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=0.98„, and E,/ks& 13.6K. The cross section
rises from the low-energy cutoff (which is quite
sensitive to the form of the ripplon spectrum),
and then bends over. The bending is a consequence
of the fact that taking 8, =0.98', makes 8, a func-
tion of E, . Were 8,. to be held constant, the cross
section would rise monotonically with E, . Finally,
in Fig. 3, we plot the cross section for fixed &,/ks

8i =0.98„, and 8r 8y
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The behavior of a simple theoretical model of a quantum-frequency converter with a time-dependent

pump amplitude and phase is analyzed quantum mechanically. A sufficient condition ensuring periodic
frequency conversion between the modes is found and exact solutions are given in these cases. The
complete time-dependent density matrices which give the most complete statistical description of the
system are presented for a variety of initial states of the system. In the general case where the
sufficient condition is not satisfied, time-dependent-perturbation-theory results give corrections to the
amplitude and the period of the energy exchange between the modes. Comparisons are made between

these results and those of other authors.

I. INTRODUCTION

It is well known that nonlinear optical effects
arise as a result of the nonlinear response of a
medium to intense light fields obtainable in laser
beams. ' An important class of these phenomena
involve nonlinear coupling between electromagnetic
waves, usually referred to as parametric inter-
actions. " The fundamental physical process
underlying nonlinear parametric interactions has
come to play a central role in several physical
phenomena of interest. These include Raman and
Brillouin effects, Stokes and anti-Stokes genera-

tions, etc. All these effects involve nonlinear
coupling between various types of boson excita-
tions such as phonons, spin waves, plasmons,
rotons, polaritons, etc. , as well as electromagnet-
ic waves. '

In the optical regime two of the most important
nonlinear parametric interactions are frequency
conversion and parametric amplification where
three electromagnetic modes are coupled. A
quantum-mechanical model suitable for discussions
of these effects was proposed some time ago by
Louisell, Yariv, and Siegman. ' The proposed
model is macroscopic in that one introduces a



phenomenological coupling for the three boson
waves and does not deal with the microscopic
origin of the coupling. It has been shown by
Graham and Haken and by Graham' that the model
of Ref. 5 may be looked upon as the effective
Hamiltonian for the nonlinear interaction provided
that the microscopic atomic transitions are virtu-
al. Recently, a refinement of the model has been
proposed by Crosignani, DiPorto, Ganiel, Soli-
meno, and Yariv" in which the finite coherence
time of the c.w. laser pump is taken into account
by allowing the pump amplitude and phase to be
arbitrary time-dependent functions rather than
constants. We shall adopt the latter model as
the basis of this analysis of nonlinear optical
processes.

The present payer is the first in a series of
three which are devoted to a detailed study of
the quantum theory of nonlinear optical processes
with time-dependent pump amplitude and phase.
In this first paper, the case of frequency conver-
sion is investigated. We find a sufficient condi-
tion for the periodic continuous energy exchange
between the two modes to take place with time-
dependent pump amplitude and phase. The ex-
perimentally important case of nonzero detuning
of the pump-field frequency satisfies this suf'ficient
condition. In general we find that the period be-
comes a nonlinear function of time. If the suffi-
cient condition is fulfiIled, the model is exactly
soluble and we obtain the complete form of the
time-dependent density matrices of the two modes
for a variety of initial states of the system. We
shall find that the quantum frequency converter
not only causes energy exchange between the two
modes, but the coherence and statistical proper-
ties of the two modes are exchanged as well.

If the sufficient condition is not satisfied, the
model is not exactly soluble. Instead we employ
time-dependent perturbation theory assuming
the deviation from the sufficient condition to be
small. Explicit calculations are carried out to
the lowest nontrivial order of perturbation. We
find corrections to the amplitude and yeriod of
energy exchange between the modes.

