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We analytically derive the general pseudopotential operator of an arbitrary isotropic interaction for particles
confined in two-dimensional �2D� systems using the frame work developed by Huang and Yang for three-
dimensional scattering. We also analytically derive the low-energy dependence of the scattering phase shift for
an arbitrary interaction with a power-law decaying tail, V2D�����−� �for ��2�. We apply our results to the 2D
dipolar gases ��=3� as an example, calculating the momentum and dipole moment dependences of the pseudo-
potential for both s- and p-wave scattering channels if the two scattering particles are in the same 2D layer.
Results for the s-wave scattering between particles in two different �parallel� layers are also investigated. Our
results can be directly applied to the systems of dipolar atoms and/or polar molecules in a general 2D geometry.
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Low-dimensional strongly correlated systems have been
one of the most important subjects in condensed-matter
physics in the last few decades. From the many-body point
of view, the standard mean-field approximation for the three-
dimensional �3D� system is usually broken down by thermal
fluctuation at finite temperature, while from the two-body
point of view, the widely used first Born approximation for a
3D weak potential totally fails in lower-dimensional systems
too �1�. As a result, a proper effective interaction �or called
pseudopotential� becomes essential to go beyond the weak-
interaction limit of 3D scattering or in the low-energy limit
of two-dimensional �2D� and one-dimensional �1D� systems.
For the 2D system that we want to concentrate in this Brief
Report, an important progress was made by Schick �2� for
the studying of 2D bosons with a hard-disk potential, and the
relevant applications to cold atom systems are also investi-
gated by several groups �3–5�. Recently Kanjilal and Blume
�6� derived a general form of the pseudopotentials for all
angular momentum channels of a short-ranged interaction.
The pseudopotential for a long-ranged dipolar interaction in
2D systems was also studied in the s-wave channel by one of
us �7�, but its extension to higher angular momentum chan-
nels is still unexplored even though several important results
have been carried out in 3D systems recently �8�.

In this Brief Report, we systematically generalize earlier
results and apply to the systems of 2D dipolar gases: �1� first,
we apply Huang and Yang’s theory �9,10� to derive a general
form of the pseudopotential in 2D systems. Our results can
be shown equivalent to Kanjilal and Blume’s results �6,11�,
derived from another approach. �2� For a general power-law
decaying interaction, V2D�����−����2�, we further analyti-
cally calculate the low-energy dependence of the scattering
phase shift, up to a single nonuniversal parameter to be de-
termined by the short-ranged details of V2D. �3� Finally we
numerically evaluate the nonuniversal parameter for a model
interaction in the s- and p-wave scattering channels of dipo-
lar interaction ��=3�. The s-wave scattering for the two scat-
tering particles confined in two different �parallel� 2D layers
are also investigated, showing a Feshbach-type resonance
even at zero dipole moment limit. Our results can therefore
be applied to the many-body physics of magnetic dipolar

atoms �12�, cold polar molecules �13�, or indirect excitons in
a semiconductor based double-well system �14�.

We start from solving the following two-particle 2D
Schrödinger equation with total energy E:

−
�2

2�
��

2 ��r�� + V2D�����r�� = E��r�� , �1�

where ��
2 � 1

�
�
���

�
�� + 1

�2
�2

��2 in cylindrical coordinate, �
=M /2 is the reduced mass, and ��r�� is the scattered wave
function in the relative coordinate, r���x ,y�. V2D��� is the
effective 2D interaction obtained by integrating out the trans-
verse degree of freedom �z� and is assumed to be isotropic
about the z axis here. Note that we also have assumed that
the transverse confinement potential is so strong that no
confinement-induced resonance �3� has to be considered
here.

Since V2D��� is assumed to be isotropic and decays faster
than �−2 in large �, the wave function, ��r�, can be always
expanded by noninteracting eigenstates in large distance:
��� ,��=�m=0

	 um�k ,���
=�Cm

�k�ei
m�, where k=�2�E /�2,

and um�k ,���Am�k�Jm�k��+Bm�k�Nm�k�� is the radial wave
function with Jm�x� /Nm�x� being the Bessel function of the
first or second kind. Here Am�k�, Bm�k�, and Cm

��k� are the
coefficients to be determined by boundary conditions. Simi-
lar to the 3D case �9�, we first investigate the short-distance
behavior in the leading-order terms:
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Here we define m�e−�+Hm/2, with ��0.57722 being the
Euler’s constant and Hm��k=1

m k−1 being the Harmonic num-
ber �15� �here H0�0�. We note that the third term in the
right-hand side of Eq. �3�, resulted from the irregular solu-
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tion, Nm�k��, is of the same order �up to a logarithmic func-
tion� as the first term if Am�k��Bm�k�. For a typical short-
range interaction, however, this term can be neglected
because B�k� /A�k��k2m in the long-wavelength limit. Here,
we still keep this term for the most general application. Such
hybridization between the regular and irregular solutions of
noninteracting partial waves does not exist in the 3D case
�9�. All other terms can be shown irrelevant to the derivation
of the pseudopotential below.

