e. The

neglected higher-order terms would influence the
"short-distance" steady-state pul. ses over extreme-

ly Large distances of order &usa, (&u/&~, ) a ',
(~/p)o. ', or (&o/zS)a ', whichever would be the
shortest.

In the case of SIT, computer analysis shows

that a 2w h. s. pulse is stable against smat. l chirps

and changes in shape. These perturbations are
eliminated in distances of the order of e '(&o). The
effect of the higher-order terms is to shift the pa-
rameters of the 2m h. s. very slowly into param-
eters of another 2m h. s. pulse. As the pulse en-

ergy diminishes with propagation distance, the
pulse width increases to maintain the pulse area
($0&) a constant. The higher-order terms there-
fore cannot be the cause of exceedingly short or
"preferred" pulse widths (even when the pulse is
on resonances) evolving from longer initial pulses.
The tendency is instead for such pulses to become
even longer instead of shorter because of losses.

IER FREQUENCY
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&G. 24. Propagation of an initially long pulse through a homogeneously broadened amplifier. The mean carrier
frequency and the pulse energy are plotted as a function of propagation distance. The h.s. r pulse expressed by Eq.
(41) has an energy corresponding to 18T2, for z»40 O, p, [L(dp=Gop (d =T2 ~ 0'=+ p/10' initial pulse shape +8(t )
= (T2 /r) sech (t/T2). ]
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This argument applies as well to pulses of initially
large area which break up into separate 2m h. s.
pulses before the higher-order terms have effect
after the pulse breakup. ~'9 As a given pulse width
increases with propagation distance, it approaches
the value of l' because of homogeneous broaden-
ing. At this point the pulse not only begins to be
rapidly absorbed but also pull. s in frequency to-
wards resonance. '

V. CONCLUSIONS

A phenomenological and computer study is pre-
sented of the distance dependence of the carrier
frequency of a pulse propagating through a two-
level system for absorber and emitter cases under
selected conditions of line broadening. The aver-
age frequency and spectral alterations of a single
pulse show correlations with initial conditions of
carrier phase modulation, where the average car-
rier frequency is initially on or off resonance.
With only inhomogeneous broadening present, the
average carrier frequency of a propagating pulse
in an absorber initially pushes away from reso-
nance. The pushing occurs at the greatest rate
as a function of distance when the pulse is off

resonance by an amount of the order of its inverse
time width. Initial pulse areas in the vicinity of
2m or less show a breakup into two pulse groups
with increasing distance of propagation. One of
the pulses evolves toward a 2m h.s. pulse with slow
pulse velocity, not phase modulated, while the
other faster pulse decays away with a high degree
of phase modulation, pushing progressively away
from resonance. The net effect is that the average
carrier frequency initially pushes away from res-
onance. After some distance of propagation the
average frequency turns around and pulls toward
resonance as the remaining 2m h. s. pulse takes
shape, heading toward its original input carrier
frequency. Therefore the ultimate formation of
a 2w h. s. pulse off resonance requires a process
of phase modulation during initial propagation. As-
sociated with this process, computer calculations
indicate that the threshold area for self-induced
transparency is less than m, true only for short
input pulses (v &

T& ) applied initially off resonance.
Experimental evidhnce in support of these com-
puter results will be presented elsewhere.

In the case of an emitter, the pulse carrier is
inevitably pulled to within the resonance line, which

l

IO I
TIME IN UNITS OF Tg

/
/

FIG. 25. Pulse envelope (Mnplitude &8 and phase p) as a function of propagation distance for the case of Fig. 24.
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is true also for a propagating continuous carrier
wave. With damping present owing to homogeneous
broadening, the average frequency may be tem-
porarily pushed away from resonance over a finite
distance. The pushing never occurs if the line is
purely inhomogeneously broadened. A chirped
pulse in steady state has been found anaiyticaily,
without proof of uniqueness, to exist at an aver-
age frequency of one linewidth above resonance.