The organization of the present payer is as
follows. In Sec. II we describe the theoretical
model and show that it belongs to a class satisfying
the conditions of Qlauber's theorem. Exact con-
servation laws and algebraic properties of the
model are pointed out. In Sec. III we obtain the
sufficient condition and derive the x ate of energy
exchange between the modes as well as the time
dependence of the field variables. In Sec. IV-VI
the complete form of the density matrix of the
two modes are obtained for a variety of initial
states of the system. In Sec. VII we outline a

time-deyendent-perturbation-theory treatment
of the model when the sufficient condition is not
satisfied. In Sec. VIII a summary and discussions
are presented and the present results are com-
pared with those of other authors.

I—a(t) = &u a(t}+ «(t)b(t)e
Ch

(2.2)

(2.2)

Thus the Heisenberg equations of motion for the
fieM operators a(t) and b(t) express their time
derivatives in terms of the operators themselves,
but not their adjoints at(t) and b~(t). Thus the
Hamiltonian in Eq. (2.1}satisfies the required
condition for Glauber's theorem' to be valid and
we conclude that if the modes are initially coher-
ent, they remain coherent at all times. Then the
Schrodinger state vector at time f is given by

where U(t) is the unitary time-development opera-
tor generated by the Hamiltonian (2.1) and ( a„P,)
denote coherent states" which are right eigenstates
of the annihilation operators g and 5 with eigen-
values n, and P„respectively. In fact the time-
dependent eigenvalues a(t) and P(t) obey the same
differential equations as the operators a(t) and

b(t),

a(t) -~ ~(g) + «(t)p(t)e (tile(-af )t 2+t()e((2 6)
dt t

i —p(t}=(o p(t)+«(t)a(t)e" ~
, d
dt

(2.6)

Unfortunately for arbitrary functions «(f) and

p(t), the coupled differential equations (2.5) and
(2.6) are not in general exactly soluble. ' Without
exactly solving the equations we can nevextheless
deduce an exact conservation law of the system.

H. MODEL

The HamQtonian proposed by the authors of
Refs. 7 and 8 to describe a quantum frequency
converter with time-dependent pump amplitude
and phase is given by

H=hco, a a+Ii~,b b+t«(t)[c be '

+~hei(~~-~3)t-ie(t)] (2 I)
where ~, , are the fx equencies of the two modes
a and b, respectively, and «(t) and p(t) are the
time-dependent pump amplitude and yhase. With-
out loss of generality, the initial phase of the
pump P(0) may be chosen to vanish.

The Heisenberg equations of motion which foQow
from the Hamiltonian (2.1) are
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[a'(t)a(t) +V(t)5(t), If] =O (2.8)

The exact conservation law is due to the invariance
properties of the Hamiltonian (2.1) under the
transformation generated by the unitary operator

T(8}= e(clat(t)a(A at(A(t&]

whex e the parameter 8 is a real constant. Thus
the infinitesimal generator of T(e), at(t)a{t)
+bt(t)b(t), must be a constant of motion,

I—~t)„=(~(t)[J, +J ]+y(t)JJ ~t)„

=-a„(t)it)„. (3 3)

Because of the noncommutativity of the Hamil-
tonian in the rotated frame at two different times,

The Schrodinger state vector in the rotated
frame ~t)„given by

It&. =II(t) lt) (3.2)

then obeys the following Schrodinger's equation:

N.(t)+N, (t) =N.(O)+N, (0) =-21. (2 9) [If„(t),H„(t')]«0, (8 4)

Thus the time deyendence of the number opera-
tors in the tmo modes are completely determined
if we know& the time dependence of their diffexence
N, (t) N~(—t), which is the quantity of interest in
a quantum frequency converter. We also note
that if we define

Z, =--,'[Z.(t) -A,(t)],
Z, =-at(t)5(t},

Z -=a(t)t '(t),

(2.10)

(2.11)

(2.12)

the J', operators obey angular momentum commu-
tation relations,

[J„ZS]= M

[J+~J-]=2Js~

(2.13)

{2.14)

and together with the constant of motion I, they
form the generators of the algebra U(2). In fact
the Hamiltonian (2.1) itself may be expressed in
terms of the generators of the U(2) algebra,

H = Rru, (I+Js) + tice, (I —'Js)

+gg(t)(J e aQJg big)-t+I4(t)+H c ) (2.15)

Vfe shall see that these algebraic properties mill

play an impox tant role in obtaining solutions to
the model.

