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We apply a kinetic model to predict the existence of an instability mechanism in elongated Bose-Einstein
condensates. Our kinetic description, based on the Wigner formalism, is employed to highlight the existence of
unstable Bogoliubov waves that may be excited in the counterpropagation configuration. We identify a dimen-
sionless parameter, the Mach number at T=0, that tunes different regimes of stability. We also estimate the
magnitude of the main parameters at which two-stream instability is expected to be observed under typical
experimental conditions.
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Several aspects of Bose-Einstein condensates �BEC�
physics have been explored in recent years, with particular
relevance to collective processes, such as collective atomic
recoil lasing �CARL� �1,2�, the excitation of Bogoliubov
waves in elongated condensates �3–5�, Bloch oscillations in
spatially periodic potential induced by a far-off-resonance
laser field �6�, and the observation of quantum fluctuations
and entanglement �7–10�. Attention to the physics of BECs
has also been paid in astrophysics since some recent theories
suggest BECs as good candidates for dark matter �11�. Re-
cent wave kinetic models have been proposed, in both clas-
sical and quantum regimes, to properly describe many coop-
erative phenomena in BECs, such as Bogoliubov waves,
wake fields, and instabilities �12–15�. Exact kinetic equations
also seem to constitute an essential tool in the description of
thermodynamics of condensation. For example, Gardiner et
al. applied kinetic methods based on the Wigner function to
describe the formation of a BEC in the presence of a thermal
bath �16�.

In this Brief Report, we apply a quantum kinetic model to
study the dynamical instability of Bogoliubov waves in two
counterpropagating BECs. The occurrence of instabilities in
BECs has been discussed in several works, ranging from
instabilities of the superflow in optical lattices �17� and dy-
namical instabilities of rotating BECs �18� to vortex forma-
tion mechanisms �19�. Recent experimental and theoretical
works on collisions of BECs �20,21�, reporting on the scat-
tering of atoms and quantum turbulence, pave the stage
where such instabilities may take place. Furthermore, in ex-
periments performed on storage ring traps for ultracold at-
oms �22�, where BECs can be split into two components
which counterpropagate around the ring, the study of the
stability criteria manifestly becomes an issue of major rel-
evance. We anticipate that in quasi-one-dimensional �1D�
systems, when two halves of a split condensate are set to
move against each other, the Bogoliubov waves can become
dynamically unstable. Such an instability should be referred
as a “two-stream” instability, in complete analogy with the

well-known phenomenon in plasma physics �23�. This dy-
namical instability drives an exponential increase in the am-
plitudes of the fluctuations in the condensate. Such a growth
induces the dephasing of the condensate, transferring its
translational kinetic energy to collective and single-particle
excitations �phonons�. We observe two different regimes of
instability, occurring in both subsonic and supersonic re-
gimes.

In the spirit of mean-field theory, the collective field op-

erator �̂�r , t�=��r , t�+ �̂�r , t� of the Bose gas can be sepa-
rated into a condensate c-number wave function ��r , t�
= ���r , t��, where � · � stands for the expectation value in the

ground state, and its quantum fluctuations �̂�r , t�. The con-
densed field verifies the normalization condition
���r , t����r , t�dr=N, where N is the total number of con-
densed atoms. The dynamics of the BEC wave function is
governed by the celebrated Gross-Pitaevskii �GP� equation

i�
��

�t
= −

�2

2m
�2� + �V0 + VSC�� , �1�

where V0=V0�r�=m /2���
2 r�

2 +�z
2z2� represents the asym-

metric confining potential, m is the single atom mass, r�

= �x2+y2�1/2 and z represent the transversal and longitudinal
directions, respectively, and VSC=g���r , t��2 is the nonlinear
self-consistent potential. Here, g=4��2a /m defines the cou-
pling constant or interaction strength and a represents the
s-wave scattering length. The main ingredient for the deriva-
tion of a quantum kinetic equation is the two-point correla-
tion function associated to the condensed wave function

C�s,�� = ��r − s/2,t − �/2����r + s/2,t + �/2� , �2�

where s=r1−r2, r= �r1+r2� /2, t= �t1+ t2� /2, and �= t1− t2.
By performing a double Fourier transform of the relative
position �s� and time ��� variables, we define the Wigner
function