A description of average values of frequency
modulation during pulse propagation is introduced
in terms of first and second moments of frequency
deviation of the pulse carrier frequency. Dif-
ferential equations for the distance dependence of
these moments are an aid in describing trends in
pulse evolution and boundary conditions on pulse
shape, dipole energy, pulse energy, and average
carrier frequency. Our results are confined to
an. .analysis of second-order phase-modulation ef-
fects which occur in the slowly-varying-enve)ope
approximation. Backscattering is also neglected.
It would appear that over long distances of prop-
agation these neglected higher-order effects might
become cumulative and therefore important. How-
ever, the average of cumulative first-order effects
which we consider in the case of the emitter far
exceed the neglected higher-order effects. The
neglected higher-order effects are in a sense un-
important because they cannot become cumulative

for an absorber and leave an imprint on propagat-
ing pulses. They result instead in irretrievable
energy losses. %e have shown fxom our computer
results that a perturbation in shape or in phase
modulation is ebminated from an input pulse, lead-
ing to a 2m h. s. pulse within 'first-order dis-
tances. " For long propagation distances one can
say that the 2m h. s. shape is quasistationary,
meaning that it slowly loses energy because of the
highex-order terms. During this process the Bm

area of the pulse remains essentially constant
while the pulse width increases and the pulse am-
plitude decreases. In real. physical situations, as
the pulse width increases toward a value Tz, the
pulse wil. l then be rapidly absorbed. The propaga-
tion over extremely long distances does not allow
for the existence of a stable pulse width associated
with self -induced transparency.
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In the text only incoherent damping caused by
loss of phase memory is included by the T~ time
constant, The parameter T~ may be considered
to include effects of population changes in the levels

[-ncuo = e-&a& T~; cr co/Io]
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FIG. 26. Fourier plots at four distance points corresponding to the case of Figs. 24 and 25.
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W- WoW=+&Sv- +R
Ti

(A1)

where Wa= (~N}k&u~(B) is the ground-state equili-

as well (i.e. , spontaneous emission or collision
effects) by introducing the relaxation-time constant
T, into Eq. (10). Left by itself, the system would
then approach the equilibrium internal energy W~.
Inclusion of some pumping mechanism allows the
introduction of a pump term R, which replenishes
the population of the excited state sufficiently to
overcome the I/T, rate for decay to the ground
state. Therefore Eq. (10) would be written

brium energy. The initial energy of the two-level
system at t = - ~ would then be

W(B) i, „=RT, —(g N)R(o() g(B)

For the case of the emitter in our discussions we
chose RT, =Nffu&0 g(B), so that W(B) I, =+ I WO(B) I.
During the action of a pulse over a short time T,
the effects of I/Tq and R are considered negligible,
and therefore are not included in Eq. (10).

Equations (11) and (12) are the slowly-varying-
envelope approximations of the following wave
equations:

g pg pg ( ay~ rp ~, 4w ~ ~ 10 t'n~+g
~

k —— (~+ y) = ~ [(&o+ rP) u —2((o+ y)v —yv-ulg(B)dB-~
I, c (A2)

rP By BP Sp Sg 2$ ~ ~ ~ OO

g — +2 k ———+ q (&+ P)g —p.
~

[(v+ P) v+2(&o+ P)u+ yu —i.
'

JR(&)dBc' BP Bz Sz Sz c
~ go—(&+ 0) c (AS)
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FIG. 27. Propagation of an initially long pulse through a homogeneously broadened amplifier. The same initial pulse
is used as in Fig. 24, except that it is T2 /10 sec off reson~ce instead of T2 sec, and the scattering loss is
doubled. The inverse pulse width remains large compared to [(1/0 )x (1-e/T2)j [below Eq. (42)]. [~0=~-~=-T2 /10;
0'=&o/5; initial pulse shape &8(t ) = (T& /n') sech(t/T2). ]
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Making use of the first two equations (8) and (9), in the approximation that