HI. A SUFFICIENT CONDITION FOR
PERIODIC ENERGY EXCHANGE

As we remarked earlier, for arbitrary time-
dependent pump amylitude and phase the model
is not exactly soluble. However, a large class
of exact solutions can be obtained by imposing
the condition" that the pump amplitude and phase
vary in such a way that @(t}/e{t)=C, where C is
an arbitrary real constant. To see how this comes
about, let us first transform into a "rotated"
frame generated by the unitary operator

the differential equation (8.3) cannot be directly
integrated. The most general integx ability condi-
tion is given by

j(t) /~(t) = C, (3.5)

which is the most general condition for the van-
ishing of the commutator in Eq. (8.4).

U we impose the condition (8.5) on the time
dependence of the pump amplitude and phase, one
can directly integrate Eq. (8.8) to yield

( t)„=exp[-tf,'dt'a„(t')]) t = )0)„,

where U„(t) is the unitary time-development
operator in the rotated frame.

The unitary time-development operator U(t)
generated by the Hamiltonian Eq. (2.1) with the
condition Eq. (8.5} can now be written down:

U(t) =Z(t)U„(t) .

N, (t) -N, (t) = [N,(0) -N, (0)]cos(u(t)

—[a (0)b (0) +a(0)bt (0)]cosy(t) sin&a(t)

-i[at(0)b(0) -a(0)bt(0)] siny{t}sins)(t),

(8.8)

a(t) =e ' &' +"~'t[a(0}cos-,'a)(t) e 't'"
—b(0) sin-,'(o(t)],

b(t}= e " "+"~"i[5(0}cos-,'(u(t) e'~ "
(8.9)

+a(0) sin~(o(t)], (3.10)

where the periods &o(t) and y(t) are determined
from

To find the time dependence of the field operators
and the number operators it only remains to ex-
ylicit1y evaluate the unitary transformation gener-
ated by U(t) in Eq. (8.7). We find the following
results:

R(t}= exp[-i(1 +J,)[~,t y(t) /]2—
-i(l —J,)[~,t+ y(t)/2]3. (8.1}

. (C'+4)~2 ~t
sin —,'&u(t) ={, ),&, sin J' dt' g(t'),

(8.11)
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IV. SOLUTIONS FOR
DENSITY OPERATOR WITH INITIAL STATE

POSSESSING P REPRESENTATION

In Sec. III we obtained solutions to the equations
of motion of the field operators and the number
operators. These solutions can be used to find
various time-dependent expectation values and
moments of field strengths. However, the density
matrix provides the most complete statistical
description available for the system and accord-
ingly we shall devote the present and the next two
sections to finding and representing the density
matrix for a variety of initial states of the system.
In this section we consider initial states of the
system possessing a well-behaved diagonal co-
herent-state representation. " We begin by as-
suming that both modes are initially coherent,

p(o)=lao Po&(a. Pol (4.1)

The density matrix at time t is then easily found
by using Glauber's, theorem, Eq. (2.4):

p(t) =I/(t) I ~, P,&&a„p, (I/t(t)

=
I a(t), P(t))(a(t), P(t) I, (4 2)

where a(t) and P(t) have the same time dependence
as the field operators e(t) and b(t), namely,

a(t) =t[a, cos ,'(d(t)e '~("-p, sin——,'(d(t)]e '~~~' '+"/'l

(4.3)

c (c'+4)"
tan[y(t) -w/2]=(, ,/, tan dt'K(t ).C'+4 '/' 2 0

(3.12)

The crucial step in the evaluation of the unitary
transformation is the observation that because of
the algebraic properties discussed at the end of
Sec. Ii, I/„(t) represents a finite rotation and can
be decomposed into three Euler rotations with
(d(t} and y(t) the time-dependent Euler angles.
We shall have further occasions later on to make
use of these observations.

