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We consider an array of waveguides with identical widths but alternating spacings using the discrete non-
linear Schrödinger model �tight-binding approximation�. In the highly discrete �anticontinuous� limit when one
of the spacings is infinite, the model reduces to an integrable chain of uncoupled dimers. From this limit, we
identify the two fundamental, antisymmetric and symmetric, discrete gap solitons, which can be numerically
continued to a continuum limit gap soliton at one band edge. Other composite solutions at the uncoupled limit
disappear in bifurcations. Similarly to the case of waveguides with alternating widths and constant spacings,
oscillatory instabilities appear for the fundamental solutions only for frequencies in the upper half of the gap.
In contrast to the alternating-width case, there is no stability exchange between the two fundamental solutions:
the symmetric solution is always unstable while the antisymmetric solution is always stable in the lower half
of the gap. Thus, the Peierls-Nabarro barrier can vanish only in the continuum limit.
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There is a large current, theoretical and experimental, in-
terest in the study of discrete solitons �or breathers� in many
different areas �1�, and in particular, in optical systems �2�.
One of the most studied models is described by the discrete
nonlinear Schrödinger �DNLS� equation �3�. In particular, it
is the standard model to describe spatial solitons in arrays of
optical waveguides with Kerr nonlinearity, assuming that the
coupling between individual waveguides is sufficiently weak
to allow for a tight-binding �or coupled-mode� type approxi-
mation �2,4�.

A recent progress in waveguide engineering is the possi-
bility to realize different kinds of superlattice structures by
modulating the widths, as well as the distances, of the indi-
vidual waveguides. In Ref. �5� it was predicted that a binary
array of waveguides with alternating widths but constant
separation, modeled by a DNLS equation with alternating
on-site energies, should provide for the existence of discrete
gap solitons with frequencies in the gap between the two
branches of the linear dispersion relation. These solutions
were analyzed in detail in Ref. �6�, and they were later also
observed experimentally �7�. Furthermore, modulated wave-
guide arrays have been suggested for controlling the switch-
ing of solitons across different nonlinear lattices �8�. More
recently, the technique of modulating waveguide widths was
used to experimentally study the competition between non-
linearity and linear localization in disordered and quasiperi-
odic systems �9�.

However, the complementary approach to a binary modu-
lated waveguide array, with constant widths but alternating
distances �see Fig. 1�, has yet been very little explored. In
the tight-binding limit, such a system is modeled by a “bond-
alternating” DNLS equation,

− i
��n

�z
= Vn+1�n+1 + Vn�n−1 + ���n�2�n, �1�

where z corresponds to the longitudinal direction along the
waveguides and � is the nonlinear coefficient from the Kerr

effect in each waveguide �we put �=1 without loss of gen-
erality�. The coupling constant depends on the particular site
n as: V2j+1�V1, V2j �V2�j=0,1 ,2 ,3 , . . . ,N�, with boundary
conditions V0=V2N+2=0. In an experimental setup, the dif-
ferent coupling constants are related to two different separa-
tions between waveguides: the larger the separation, the
smaller the coupling of energy between different sites �2�.

Equation �1� is a special case of a more general model for
a binary superlattice in a Kerr nonlinear medium proposed in
Ref. �10� but the special properties of discrete gap solitons in
the binary DNLS model with absence of on-site modulation
�constant waveguide widths� has to our knowledge not been
studied before. Some properties of the corresponding linear
system were recently discussed in Ref. �11�. Also, in Ref.
�12� the existence of exponentially localized gap solitons for
all gap frequencies was proven rigorously, for a general class
of periodically modulated DNLS equations including Eq. �1�.
A few papers have also discussed gap solitons in other types
of bond-alternating lattices. In Ref. �13� a ferromagnetic
Heisenberg spin chain with bond alternation was studied, and
gap solitons were found and analyzed in the continuum limit.
Reference �14� studied numerically the vibrational gap
modes in an anharmonic monatomic chain with alternating
force constants, modeling a row in the �111� direction of a
diamond structure. The continuum limit of this model was
also studied analytically in Ref. �15�. However, none of these
works addressed any of the two issues, which are the main
goals of the present paper: �i� the identification of two fun-
damental families of discrete gap solitons, symmetric and
antisymmetric, as continuations of exact solutions at an
“anticontinuous” limit of uncoupled dimers, and �ii� the
study of their stability.
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FIG. 1. �Color online� Modulated array with couplings V1 and
V2.
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For convenience, we take V1�0 and 0�V2�V1. �We
could also put V1=1 through rescalings but we keep it to
make the discussion physically clearer.� In the linear limit
��=0�, extended solutions can be written as

�n�z� = eikjei�z � 	U0; n = 2j ,

U1; n = 2j + 1,

 �2�

where U0 and U1 correspond to two different amplitudes in
alternating sites, related by �U1= �V1+V2 exp�ik��U0, k is re-
lated to the optical angle, and � is the spatial frequency.
Inserting this ansatz in Eq. �1� yields the dispersion relation

�= ��V1
2+V2

2+2V1V2 cos k �10,11,13�. Therefore, the linear
spectrum of Eq. �1� consists of a lower band �−�V1+V2� ,
−�V1−V2�� and an upper band �V1−V2 ,V1+V2�, and thus
a gap in the interval �−�V1−V2� ,V1−V2� of size 	�2
�V1−V2�, which can be varied by adjusting the distance be-
tween waveguides. In the limit V2→V1, 	→0 and the band
is the usual one for a homogeneous array, i.e., �−2V1 ,2V1�
�1,2�.