To derive the proper pseudopotential, we have to apply
the noninteracting Hamiltonian on the asymptotic wave func-
tion above �9,10� and integrate over a small spherical area of
radius � by using Green’s theorem �10�. Separating contribu-
tions from the s-wave and the non-s-wave parts, we obtain
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The next step is to rewrite the right-hand side to be a func-
tion of Pm�k��Bm�k� /Am�k�, which is the only quantity re-
lated to the phase shift of the mth partial wave, �m�k�. �In
fact, Pm�k�=−tan �m�k�.� In order to get an expression of
Am�k�, we have to take certain derivatives on the wave func-
tion and let �→0, as in the 3D case �9�. After some simple
calculation we obtain
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where we have used the following identity:
�2m

�x2m �x2m ln�x /b��= �2m� ! �H2m+ln�x /b�� �15�. As a result, by
combining Eqs. �4�–�6�, we find
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where the pseudopotential operator, V̂m, is
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Equations �7�–�9� can be interpreted as the effective interac-

tion of Eq. �1� with the same boundary condition at origin
�r�=0� in the low-energy limit �E ,k�→0�, and hence is the
2D version of Huang and Yang’s result in Ref. �9� �see Eq.
�12� therein�. We note that the pseudopotentials derived
above are equivalent to results of earlier work both in the
s-wave channel �2–6� and in the higher angular momentum
channels �6,11�.

After deriving the most general form of pseudopotential
for 2D scattering, we further derive an analytical closed form
of the momentum dependence of Pm�k� for a power-law de-
caying potential: V2D����U /�� as �→	. Here U measures
the strength of interaction, and ��2 is the decay exponent.
We start from the zero energy scattering �E=k=0� of Eq. �1�,
and the radial wave function, um�0,��=um���, can be calcu-

lated analytically: um���= ÃmIm
�

�
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�

�
��
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and B̃m being the coefficients to be determined by the short-
distance behavior of V2D���. Here ��� /2−1, ��

�� MU
�2 �1/2�, and Im�x� /Km�x� is the modified Bessel function

of the first or second kind. In the limit of long distance �or
weak interaction, ��

� /����1�, we have
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Ãm�2��−m/�

�	m

�
+ 1


��
m

�m + B̃m
�2��m/�

2
�	m

�

 �m

��
m ,

which should be also reproducible by taking the zero energy
limit �k→0� of Eqs. �2� and �3� �the last term of Eq. �3� can
be neglected in this limit�. Therefore the relationship be-

tween Pm�k� and P̃m� B̃m / Ãm can be easily derived to be

P0�k� =
��/2
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−1 + ln�20�� − � ln�k��/20�

, �10�
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where P̃m� B̃m / Ãm is the only nonuniversal parameter, de-
pending on the detailed shape of V2D��� in the short-distance
regime. Note that above results apply only in the low-energy
and/or weak-interaction limits, i.e., k��−1��1/� /��.

For s-wave scattering channel, we can define an effective

scattering length, a�����20��−1/�e−1/�P̃0 so that

V̂0��r�� =
− 2��2

2� ln�ka�/20�
��r����r�� , �12�

if we assume the scattered wave function can be approxi-
mated by a smooth function at origin after cross graining the
short-ranged fluctuation �for example, the mean-field con-
densate wave function of bosonic particles�. The resulting
pseudopotential above becomes the same as a hard-disk po-
tential �2,4,5� with an effective “radius,” a�. The justification
of the 2D pseudopotential depends on the interaction
strength, i.e., when ka��k���1.
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In the rest of this Brief Report, we will concentrate on a
physical example, say systems of polar molecules, for the
results of dipolar interaction ��=3�. An external electric field
is assumed to applied perpendicular to the layer plane, induc-
ing a field-dependent dipole moment, D. We consider three
cases of scattering here: case A: s-wave scattering between
identical bosons in the same layer; case B: p-wave scattering
between identical fermions in the same layer; and case C:
s-wave scattering between identical bosons or fermions in
two parallel layers with layer separation d. The last case can
be directly applied to the systems of multilayer structure
made by 1D optical lattice �16�. In the rest of the Brief Re-
port, we will use V2D