From Eq. (3.8} we conclude that provided the
stated condition Eq. (3.5) is satisfied, there is
continuous periodic energy exchange between
the two modes with the periods being nonlinear
functions of time and determined by Eqs. (3.11)
and (3.12). It is interesting to note that the condi-
tion Eq. (3.4) does not place any restriction on
how rapidly the pump phase and amplitude can
vary with time. In the case of nonzero detuning
of the pump-field frequency and constant pump
amplitude we have (t&

= t),t and C = 6/K, where 6
is the detuning. We see that the detuning affects
both the amplitude and the period of energy ex-
change between the modes.

p(0) =f d'a d'PP(a)P(P) I a, P&(aP I, (4.5)

then the density matrix at time I, is given by

p(t) = fd'«'PP(a)P(P)
I a(t},P(t))(a(t},P(t) I

(4.6)
We are particularly interested in the case where

one of the modes are initially chaotic in the sense
of possessing Gaussian P representation. If we let

P(a) = 5'(a —a,), (4.7)

P(P) e-}8-Bol /&m&

w(m&
(4.8)

and substitute, Eqs. (4.7} and (4.8) into Eq. (4.6),
we obtain

(t) jl
P 5o(a a )e-) 8-Bo~ /&m&

w&m&

x I a(t),P(t)) &a(t), P(t) I
. (4.9}

It is more convenient at this point to consider
the reduced density matrix for mode A or mode
B only defined by

P„(t) = TrBP(t),

p, (t) -=Tr„p(t) .
(4.10)

(4.11)

Taking the indicated trace and performing the
integration we obtain

d'r = Ir —a(t) I'
( &S (t) (,&$'(t)

(4.12)

d'r
I r P(t)—I'—&'O)=)

w( )c'()) m&
( &c (() Ir&(r'(,

(4.13)

where

S(t) —= sin —,'(o(t),

C(t) —= cos—', (o(t) .
(4.14)

(4.15)

Equations (4.12) and (4.13) show that as the
energy is oscillating between the two modes, the
coherence and photon statistical proterties are
exchanged as well. It is as though the photons
remember their initial coherence and statistical
properties and carry these properties with them
as they oscillate between the modes.

For later purposes we shall record here also
the case where both modes are initially chaotic,
i.e., P(a) also takes the form

P(t) =t[po cos-,'(o(t)e'~'"+ a, sin-,'(d(t}]e ' mo"'+" "
(4.4}

If the initial states are given by a superposition
of coherent states in the form
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P(&) e-!a-c((&! /&n&1
v )

(4.16)

and P(P} is given by Eq. (4.8). Then the reduced
density matrices at time t are given by

p„ t) =
s[(n)c'(t) + (m) s'(t)]

Iy —-o'(t) I'~ (n)C'(t)+(m)s'(t) (4.1V)

d ly
J w[(n}S'(t) +(m)C'(t)]

-ly -e(t) I'
(n) S'(t) +(m)C'(t) (4.18)

V. SOLUTIONS FOR DENSITY OPERATOR
WITH INITIAL NUMBER EIGENSTATES

In principle, since the coherent states form a
complete (in fact an overcomplete) set, we may

The advantage of describing the system in terms
of density matrices such as Eqs. (4.2), (4.12),
(4.13), (4.1V), and (4.18) is that the mean value
of the normally ordered product of an arbitrary
number of field operators can be calculated as
moments of the P representation. In the case of
Gaussian P representation they can be shown to
be proportional to associated Laguerre polynomi-
nals. The required moments have been worked
our by Mollow and Glauber" and will not be
repeated here. Vfe simply write down the result
for the case of p„(t), pe(t) given by Eqs. (4.1V)
and (4.18), since the other cases that we have
considered may be obtained as special cases by
taking the limits (n)-0 or (m)-0 or both:

Trp„(t)(a )"(a) = n! [(n) C'(t) +(m) S'(t)]"[a(t)]

(. .) —
I o(t) I'

(s&C' t(& ~ (m&s*((&] '

(4.19)

Trp (t)(b~)"(I&) = n![(m)C'(t)+(n)S*(t) J'[(8(t)]

„~(„„) —
I t!(t)I'

(m&c'((& (s&c ((&) '~ '

(4.20)

,'(N. +N,—){N,+N, +2)

= I(I+1), (5.1)

where I is the constant of motion defined in Eq.
(2.9). Consequently, eigenstates of the number
operators In„n,) are also eigenstates of the
angular momentum operators and may be labeled
in terms of the eigenvalues j, m of J' and J„
respectively. From Eqs. (2.10) and (5.1) we have

j= ~(N, +N~},

m = —,'(N, N~) . -
(5 2)

(5.3)

We note that according to Eqs. (5.1) and (2.8) j is
a constant of motion.

