PHYSICAL REVIEW A VOLUME 8,

NUMBER 2

AUGUST 1973

Theory of Inelastic Neutron Scattering from Superfluid He* with a Free Surface

W. F. Saam
Department of Physics, Ohio State University, Columbus, Ohio 43210
(Received 25 September 1972)

It is shown that one can take advantage of total neutron reflection at a free surface to eliminate
volume-proportional terms in inelastic neutron scattering. When this is done, the neutron
inelastic-scattering cross section for superfluid He* with a free surface is found, within an ideal-fluid
model, to contain only ripplon peaks distinctly separated from a smooth background due to
nonresonant single-phonon processes occurring near the surface of the liquid. Some numerical results are

given for the predicted cross section.

I. INTRODUCTION

In view of the recent interest in the physics of
liquid -helium surfaces':? it is useful to consider
various means of discovering the nature of the ele-
mentary excitations associated with these surfaces.
That these excitations should be quantized capil-
lary waves (ripplons) was first proposed by Atkins
in 1953.° However, to date the only experimental
tests of this hypothesis have involved measure-
ments of the temperature dependence of the sur-
face tension, and these measurements do not com-
pletely rule out other possibilities.* It would be
best to have more-direct measurements of the
excitation spectrum. In this paper, we first devel-
op the general theory of inelastic neutron scatter-
ing from a free plane surface of a bulk material.
From this theory emerges the interesting result
that if either the angle 0; between the incident
neutron beam and the surface or the angle 6; be-
tween the surface and the scattered beam is less
than the critical angle 6, for total reflection, then
inelastic scattering can be a consequence only of
absorption or emission of excitations near the sur-
face of the material. In this case, the scattering
is proportional only to the surface area exposed
to the beam and contains no terms proportional to
the volume of the target.

As usual, the scattering cross section is propor-
tional to a dynamical structure factor for the sys-
tem. In Sec. I we obtain an approximate structure
factor from the equations of motion for superfluid
He* with a free surface. For the case where at
least one of the angles 6; and 6 is less than 6,
this structure factor contains sharp peaks, corre-
sponding to the creation or annihilation of ripplons,
separated from a broad background owing to the
creation or annihilation of phonons near the surface
of the liquid. If both 6; and 6; are greater than 6,,
giant peaks owing to the creation orannihilation of
phonons in the bulk appear in the background.
Their contribution is proportional to the volume of

8

the target. These results should be valid for mo-

mentum transfers (in cm™') small compared to the
inverse interatomic spacing and energy transfers

less than a few degrees Kelvin.

The nature of the ripplon spectrum for large
wave numbers is unknown, but there is conjecture?
that it may have a rotonlike minimum. A neutron
scattering experiment is, in principle, capable of
providing important information here.

Finally, in Sec. Il we give some numerical re-
sults for the scattering cross section for a re-
presentative experimental arrangement.

II. DERIVATION OF THE CROSS SECTION

In the ensuing derivation we will, purely for
convenience, make specific reference to liquid
helium. The development will, in fact, be quite
general in that, for example, it is applicable to
solids as well.

A neutron with coordinate T interacts with heli-
um via the potential

H,, (F)=@uh%/mm o (P =Vp (D. (1)

Here m is the neutron mass, m, the mass of a He
atom, and b the neutron-He* scattering length.
For the He* mass density pm(f), we write

P, (F)=p(F) (- 2- £(x, ). )

tot
The unit step function ©(- z— £(x, y)) locates the
liquid, having mass density p(T), below the sur-
face at z=¢{(x,y). We expand (2) for small ¢(x, y)
and small deviations 8p(7) of p(T) from its bulk
equilibrium value p,; this gives

Pyt (T) 2p©(= 2) +peB(2)E(x, y) + 8p( T)O(- 2)

tot
1

=000(=- 2) +6p, (7). (3)
It is convenient to rewrite (1) as
H, (F)=H,(2)+Hy(T), (4)

with

Hy(2)= Vip®(=2); H#)=Vdpo(D. (5
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Now, H,(2) is responsible for the important
effect of elastic total reflection and must be dealt
with exactly. H,(T) causes inelastic scattering
and may be treated in perturbation theory using
the eigenfunctions for neutron motion in the pres-
ence of H,(z) as the zero-order states. With these
points in mind, the calculation of the differential
inelastic scattering cross section per unit solid
angle per unit energy proceeds in the standard
fashion® leading to

d’c __ b (§1>1/2f”dte""“'")
dQd(mw) ~ 2nEm: \E; -

x [ dor o Y E DU EOF)

x(op,_ (Tt)op,, (F't")). (6)