�0�/�1� to denote the bare intralayer/
interlayer interaction with the superscript �0�/�1� to identify all
the quantities obtained by either of them. For the conve-
nience of numerical calculation, we further approximate the
effective 2D interaction by the following analytic form: for
the intralayer interaction, we use V2D

�0����= D2

�3 for ��W and

= D2

W3 for ��W, where W should be about the same order of
the layer width and is fixed to be 0.1 �m in the following
calculation. We note that different choices of the cutoff, W,

can bring only minor quantitative difference in the results of
phase shift �not shown here� because the intralayer interac-
tion, V2D

�0����, is assumed to be repulsive for all �, and hence
no Feshbach-resonance-type resonance should be expected.
For the interlayer interaction, we use V2D

�1����= D2��2−2d2�
��2+d2�5/2 ,

where the effect of finite layer width is expected to be
smaller since W�d in a deep optical lattice. As a result, the
only length scale associated with our present model interac-
tion is �3=MD2 /�2 �also denoted to be ad in the literature
�12��. For a typical molecule, say SrO, the fully polarized
dipole moment can be D=8.9 Debye, leading to �3 as large
as 123.2 �m. However, for magnetic atoms such as 52Cr, the
maximum value of �3 is just about 1.03 nm.

In Fig. 1, we show the numerical results for case A and
case B together by evaluating the original two-particle

Schrödinger equation of Eq. �1�: in �a�, we show P̃0
�0� and a3

�0�

as a function of dipolar strength, �3. One can see that when

�3 is small, �P̃0
�0��−1 can be quiet large, leading to a very

small scattering length, a3
�0� for �3�0.05 �m. However, for

larger �3, a3
�0� becomes proportional to �3, which is the only

relevant length scale in this regime �i.e., the short-ranged
details of the dipolar interaction becomes negligible�. In Fig.
1�b�, we show the calculated strength of pseudopotential,
P0

�0��k�, for different values of incident wave vectors, k. One
can see that for a given k, P0

�0��k� decreases to zero logarith-
mically as �3→0, while it has a resonancelike behavior at a
certain value of �3. Such “resonancelike” behavior occurs as
�0�k�=� /2, indicating that the interaction is so strong to
push the wave front of the scattered wave function well

FIG. 1. �Color online� ��a� and �b�� Calculated s-wave scattering
length and amplitude, a3

�0� and P0
�0��k�, as a function of �3 for case

A. The inset shows results for �P̃0
�0��−1. Here we set W=0.1 �m

�see the text�. �c� shows the calculated P1
�0��k� for case B. Results

for different values of incident wave vector, k, are also shown
together.

FIG. 2. �Color online� Results for case C: �a� is the value of
a3

�1� /d as a function of �3 /d. In the inset: the upper one shows

�P̃0
�1��−1 for zero energy scattering, and the lower one shows the

bound-state energy in unit of recoil energy, ER��2�2 /2Md2. �b�
shows the value of P0

�1��k� for different incident wave vectors, k.
Inset: the magnified plot for the first resonance.
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ahead of the noninteracting one. It is therefore nothing to do
with the Feshbach resonance in 3D, and only results for
ka3�k�3�1 are correct for true low-energy scattering. In
�c� we show the results for case B: P1

�0��k� as a function of
dipolar strength. However, unlike the boson case, where the
typical incident wave vector is determined by the condensate
�i.e., system� size at low temperature, the typical incident
wave vector for fermions at low temperature should be about
the Fermi wave vector �i.e., the inverse of interparticle dis-
tance� due to the Pauli exclusion principle. Therefore we
calculate results for a much larger k in �c�, but similar inter-
action dependence is still observed. Note that our numerical
results are consistent with the analytic results derived in Eqs.
�10� and �11� in the low-energy limit.