The act!.on of Uz(t) on an eigenstate of the number
operator may now simply be obtained:

U, (t}ln., n, ) =U, (t) lj m}

=~.D~ (y(t) —vs(u(t)sy(t))lj, m'),

(5.4)

where I)' ~ are the standard rotation matrices"
and (s&(t) and y(t) are the Euler angles determined
from Eqs. (3.11) and (3.12). From standard
formulas for the rotation matrices we obtain

first expand an arbitrary initial state in terms
of the coherent-state basis and apply the results
of Secs. II and IV to obtain the density matrix at
time t. Such an approach, although possible in
principle, is inconvenient in practice. In partic-
ular, if the initial states are eigenstates of the
number operator, the expansion in terms of a
diagonal coherent-state representation is extreme-
ly singular. " We shall find that it is in fact
simpler and more concise to work in the number-
state basis. This comes about because of the
observations we made at the end of Sec. II on
the algebraic properties of the model, namely,
the operators in the Hamiltonian form a SU(2}
or U(2} algebra. Consequently, the unitary op-
erator U„(t) may be looked upon as the operator
for finite rotation. In addition, J' may be written
as

J'=-', (J,J +J' J,)+J',

D (y(t) —vs (s&(t), y(t))=e ' ~'~ & ' (-ll~'~ (j+m')!
0-m')!{j+m)!(j-m)!

x [sin—,'&u(t)] """[cos-,'(e(t)] " „[(cos'-,' e)~'"(1 - cos'-', e)~ ] .
2

(5.5)

The density matrix at time t is then given by



1058 EUGENE Y. C. LU

p(t) = U(t)p(0)U'(t) = U(t) In.,n.&0.,n. lU'(t) = U(t) Ij, m) &j.m IU'(t)

D~ .„(y(t) —w, tu(t), y(t)}D~ -(y(t) —w, e(t), y(t)}ljm'&&jm" I

x exp{i(m" -m')[&o, t +p(t)/2] —i(m" -m'}[re,t —p(t)/2$.

As an example consider the probability of finding n', photons in the A, mode and n~ photons in the B
mode at time t It .is given by

&n,', n,' I p(t) In'„n,') = Q D', (y (t) —w, u&(t), y(t)) D ~ (y(t) —w, ~(t), y(t))
ftt tÃ

&&(n,', n,' I jm'&(jm" In'„n~& exp{i(m" -m')[(&u, —ru, )t+ p(t)]]

D~ ~ (y(t) —w, (u(t), y(t))D~+ (y(t) —w, &u(t), y(t))
I It

6, („.,„.)7,5(„. „.)(, „.5@. „.&~, „-exp{i(m' -m')[((o, -(u, )t +y(t)g

= ID!'„=."„'])P,'(„' „)~,(r(t) —w, ~(t), y(t)) I'.

(5.6)

(5.7}

The expectation value of the product of an arbitrary number of field operators may also be easily
evaluated. We first observe that the density matrix is diagonal in j for all time; hence the expectation
values of any product with unequal number of field operators and their adjoints must vanish, i.e.,

Trp(t)(at)' &(b7)'2(a)' s(5)'4 =0 unless l, + Q
= l, + I, . (5.8)

I + I, = I +! the product of field operators can always be expressed in terms of the angular
momentum operators J, 's and I. Hence it is sufficient to consider the expectation values of the
product of normal ordered U(a) generators.