1
Co T2

(h(g 2 1

k &u
' (dTa+ ' 2 2 y 8 g

2v((u+ 2t~(up) l' (5) d5
gc

Eqs. (A2) and (A3) reduce to

(ey q .
S!—+ —

y =-
(es c

The first term on the right-hand side is

dt = —o f'(y')
4w 8s

and

Bg 'g 2%((0 + 2&&Op)
+ —8=—

APPENDIX B

Second-Moment Equation

00 r
dt

l

0 Wg(5)d5
(dp

(B2)

using Eq. {11)with inclusion of the scattering
term —p (a'J). Using Eq. (12), the last term in

(Bl) is expressed as

The following derivation is carried out in the
retarded-time frame.

From the definitions given by Eqs. (5) and (17)
the following derivative is written:

—(&(p')) = — y' dt+ —' 8' dt .d ~
2 gc "

~ eg2 gc~ 2 ep2
dz 4m ez 4m „Sz

(Bl)

00 ' '~ S'dt
2m „ez

r

~

~

(m — pp&) g(5) d5 (B3)
«OO «00

For the second term of (B3), using Eq. (9) and

integrating by parts gives

dt (up)gg{5) d5= ~ ' dt v+ + &&au+ —Sg(5) d5
K2$R' V

COp T2

dt vS+ + —~+NB g & d&
K2ggW VS

c «oo «00
(0 Tp 2

For the various terms of (B4), again using Eqs. (8)-(10) and integrating by parts, we have

00 r ao g r ( ggg(5)d5=-I dt! —h~(h~ —p)W- (b~)l ~ g(5)d5
(B5)

!
POO P 00 gg(5)d5= v I, dtl —

~ g(5)d5
2 &p

Cl «40

l
«(&~- p)+ + g(5)d5 .co ~ K 2g2TV SV

&p „ hip T2 (B8)

introducing the definition of the pulse width given by Eq. (7) into Eq. (11), and taking into account the
scattering term e,

g dt = —(el dt I Svg(5)d5 —&d (V' qc d
dz gvz 4v dz

or
d (V'

coI! dt l «g(5)d5= —
d llP (B7)
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And finally, we have

dt (
a' ggWg(5)d6=+ —

I~ dt ~ z W g(5)d5 = ——
~ dt z g Wg(6)d5

1 4 Sg 1
st4 m40 4 4l 40 4 4 ~40 a 40

(B8)

The relations (B5}-(B8)are introduced into (B4).
Equations (B3) and (B2) are thus determined, which
apply to (Bl). After subtracting

&~') —=- &~')- —"
~~

(q)'AWg(5)d5 (B9)
dZ ('dp

g'V'„4~V'.
(
I —

~ 8= p ii ug(5)d5,
m 40

(C1)

~8 rt' 24V.
sz c c
—+ —V 8=—,(o

i
vg(5)d5- 8neV

2c

( 1
=( ——+~ v. 8

V
(C2)

These equations describe only the propagation in
steady state. The term —(1/V)g on the right-hand
side of (C2) indicates that the envelope or "pulse
velocity, " given by V, is also a constant not neces-
sarily the same as V in the absence of a chirp.
The steady state would require V= V„ if a chirp is
present. A steady-state dispersion rel.ation is
found by combining (Cl) and (C2) with Eq. (8):

y&o p+1 2euT f"„zv(5)g(5) d5
2 y p —-', ('6co Tz) [y p ——,

' ('gcoTz)] 8

from (Bl), Eq (19.) is the final result.