In Fig. 2, we show the results for case C: the s-wave
scattering between particles in two different layers. In �a� and
its inset, we show the calculated scattering length, a3

�1�, and

the associated P̃0
�1� as a function of �3. It is interesting to see

that, different from the intralayer case, �P̃0
�1��−1 diverges to

negative infinity and a3
�1� also diverges in the regime of small

�3. Such divergence originates from the fact that our dipolar
interaction can always sustain an interlayer bound state in 2D

system even when the interaction strength is infinitely small.
The calculated bound-state energy shows a logarithmically
small binding energy for the first bound state, while the sec-
ond bound state appears near �3 /d�18. When considering
the finite-size effect, i.e., ka is bounded below, the first reso-
nance will occur at a finite dipole moment as shown in �b�
�also see Ref. �7��. The existence of an interlayer bound state
can lead to a strong modification of the pseudopotential
strength �similar to the Feshbach resonance�, and some ex-
otic many-body phases as predicted in Refs. �7,16�.

In summary, we analytically derive the general form of
the pseudopotential for an arbitrary short-ranged and isotro-
pic interaction in a uniform 2D system. The analytic energy
and interaction dependence of the pseudopotential is also
derived for an arbitrary power-law interaction. Numerical re-
sults are provided for the dipolar interaction and therefore
can be applied to the 2D quantum dipolar gases.

ACKNOWLEDGMENTS

We thank K. Kanjilal and D. Blume for discussion. This
work was supported by NSC and NCTS in Taiwan.

�1� L. D. Landau and E. M. Lifshitz, Quantum Mechanics �Perga-
mon, New York, 1977�.

�2� M. Schick, Phys. Rev. A 3, 1067 �1971�.
�3� D. S. Petrov, M. Holzmann, and G. V. Shlyapnikov, Phys. Rev.

Lett. 84, 2551 �2000�.
�4� B. J. Verhaar et al., J. Phys. A 17, 595 �1984�; K. Wodkiewicz,

Phys. Rev. A 43, 68 �1991�; S.-H. Kim, C. Won, S. D. Oh, and
W. Jhe e-print arXiv:cond-mat/9904087; M. Olshanii and L.
Pricoupenko, Phys. Rev. Lett. 88, 010402 �2001�; A. Banerjee,
Phys. Lett. A 332, 291 �2004�.

�5� For a recent review on 2D Bose gases, see, for example, A.
Posazhennikova, Rev. Mod. Phys. 78, 1111 �2006�.

�6� K. Kanjilal and D. Blume, Phys. Rev. A 73, 060701�R�
�2006�.

�7� D.-W. Wang, Phys. Rev. Lett. 98, 060403 �2007�. Note that the
minimum kd is set 0.01 therein for the finite-size effect.

�8� A. Derevianko, Phys. Rev. A 67, 033607 �2003�; 72, 039901
�2005�; D. C. E. Bortolotti et al., Phys. Rev. Lett. 97, 160402
�2006�; B. Wallbank et al., Phys. Rev. A 75, 052703 �2007�;
D.-W. Wang, New J. Phys. 10, 053005 �2008�.

�9� K. Huang and C. N. Yang, Phys. Rev. 105, 767 �1957�; K.

Huang, Statistical Mechanics �Wiley & Sons, New York,
1963�.

�10� We note that some numerical errors in Huang and Yang’s paper
have been pointed out by several authors �for example, R. Roth
and H. Feldmeier, Phys. Rev. A 64, 043603 �2001�; Z. Id-
ziaszek and T. Calarco, Phys. Rev. Lett. 96, 013201 �2006��,
but their whole theory is still shown correctly by A. Derevi-
anko �Phys. Rev. A 72, 044701 �2005�� after a more careful
mathematical calculation.

�11� K. Kanjilal and D. Blume �private communications�.
�12� J. Stuhler et al., Phys. Rev. Lett. 95, 150406 �2005�; Th. La-

haye et al., Nature �London� 448, 672 �2007�.
�13� J. Doyle, Eur. Phys. J. D 31, 149 �2004�; K.-K. Ni et al.,

Science 322, 231 �2008�.
�14� L. V. Butov et al., Phys. Rev. Lett. 73, 304 �1994�.
�15� Handbook of Mathematical Functions with Formulas in

Graphs and Mathematical Tables, edited by M. Abramowitz
and I. A. Stegun �Dover, New York, 1965�.

�16� D.-W. Wang, M. D. Lukin, and E. Demler, Phys. Rev. Lett. 97,
180413 �2006�.

BRIEF REPORTS PHYSICAL REVIEW A 79, 065603 �2009�

065603-4