Trp(t)(J, )~(I)'(J,)"(J )s= P D~ ~ (y(t) -w, u&(t), y(t))D~* ~ (y(t) -w, e(t), y(t))
Nt Sl

xexp{i(m" —m')[(&u, -co,)t+p(t)] j &jm"
I
J~l'JSJ

I jm'&

D (y(t) —w, &u(t), y(t))D~* ~ (y(t) —w, tu(t), y(t)}
tft St

xexp{i(m" —m')[((u, —(u, }t+y(t)]]5 ~,

x (m' —5')'j' (j+m')! (j -m'+s)!(j+m")!(j—m" +p)!
(j+m' -s) l(j -m'}!(j+m"-p)!(j-m')! (5.9)

VI. SOLUTIONS FOR DENSITY MATRIX

WITH MIXED INITIAL STATES

In this section we shall consider the case where
the initial states of one mode possess a well-
behaved P representation while the other is an
eigenstate of the number operator. The initial
density matrix for this case may be written in the
number representation and its time development
solved by the method of Sec. V. This approach,
although in principle feasible, is too cumbersome
to be useful. We shall show in this section that
for the case of one mode initially eigenstates of
the number operator, the other initially possessing
Gaussian P representation centered at the origin,
a closed form for the density matrix at time t
can be obtained. We shall closely follow here
the method of Mollow and Qlauber. "

We start with the solutions (4.17) and (4.18)
for the case where both modes initially possess
Gaussian P representation with a, = p, = o.(t) = p(t)

=0. In the number representation the initial state
of the A. mode may be written as

1 "
(n)

p (0)=1,@&g I,@&
I &,&nI

=(1 —«)PeIn&„„& I,
where

« = (n&/(1+ (n&) .

(6.1)

&n&
= «/(1 -«}

into Eq. (4.17). The result is

(6.2)

~0

p&(t) =(1-«)g «"fd'r lr&&r l[w&m&5'(t)] '
n=o

xs ( 7) / +III+ Poj«[JJ(t)]IIL (y(y t)) (6 8)

where

On the other hand we may also expand p„(t}given
in Eq. (4.17) into a polynomial in « if we make
the substitution
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(6.4)
(3.3), the Hamiltonian in the rotated frame may
be written as

—
I y I'C'(t)

(m&S'(t)[S'(t)(1+ &m)) -1]' (6.5)
H„(t) = (((t)[J, +Z +(C/2)Z, ]+A.(t)Z,

=H'„(t) +H'(t) . (7.2)
and we have made use of the expansion formula

e abx-/(I br)-(I «)g «"b I, (s) (6.6)

Since Eqs. (6.1} and (6.3}are related by a linear
transformation

The time development of the system with X(t}=0
has been completely solved and we use that as
the starting point and treat H'(t) perturbatively.
It is more convenient to work in the interaction
picture related to the rotated frame by

p„(t) = Tr U(t)p(0)U (t) = Tr U(t)p„(0)p (0)U (t), I t&, = U„(t}I t&„, (V.3)

(6.V)

we may substitute Eqs. (6.1) and (6.3) into (6.7)
and equate coefficients of g" to obtain

pn(t) y e-(y] /&m&s (t)
d'. ((&m&S'(t}

where

x [p,(t)]"r,.(y(r, t})I r&&r I

= TreU(t)p„"(0}pe(0}Ut(t), (6.8)

pA(0)=- ~s&AA&sl.

Thus the reduced density matrix for the Q mode at
time t possess a P representation in the form

P(y, t) = [((&m&s'(t)] 'e ~ r ~
/'

x [p(t)]"I;(y(r, t)). (6.9)

VII. TIME-DEPENDENT
PERTURBATION THEORY

In the previous sections we have given an ex-
haustive theory of a quantum frequency converter
in the case where the pump amplitude and phase
satisfies p(t)/(((t) = C. In this section we shall
briefly outline a time-dependent perturbation
theory in the cases where the deviation from the
exact soluble condition is small, namely,

P(t}—C(((t) = X(t) « I (7.1)

and |.may be determined from the condition that
j,tdtz'(t) is minimum. Referring back to Eq.

The expression for P(y, t) has a number of
interesting features. For t=t„such that S'(t„)=1,
it is a pure Gaussian and is exactly equal to the
initial Gaussian P representation for the B mode.
For t = t such that S'(t ) =0, it is extremely
singular at the origin and vanishes everywhere
else and gives rise to a pure n quantum state.
Thus we see again that the coherence and statis-
tical properties of the photons are exchanged
between the two modes as energies are transferred
between the modes.