This cross section does not, of course, account
for the elastically reflected or transmitted neu-
trons, which leave the surface in definite and
simply determined directions. Here E; is the in-
cident neutron energy, £y is the final neutron en-
ergy, Fiw=E;-E;, and(bp,,(Tt)op  (T't)) is the
density-fluctuation correlation function for the
system. ¢{*) is, in the language of formal scatter-
ing theory,® an incoming-neutron-state solution to
the problem in the presence of H,(z) and z/)}"’ is an
outgoing state. These states are quite easily deter-
mined for H,(z), which is in essence just a one-
dimensional step-function potential.

We now specialize to the most interesting situa-
tion where the incoming neutron beam is incident
on the surface from above the liquid and the out-
going beam is detected above the liquid. In this
case,

tot

e **i*+ Be'**  for z >0,
YH(F)=et Fiif x (7a)
9{(0) et

s De =1 e¥%%  for z>0,
Y(T) =etfi T x (b)
2 #(0) e'y*

In (7), K, , and Ky , are the initial and final wave
vectors parallel to the surface, and k; and k; are
the initial and final 2 components of the wave vec-
tors. Further,

2m (72 12
qi=[_ﬁ" —ZTn-_p°V°>J »

om { B2K2 1/2
qf=[ 7 (Zm _poVo>j| .

The constants B, #{*)(0), D, and y{~(0) are deter-
mined by requiring that the wave functions and

for 2<0;

for 2<0.

(8)
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their derivatives be continuous at z=0.

Inserting Eqgs. (7) into (6), noting that dp,,(Tt)
=0 for z >0 and that (0p,, (T#)8p,,(T't’)) must be a
function only of coordinate differences in the x -y
plane, gives

d’c AV (E; 12 . -
dQd(hw) ZTih'mﬁ(E,) [957(0) {*)(0)|
XSW(E 1 Ky @), (9)

where the dynamical structure factor S,o-,(l?n, K, w)
is defined by

Swlkn, K, @)= [ “dxdy [Cat [Taz [ dar ettt

x e~ (FPgr*agre’(pp  (F1)0p,,(F1')).

(10)
In (9), A is the surface area, while in (10),

En-‘-Eu‘-Eu,; K==—1q; —iqs. (11)

It should be noted that as a consequence of the lack
of translational invariance of <6pm(ft) bpm('f’t’» in
the z direction, the z component of the momentum
(of the neutron plus the He* excitations involved)
will not be conserved in the scattering.

We shall be particularly interested in the case
when k has a positive real part. For example,
when %2¢5/2m <p,V,—corresponding to elastic total
reflection of the (unperturbed) incident beam—then
the electric-dipole matrix element is [see Eq. (8)]

Tom 72h2 1/2 .
a2~ i] 22 (oo¥o- )] " = ik (12)

In this case, we see from (10) that the z and 2’
integrations cut off at a distance of order [Rex]™*
from the liquid surface. Consequently, only fluc-
tuations near the liquid surface are probed.

We now turn to an approximate calculation of
Swi( Ky, &, w) for superfluid He®.

II. STRUCTURE FACTOR

In order to obtain a form for the structure fac-
tor, expected to be valid for wave numbers small
compared to the inverse interatomic spacing and
frequencies (in temperature units) small compared
to, say, the bulk roton frequency, we will calcu-
late the retarded density-density response function
x (Ky, k, w) from the equations of motion for a
superfluid with a free suriace and then make use
of the identity’

Sl Ky, &, w) = [27/(1 = e7B") ] Im x (K, k, w + i€);

€=0". (13)

To commence, we recall’ that the response of the
density to an external potential 6U(k,, 2’, w) cou-
pled to the density is given by
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Optot(i"’ 2, (D) = f-: dz X (E", z, Z', QJ)GU(E", Z', W).