APPENDIX C

The wave velocity V defined by (44) is a con-
stant velocity at which the phase modulation must
also propagate if a steady-state pulse is to exist.
From Eqs. (A2) and (AS) of Appendix A, retention
of terms V' and V'2 and dropping other higher-
order terms gives the following equations:

resonance (p= As&4) in the sharp-line limit for
V„=c/'g (y= 0), while off resonance it would be
chirped for V 4c/r}. The average frequency of the
carrier is defined as ~ for all t. With inhomo-
geneous and homogeneous broadening present sim-
ultaneously, chirping is generally possible within
the constraint imposed by (CS) and Eq. (39), where
q & 0. In a proof of the uniqueness of an on-reso-
nance 4 pulse (inhomogeneous broadening absent),
the possible dispersion of the resonant medium
was excluded by assuming V =c/r} [Eqs. (19) and
(38) of Ref. V„Arrechi et at. ], thus reducing its
generality.

In the absence of inhomogeneous broadening, the
combination of (C3) with (9) and (10) yields the fol-
lowing complicated equation:

p Sp r}coTg
I
p'

p g 2y ) pg

2 2 i( 'gC(1T2
T21(P

co2T2 (
8 ——0 . (C4)

2&coTz l, p8 [1—(2y/ricoT&)p)

Here the relationships V= V and y=y are ap-
plied. The v h. s. pulse expressed by Eq. (41) is
a solution of (C4) for Vv= c/r) (y=0). In the ap-
proximation that raTz»1 and co&uTzvo»1, Eq. (C4)
has a different solution, not proven unique, which
is chirped, off resonance, and propagates with a
velocity V 0 c/r). The following relations apply:

W2 t'
$(t )= sech-

KTp Tp

1 1 ('t
4&so —y = ——+ —tanh ~—

T2 Tp (Tp

Here

g 2 ( q2V2 )
p=T, g, =yV( -I~), where

1 C
&' T, ' "-q[I+(~o/24)]'I' '

v'„~& v'
(CS)

Equations (Cl) and (CS) are consistent with the case
of self-induced transparency, where T2= ~ and
o=0. In that case, where u is proportional to 8,
and v is proportional to g, there is no chirp and
+=0. Constant and arbitrary values of y, V, and
V therefore exist for SIT according to the con-
straint imposed by (C3). For an amplifier (letting
o40) there can only be an unchirped solution at

3Tp=T, t =(-2 WC 2 2 I Z

These solutions (C5) correspond to a ~2 pulse
(the envelope area) symmetrically chirped, with
carrier frequency centered at +4+ (I/Tz)=&u. It
will be shown below [(C6)] that the pulse width is
related to the density of resonant dipoles through
8'p. Although Tp & T2 is allowed, there is an upper
limit to the value of Tp set by the relationship
8~ (I/v, ), because pog must greatly exceed the
dipole-dipole interaction (pog» Np 0}. In the limit
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/co' 2 h(t

&co' 1 1 &tW=, ~
——tanh ~—2m' T'

&ca & 1 1W=
i
—+-

o 2~„s ET~

(C6)

va» Tz, W/W calculated from (C5) is proportional
to S~, which is a property consistent with predic-
tions of nonlinear saturation, where (|) may be one
of many possible pulse envelope functions. For
very large vo, the effect of T, (spontaneous emis-
sion) must be taken into account, which is not in-
cluded in (C4). The solutions (C5) satisfy Eq. (16)
(for d(p)/dc = 0) and the equilibrium relation (39).
The solutions to the Bloch equations (6)-(10) are

Note that the number density N of dipoles contained
in 8'o specifies a corresponding equilibrium pulse
width r, .

Whereas the unchirped m h. s. solution is valid
fora/n'&&1 and 1/so= 1/o [1—(e /T~)] positive only
[where o =(e/a~)Tz and ~~=4m TzW~/gc], the
chirped solution (C5) holds for 1/ro = (1/2o ) —1/Tz
positive only, with e/ap &

Armstrong and Courtens" obtained a h. s. chirped
solution for pulse propagation at resonance in
which the dispersion of the background refractive
index g is taken into account. Their solution ap-
pears similar to ours above but the physical situa-
tion is quite different.

Since no physical system is restricted to two
levels, a true nonlinear treatment, taking into ac-
count the background refractive index, should in-
clude all quantum transitions of the system.
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