Discrete gap solitons are spatially localized stationary so-
lutions to Eq. �1� of the form �n�z�=unei
z, with real and
z-independent un and frequency 
 inside the gap. An appro-
priate anticontinuous limit for identifying exact discrete gap
solitons is to let V2→0 for fixed V1�0, turning the system
into a chain of uncoupled DNLS dimers. As is well known,
this limit is integrable �16–18�, and its stationary solutions,
as well as their stability, were described in �17�. The most
fundamental gap soliton consists in this limit of a single
dimer excited with a frequency inside the gap. With �=+1 in
Eq. �1�, this solution has the frequency 
=−V1+A2 and the
form u2j0

=−u2j0+1�A for some j0, and thus it is spatially
antisymmetric with respect to the center of a strong bond
�i.e., the midpoint between two closely spaced waveguides�.
�The other two single-dimer stationary solutions �17�, yield-
ing modes that are symmetric �asymmetric� with respect to
the midpoint of a small spacing, have frequencies outside the
gap.� This solution can then be smoothly continued as an
antisymmetric solution for nonzero V2 using standard con-
tinuation techniques �6,19,20� �see Fig. 2�a��. Likewise, for
any V2 it may be continued versus 
, as illustrated in Fig. 3
�lower line� where the frequency dependence of the con-
served power, P��n=0

2N+1�un�2, is shown. The continuation can

be performed all the way until it either reaches a continuum
gap soliton at the lower gap edge 
=−�V1−V2� if 
�0, or
becomes a discrete “outgap” soliton �6� with a nondecaying
tail at the upper gap edge 
= �V1−V2� if 
�0. This scenario
is qualitatively analogous to that described for the on-site
modulated DNLS model in Ref. �6�. A gap mode of this type
was probably first mentioned and illustrated for a bond-
alternating chain in Fig. 3 of Ref. �14� although the different
kind of nonlinearity in Ref. �14� imposed an additional factor
�−1�n, turning the solution into a symmetric one.

On the other hand, to obtain the fundamental spatially
symmetric discrete gap soliton of Eq. �1� at the anticontinu-
ous limit V2=0, two neighboring dimers are excited as
above, with a relative phase shift of � yielding the pattern
−u2j0

=u2j0+1=u2j0+2=−u2j0+3�A. Thus, this solution is sym-
metric with respect to the center of a weak bond �i.e., the
midpoint between two waveguides with large spacing�. Also
this solution can be continued to a symmetric solution for
nonzero V2 �see Fig. 2�b�� all through the gap reaching either
a continuum gap soliton or a discrete outgap soliton at the
different gap edges as discussed above �see Fig. 3 �middle
line��. For two weakly coupled DNLS dimers �N=1�, such a
solution was identified in Ref. �18� as the minimum-energy
state among the set of mirror-symmetric solutions for which
the four-site system is exactly solvable.

Generally, any configuration of excited dimers for V2=0,
in-phased or antiphased, may be continued into discrete gap
modes for small nonzero V2. However, in contrast to the two
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FIG. 2. �Color online� Gap
modes for 
=0: �a� fundamental
antisymmetric, �b� fundamental
symmetric, and �c� twisted.
Shaded and white regions corre-
spond to couplings V1 and V2, re-
spectively. V1=�=1 and V2=0.5.
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FIG. 3. �Color online� Power versus frequency. Lower, middle,
and upper lines correspond to the fundamental antisymmetric, sym-
metric, and twisted solutions, respectively. V1=�=1, V2=0.5.
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fundamental modes, such composite solutions cannot be con-
tinued to continuous gap solitons but disappear in bifurca-
tions before reaching the continuous limit. For this reason,
we reserve the terminology “discrete gap soliton” for the two
fundamental modes. The simplest example of a nonfunda-
mental gap mode is obtained by in-phase excitation of two
neighboring dimers at the anticontinuous limit, −u2j0
=u2j0+1=−u2j0+2=u2j0+3�A, yielding a solution antisymmet-
ric with respect to the center of a weak bond �see Fig. 2�c��.
In analogy with the “twisted localized modes” of the non-
modulated DNLS model �21�, we term this solution as
“twisted gap mode.” As seen in Fig. 3, it has a power thresh-
old and the continuation toward the lower band stops at a
minimum frequency. This can be understood since a small-
amplitude solution at the band edge 
=−�V1−V2� must have
U1=−U0 and a phase shift k=� between neighboring dimers,
which cannot be satisfied for a twisted mode.