Taking 6U(k,, 2’, w) to be of the form (14)

oU(k,, ‘z’, w) = 8U(Ky, k, w) e**' O(-2’), (15)

allows us to write

0Ky, 2, @) [0 0, ’
Wf/‘ dz'e™"x(k,,z,2’, w). (16)

The left-hand side of (16) is the quantity most con-
veniently calculated from the equations of motion.
To obtain x(k,, x, w) we use

0 0 ,
x(ky, &, w)=f dzf dz'e % y(k,, 2,2, w)

_ bﬂm(ﬁl ) K*, w)_
- 8U(ky, k, w) (an

The superfluid equations of motion are, in linear-
ized form,

dp(rt)
of
8v(rt)

Po 5%

+p,Vev(Tt) =0, (18a)

+VP(Tt)=pHU(Tt). (18b)

P(7t) is the local pressure and v(r?) is the local
superfluid velocity. We have ignored dissipation
and assumed temperatures sufficiently low that the
normal component of the fluid may be neglected.
Equations (18) are supplemented by boundary con-
ditions at the surface given by®

07y = E2D, (192)

BP(F)n=- oy + k53,0, (19)

where 8P is the pressure deviation in the liquid
and a is the surface tension. Since the flow is
irrotational, it is convenient to introduce a veloc-
ity potential ¢(T¢) by

V(1) =Vo(Tt). (20)
Combining Eqs. (18) with (20) and using
6P(1t)=s20p(Tt), (21)
one finds
2 g -
T _ savrq(in =+ W . (22)

Here s is the zero-temperature sound velocity in
bulk He*. Fourier transformed in time and the
spacial coordinates x and y, (22) becomes

J

w? 1
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M%j;z_z;ﬁ,)_ _(kan— 'S'O;i) ¢(E||,Z, w)

= %GU(E",K, U))e“’ (23)

where we have used (15).
The general solution to (23) is

ok, z, w)=+ '—cz—:%/!i:ﬁs oU(k,, k, w)e**
+¢,(ky, k, w) e r*, (24)
with
@ = - R /52, 25)

The term @,e"1* is a solution to the homogeneous
version of (23) with the coefficient ¢, yet to be
determined. Fourier transformed, Eqs. (19), with
(20) and (21), become

l_’_(_P_(_R_g_szfi) =—iwt(k,, w), (26)
s?0p(ky, z, w)l:=o=akz§(ﬁ"’ ©). 0

Putting together (18b), (20), and (21) gives

ssz( EII ’ Z, (l)) =906U( E|I s Ky (D) eu"'iwpo(p(ﬁuy z, (0).
(28)
Equations (24)-(28) are easily solved, and after
some algebra one finds

6§(E| w) = KK, +kzl , (29)
5U(Kk,,x,@)  (k+K )(«? = P)

op(ky, 2, w) _ poe"‘<k’u - Kz)

Wk, @) s \R- R,

_Poex',t( KK+ R N nz-kjL) .
s \k(k+r) (0 —wd) =12
(30)
Here
1/2
o, =(-"- K,kz,,) (31)
Po

is the classical frequency for a capillary wave in
a compressible liquid.
To proceed, we note from (3) that

6p,,,(Ky, 2, w)=p,8(2)L(Ky, w) +6 (= 2)0p(k,, 2, w).
(32)
Hence, we combine Eqs. (29)-(32) with (17) to ob-
tain, after some rearrangement,

= W 1 M 1 Merow?)t Pg w?/s? K+ K* .
x(ky, &, w)——PoKl(sz KI(K,+K*)+9(S= K,(Kl+x)+l>(w -w?) "+ Skt 1) [1 +(K*+K,)(K+K,)( . +1)]

(33)
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In order to obtain the required structure factor,
we need only insert (33) into (13). The results
must be discussed in terms of several cases: (i)
(i) For k=«k’+ik", k' and k" real, and K} >w?¥s?
one has

AP Tik, w 1 1 2
Wl —e P |52 k(g +0) "

x[6(w - w,) +6(w+w,)]. (34)

Stot(E’ Ky w) =

(ii) For k=«k'+ik”, k’ and k” real, k’>0, and &%
2
< w?/s?, one has

21p, wig,
1 -eP) (W' +h)2+E

I (K - k||)+ CZ‘;

stot(Elh K, w) -

(35)