A(t) = ~f, A.(t'}cosco(t') dt',

B(t) =-,' f'~(t') cosy(t') sin&@(t') dt',

C(t) = ', f,
' X(t')—siny(t') sin(d(t') dt' .

(V.8)

(7.9)

(7.10)

Thus to lowest order in X(t), the energy exchange
between the modes is not affected. To second
order in X(t), however, the effect of the perturba-
tion Hamiltonian is to cause modifications to the
amplitude and the period of energy exchange
between the modes. "

VIII. DISCUSSIONS

In this paper the consequences of the deviation
from ideal coherence of the driving pump field
in the frequency converter have been examined
by considering a model of quantum frequency
converter with time-dependent pump amplitude

where U„(t) = exp[-i f,' H'(t'} dt'] The. perturbation
Hamiltonian H (t) in the interaction picture be-
comes

Hi(t) = Ut (t)H'(t) U„(t)

= X(t)[J,coerce(t) —J, cosy(t} sin~(t)

+J'„siny(t) since(t)] . (7.4}

To lowest order in X(t), the effect of the per-
turbation Hamiltonian on the time development of
the field operators and the number operators can
be easily determined and the results are

N'."(t) N',"(t) =N-', (t) N', (t), - (V.5)

g( ~(t) = e (~1 e( ~/ (i(g(0)

x (cos(d(t) e '&(' [1 —iA(t)] —i sin&u(t)

x [B(t}—C(t)]]+b(0}[sin~(t)[1—iA(t)]

-i coerce(t}e 'r '[B(t)+C(t)]]). (7.6)

b "(t}= e ' ~2'+ e(' '~i(b(0}[cosa(t) e'~ $(1 —iA(t)]

+i sinu(t}[B(t)I C(t)]]a(0}[sin&u(t)[1 -iA(t)]

+i cos&u(t} e' /(' [B(t)-C(t}j}), (V.V)

where
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and phase. We find that provided the condition
jb(t)/~(t) = C is satisfied there is continuous
periodic energy exchange between the modes with
the periods being nonlinear functions of time. Also
presented is the complete time-dependent density
matrix for the system for a variety of initial states
which provides the most complete statistical
description available for the system. To the
best of my knowledge this complete statistical
description has not been given" before even in
the case of ideal pump coherence, i.e. , jh(t)
=ic(t) =0. The ideal case is of course contained
in our results as a special case by taking the limit
C-0 and z(t}-z. For cases where the deviation
A(t) = $(t) -Ca(t) is small, we have outlined a,

time-dependent perturbation theory treatment
and showed that corrections to amplitude and
period of energy exchange between the modes are
present only in second order of X(t).

The effects of pump coherence on frequency
conversion have also been examined by the authors
of Refs. 7 and 8. The case considered by them
is that of constant amplitude and time-dependent
phase, which does not satisfy the present condi-
tion. Thus their work and mine have very little
overlap and, furthermore, they only solved the
equations of motion approximately by the WKB
method and did not give a density-matrix treat-
ment. On the other hand, if the phase variation
is slow, then a(t} which is essentially proportional
to Q(t) is also small and the present perturbation-
theory treatment may be compared with their
results. They also found that phase variation
affects the rate and amplitude of energy exchange
between the modes in agreement with the present
result. However, they further stated that this
degradation is exponential in a'(t). To arrive at
this conclusion, one must have a treatment of the
model accurate to all order of A'(t) or perform
perturbation calculations to all orders of A(t).
I do not believe that their approximation scheme