Investigating the linear stability of the solutions, we intro-
duce, for each nonlinear real stationary state un, a weak per-
turbation as �n�z�= �un+�n�z��exp�i
z�, and obtain linear
evolution equations for �n, which may be expressed in vari-
ous ways �6,22,23�. Writing, e.g., �n�z�=xn�z�+ iyn�z�= 1

2

�an+bn�e−iz+ 1
2 �an

�−bn
��ei�z leads to standard linear eigen-

value problems, and for each real eigenfrequency �0 one
may also associate a Krein signature as �=sign�nanbn, cor-
responding to the sign of the Hamiltonian energy carried by
the corresponding �real� eigenmode �an ,bn� �see �6� and ref-
erences therein�.

As for the on-site modulated case �6�, the continuous part
of the spectrum �extended eigenmodes� of the linearized
equations consists of two �possibly overlapping� bands for
�0: a band with �=−1 for � �V1−V2+
 ,V1+V2+
�,

and a band with �=+1 for � �V1−V2−
 ,V1+V2−
�. Note
that the �=+1 band is the highest for 
�0 and the �=−1
band is highest for 
�0, and the bands overlap when V2

� �
�. In particular, the bands completely overlap when 

=0, and they partly overlap for all 
 in the gap if V2

�V1 /2 �see Fig. 4�. As discussed in �6,24�, overlap of the
bands of extended modes with opposite Krein signatures
may for finite systems yield oscillatory instabilities �see Fig.
4� but their strength decreases to zero when N→�. Thus, the
only instabilities that may remain in the infinite-size limit are
those associated with localized eigenmodes, which may be
either unstable by themselves �imaginary � or become un-
stable through resonances with other modes �extended or lo-
calized� with opposite Krein signature �complex  with non-
zero real and imaginary parts�.

To get a complete picture of the linear stability, we solve
the eigenvalue problems numerically as in Fig. 4, using the
method from Ref. �23�. The stability regions for the antisym-
metric gap soliton are illustrated in Fig. 5�a�. Apart from
weak finite-size instabilities, the solution is always stable in
the lower half of the gap �
�0� but becomes unstable at
some nonzero instability threshold value of V2 /V1 in the up-
per half of the gap �
�0�. This threshold apparently goes to
zero as 
→0 although the instabilities for small 
 become
very weak.

Close to the anticontinuous limit �small V2�, we may de-
duce the linear stability from perturbative calculations of lo-
calized eigenmode frequencies as in Ref. �6�. For example,
the simplest symmetric linear eigenmode of the antisymmet-
ric gap soliton, involving only oscillations xj0

=xj0+1 , yj0
=yj0+1 at the limit V2=0, has frequency
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FIG. 4. �Color online� Re�� and Im�� vs 
:
antisymmetric �top�, symmetric �center�, and
twisted �bottom�. V1=1, V2=0.5, N50.
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 = 2V1� 

V1

+ 2 + O�V2
2�

and Krein signature �=+1. Thus, the frequency of this mode
is real and above both bands of extended modes, and thus
can cause no instabilities for small V2. In fact, numerically
we find that it always remains above both bands �cf. Fig.
4�a��. Since not only the frequency itself but also all its har-
monics are outside the continuous spectrum, this linear
eigenmode should correspond to an exact quasiperiodic
�two-frequency� “breather” solution, similarly to what was
found for the on-site modulated DNLS in Ref. �25� �such
breathers with oscillating intensity were also observed ex-
perimentally for another type of waveguide array with a
multiband structure �26��. For the simplest nontrivial �
�0� antisymmetric eigenmodes of the antisymmetric dis-
crete gap soliton, with xj0

=−xj0+1 , yj0
=−yj0+1 nonzero for

V2=0, the perturbative expressions for the frequency are
more complicated. However, it can be seen that there are two
such eigenmodes with opposite Krein signatures, whose
eigenfrequencies for small V2 are always real �these two
modes are visible in Fig. 4�a��, but when 
�0 may cause
oscillatory instabilities when colliding with the band of op-
posite Krein signature for some nonzero V2, as seen in Fig.
4�b�.

The corresponding stability results for the symmetric dis-
crete gap soliton are illustrated in Figs. 4�c�, 4�d�, and 5�b�.
In addition to the oscillatory instabilities, this mode always
has a purely imaginary eigenvalue with an antisymmetric
eigenmode, corresponding to a translational instability.
Thus, in contrast to the on-site modulated case �6�, there is
no stability exchange between the two fundamental discrete
gap solitons, and therefore, the corresponding Peierls-
Nabarro barrier �27� should be always nonzero. For the
twisted gap mode, the results presented in Figs. 4�e�, 4�f�,
and 5�c� show that there are considerable regions of stability,
primarily for small V2, while it generally becomes unstable
for larger V2.

In conclusion, we have analyzed properties of discrete
gap modes in an array of waveguides with constant width but
alternating spacings. We showed how the fundamental gap
solitons appeared from the limit of uncoupled DNLS dimers,
and described their stability for general parameter values. We
hope that our results may stimulate further experimental ac-
tivity in this area.
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FIG. 5. �Color online� Stability
zones of the �a� fundamental anti-
symmetric, �b� fundamental sym-
metric, and �c� twisted discrete
gap modes. Black parts are stable
while the brighter parts corre-
spond to stronger instabilities.
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