2

(iii) For k = - ik,, k, real, and k3 < u?/s?,

Sia(Ky, k, w) = Zi—-—zri—-h-—p@)<ﬂ‘k2 [6(w=sk)+6(w+sk)]
«?q 4 >
v wi)(w? —s2k%)? (oY + w":]
(36)
In the above, L is the depth of the liquid and
W \1/2 w?\1 2
41=(TS.?— I> sgnw, kK =(k2||";2'> ’
2 \1/2 2
o, (BB, g 20, -
Po Po
wh = g%'ki =ki+ k5 -

We conclude this section with a discussion of
these results. First, it is quite easy to prove w,
< sk, for all finite 2,. Hence, when « has a posi-
tive real part, the structure factor [Eqs. (34) and
(35)] consists of 6-function peaks, corresponding
to ripplon creation or annihilation, separated

Stot (ko)

|
|

Wr sky w

FIG. 1. Sketch of S,,(K, ¥, w) for w> 0 when Rex> 0.

from broad backgrounds, starting at w=+sk,, cor-
responding to creation or annihilation of phonons
near the surface. This behavior is sketched in
Fig. 1. When « is imaginary, there appear 06-func-
tion peaks [Eq. (36)] in these backgrounds corre-
sponding to creation or annihilation of single pho-
nons in the bulk. In this case, both the initial

and final neutron wave functions extend throughout
the bulk, and the cross section is proportional to
the total volume of the sample. This scattering
due to creation or annihilation of phonons in the
bulk has been thoroughly studied experimentally.’

IV. NUMERICAL RESULTS FOR THE
CROSS SECTION

In this section, we investigate the predictions
of our formalism for a representative experimen-
tal arrangement. We assume temperatures low
enough so that the scattering involves only the
creation of excitations. Further, we consider only
the energy-integrated cross section. It turns out
that this cross section, for appropriately chosen
beam energies and incoming and outgoing angles,
is quite sensitive to the form of the ripplon.dis-
persion relation, the quantity of primary interest
here.

We choose the angle of the incoming beam with
the surface to be just below the angle for critical
reflection (~0.5 deg for neutrons with energies of
the order of 4K). The number of neutrons detected
per second per unit solid angle at 6,, the angle
between the scattered beam and the surface (in this
section we assume that the incident and scattered
beams lie in a plane perpendicular to the liquid
surface), is

do | (38)
N=I, f d(ﬁw)dﬂd(h_ =3

where [, A is the number of neutrons per second
incident on a surface of area A. For the moment,
we assume that only the ripplon peak contributes
to (38), a point to which we will return shortly.
In this case, we obtain the cross section simply
by integrating (9) over the positive energy ripplon
peak in (34), a procedure which yields

1d E 1/2 . _ .
Lo, 2 (5" i o o
4 r

w? 1 2 dw
x ?'Kl(lcl+k)+1' /‘I-B_L

w=w'
(39)
From (7) one easily finds
; 4E, sin’@
{2 )] = == (40)
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7g,sin’l)
(&, 5in?6,) ” + (E, 51126, - VY 2|7
(41)

¥ ©)]* =

Now, since ¥,=1.95X107*K is so small, and the crit-

ical angle for total reflection 6, is given by
v.N2 (v R
= 10 -0
o (o 5"
the expression (39) may be simplified to

1 do_ (&"’ (AN
3 3 =2.58%10 w' \9“)

W? 1 2
x| 5% m”l /l‘"
(43)

Here we have used the numbers p,=0.145 g/cm?,
@=0.378 ergs/cm?, 5=3.0X107'*cm, and s
=2.38x10* em/sec appropriate to He*. To con-
tinue, we note that

k= (2m/R?\2[(VE})cos6;~(VE,)cos6;]. (44)
Using (44) in conjunction with (25) and (31) gives

(1 3_0):) =1+ _(lk_:il_.
dw 2p,5°%K,

m\'? R (k’
- — —_l (2L
(m) oE, \2 *)“""f‘

(45)