has the required accuracy. In fact their approxi-
mation has exactly the same order of accuracy
as my lowest-order perturbation-theory treatment,
as can be seen from the fact that their solutions
for the field variables violate canonical commuta-
tion realtions to second order in A.(t). l also
believe that their conclusion on equal partition of
photons in the two modes in the asymptotic limit
is also not warranted by their treatment. One
further point of difference between their results
and mine should be noted. They concluded that if
the initial states of the system are coherent,
asymptotically it will possess statistical properties
intermediate between coherent and thermal light.
This is in direct variance with Glauber's theorem,
which guarantees that the system remains co-
herent for all time if initially coherent. The
resolution of the difference lies in the realization
that to arrive at their conclusion they have per-
formed an average over a random-pump-phase
ensemble. Thus their formalism describes an
ensemble of experiments in which the pump phases
are allowed to be completely random, whereas
mine describes the results of a single experiment
for which pump amplitude and phase are more or
less determined functions of time or many repeated
experiments with identically prepared sources.
Therefore the correct conclusion is that the fre-
quency-converted light is always coherent if
initially coherent and the incoherence discussed
by the authors of Refs. V and 8 is due to averaging
over a random-pump-phase ensemble. Experi-
mentally the present formalism would be appro-
priate to describe the output of a parametric
frequency converter with a c.w. laser pump,
whereas those of Refs. 7 and 8 would be appro-
priate to describe the ensemble-averaged output
with a pulsed laser pump. This is an example of
the well known fact that the results of an individual
experiment can be quite unlike that of the ensemble
average.
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A quantum-statistical-mechanical formulation is developed for determining the equation of state of
Coulomb gases. The procedure is to develop the activity expansion of the grand partition function into
a true perturbation expansion in which the divergences present in the cluster expansion of the Coulomb
gas have been eliminated. Ionization and dissociation appear quite naturally in this approach even

though only the total number of nuclei and electrons in the system are specified. Considerable insight
into the quantum-mechanical perturbation result is obtained from the classical perturbation theory. The
form of the static screened Coulomb potential that replaces the classical Debye-Huckel potential is
discussed. An application to the equation of state of gaseous hydrogen which takes account of all e-e,
p-p, and e -p interactions is given. The formation of higher clusters such as H-e, H-p, H-H, etc., can
also be systematically included. Owing to the extensive numerical calculations required, this has
currently only been done in an approximate way. It is shown that the simple one-level Saha equation,
including Debye-Huckel corrections for the free charges, is fairly accurate for p g 10 ' gtcm . At
greater densities the difFerences become significant.

I. INTRODUCTION

The literature dealing with the equation of state
of multicomponent partially ionized gases is ex-
tensive. However, no unambiguous general
formulism for obtaining the equation of state at
arbitrary gas densities has been given. The usual
approach is to develop some criteria for cutting
off the divergence of the atomic partition function'
and to assume that the charged particles interact
according to the Debye-Huckel theory. The free
energy is then minimized subject to the stoichio-
metric constraints to obtain ionization equilibrium
and thus the equation of state. Another approach
that has been used is to assume that the bound
states are also perturbed by the free charges in
the system, according to the Debye-Huckel poten-
tial. ' This gives a convergent partition function;
however, it has the serious shortcoming that the
thermal properties are not continuous functions of
V and T; i.e., the partition function changes dis-
continuously at those V and T points at which
bound states are perturbed into the continuum. In
this paper ere mill approach the problem from the
fundamental viewpoint of quantum-statistical
mechanics and thus obtain a general formulism
vrhich is free of the difficulties associated with the
above approaches.

II. QUANTUM-MECHANICAL ACTIVITY
EXPANSION AND THE FORMATION OF

BOUND PAIRS

Before dealing vrith the Coulomb gas it is in-
structive to first demonstrate that the activity ex-
pansion is the natural expansion to use for reac-
ting gases. For simplicity we consider a one-
component ordinary gas. The activity expansion
of the pressure~ is obtained by assuming

P/b T = b~z + bnzn + bsz + ~ ~ ~,

where the 5's are undetermined constants and

z =(2s+1)A~e"~"r

is called the activity (actually the standard defini-
tion of the activity is the ratio z/s, where n is the
number density), p is the chemical potential,

is the de Broglie wavelength, and s is the spin. If
Eg. (I) is substituted in the grand partition func-
tion ther e results

==e~"~'~=a" b z~=l+ g VN

/=1 1~1

where S~ is the canonical partition function for N
particles in the volume V. If like coefficients are