By combining (25) and (31) we may find one
equation for w, in terms of 2. A useful form for
the result is

h’w(x)_ h’pos’ f [ f)z 1/2 £1/2
—#’B—-—-mx’ 1+2 ] —2 ’ (46)

ig%!xno"

9f =:g-

1 1 1 Il L L

J
2 4 6 8 10 12 14
E, /kg —

FIG. 2. Plot of (1/A4) do/dQ for 6, =47, 6,=0.96;, ,
and E;/kp < 13.6K.
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x=ak/2p,5° . (47)

Since E; =E, - #w,, we may combine (44) and (47)
to find a second relation

a [2mk ""’[(E 1
x= o |57 —-‘) cosé,
2p,s? ( K2 ) \%5 '

- ‘<———L-—E‘ =hw (x)>l/2 cosG,] :
B

(48)
The kinematical problem is thus reduced to solv-
ing (46) and (48) for x and w,(x) in terms of E,,
cosé;, and cosf,. E;,k,, and k, are then easily
found. Equations (46) and (48) are most easily
solved via graphical techniques.

Let us now examine the domain of validity of
(43). Clearly, one requirement is that w, be
greater than zero. The consequences of this are
most easily understood when 6, =37 and when x
may be considered small. Using (46) and (48) our
requirement then becomes (6;<«< 1)

o (2m) _.
léf =i ok (W) =1.66K. (49)
Removal of the restriction that x be small

only slightly changes this result; the correct
minimum being 1.5K. For a general 6, one then
expects that do/dQ be zero for energies less than
some minimum value. The other requirement is
that E; be less than Z sk, so that the phonon back-
ground does not contribute to the scattering. For

the simple case 6,< 6,,<1 and 6y =37 we have
ky=[(@2m/n*)E " (50)
In this case, then, for
E/kp<2ms?/kg=13.6K, (51)

the background will not contribute. For angles ¢,
near 21r then, there is a considerable range of
energies over which (43) is valid.

In Fig. 2, we plot (1/A) do/dQ for 6,=3m, 6,

&£ 4G|xro"
Ev/kg=4K
6.—
4._
2_
1

Th 3Th Th 5Tg

9f—>

FIG. 3. Plot of (1/A)do/dQ for E;/kg=4K, 6,=0.96,,,
and $wr=6, =i,
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=0.96,,, and E,/k;< 13.6K. The cross section
rises from the low-energy cutoff (which is quite
sensitive to the form of the ripplon spectrum),

and then bends over. The bending is a consequence
of the fact that taking 6,=0.96;, makes 6, a func-
tion of E;. Were 6, to be held constant, the cross
section would rise monotonically with E;. Finally,
in Fig. 3, we plot the cross section for fixed E,;/k;
=4K, 6,=0.96,,, and 37< 6, < 37.
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The behavior of a simple theoretical model of a quantum-frequency converter with a time-dependent
pump amplitude and phase is analyzed quantum mechanically. A sufficient condition ensuring periodic
frequency conversion between the modes is found and exact solutions are given in these cases. The
complete time-dependent density matrices which give the most complete statistical description of the
system are presented for a variety of initial states of the system. In the general case where the
sufficient condition is not satisfied, time-dependent-perturbation-theory results give corrections to the
amplitude and the period of the energy exchange between the modes. Comparisons are made between

these results and those of other authors.

I. INTRODUCTION

It is well known that nonlinear optical effects
arise as a result of the nonlinear response of a
medium to intense light fields obtainable in laser
beams.! An important class of these phenomena
involve nonlinear coupling between electromagnetic
waves, usually referred to as parametric inter-
actions.?:* The fundamental physical process
underlying nonlinear parametric interactions has
come to play a central role in several physical
phenomena of interest. These include Raman and
Brillouin effects, Stokes and anti-Stokes genera-

tions, etc. All these effects involve nonlinear
coupling between various types of boson excita-
tions such as phonons, spin waves, plasmons,
rotons, polaritons, etc., as well as electromagnet-
ic waves.*

In the optical regime two of the most important
nonlinear parametric interactions are frequency
conversion and parametric amplification where
three electromagnetic modes are coupled. A
quantum-mechanical model suitable for discussions
of these effects was proposed some time ago by
Louisell, Yariv, and Siegman.® The proposed
model is macroscopic in that one introduces a