W�r,t;�,k� =	 ds	 d�C�s,��exp�i�� − ik · s� , �3�

where � and k represent the frequency and the momentum of
the BEC excitation, respectively. Combining the GP Eq. �1�
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with Eq. �3�, it is possible to derive the Wigner-Moyal equa-
tion �24�,

i�
 �

�t
+

�

m
k · ��W =	 dq

�2��3	 d	

2�
V�q,	�


 �W− − W+�exp�− i	t + iq · r� ,

�4�

where W�=W���	 /2,k�q /2� and

V�q,	� =	 dr	 dtV�r,t�exp�− iq · r + i	t� �5�

stands for the double Fourier transform of the total potential
V=V0+VSC. We linearize the system by introducing a pertur-
bation around its equilibrium configurations, such that W�

=W0�+W̃� and V=V0+ Ṽ, where W̃�=W̃��q ,	�exp�iq ·r
− i	t� and Ṽ= Ṽ�q ,	�exp�iq ·r− i	t� represent the single
Fourier components of the wave. We restrict our discussion
to single Fourier components since we are looking for the
stability of a single mode. The same formalism can be easily
extended to a broadband fluctuation spectrum, which is not
the aim of the present work. Assuming that the confining
potential is static, V0=V0�r�, the fluctuations will be only
rooted in the nonlinear mean-field potential. This statement
restricts our discussion to the case of dynamical instabilities,
which has no dependence on the shape of the external poten-
tial, in contrast to the case of energetic instabilities �25�. The
Fourier component of the perturbed potential is therefore

given by the convolution Ṽ�q ,	�=g�������q ,	�. We can
easily obtain the linearized version of Eq. �4�,


 �

�t
+ v · ��W̃

=
g

i�
	 dq

�2��3	 d	

2�
Ṽ�q,	��W0+ − W0−�exp i� , �6�

where v=�k /m represents the velocity field of the BEC and
�=q ·r−	t is the wave phase.

In order to obtain very elongated BECs, one requires an
asymmetric trapping potential V0�r�=V��
�+Vz�z�, such that
the condition ��= ��x

2+�y
2�1/2��z is satisfied. A typical ex-

periment with 87Rb atoms contains N�105 atoms confined
in an asymmetric harmonic trap with radial and axial trap-
ping frequencies of �� /2��200 Hz and �z /2��20 Hz,
respectively �26�. The radial and axial Thomas-Fermi lengths
of the BEC are R
3.1 �m and Z
27.1 �m. Under these
conditions, we can assume that the BEC is quasi-1D. Assum-
ing a static density profile along the transversal direction, the
perturbations of the self-consistent field along the ẑ axis are

given by Ṽ�z , t�= Ṽ�qz ,	�exp�iqzz− i	t�, which together
with Eq. �6� yields

W̃�z,t;�,k� =
g

�
Ṽ�z,t�

W0− − W0+

	 − qzvz
. �7�

Integration of Eq. �7� over the BEC spectrum �k ,��, together
with the identity

Ṽ�z,t� =	 	 dk

�2��3

d�

2�
W̃�z,t;k,�� �8�

and considering that the condensate spectrum can be written
in the form �=��k�, which allows the factorization

W̃�z , t ;� ,k�=2�W̃�z , t ;k��(�−��k�), yields the following
kinetic dispersion relation:

1 −
g

�
	 dk

�2��3

W0�z;k − q/2� − W0�z;k + q/2�
	 − q · v

= 0. �9�

In the one-dimensional approximation, the waves cannot
propagate in the radial direction, and we can therefore fac-
torize the equilibrium Wigner function into its longitudinal
and perpendicular components, such that W0�z ;k�
= �2��2W0�z ;kz���k��. Dropping the subscript z, for the sake
of simplicity, we can finally write down the dispersion rela-
tion for the longitudinal oscillations,

1 −
g

�
	 dk

2�
W0�z;k�� 1

	+ − qv
−

1

	− − qv
� = 0, �10�

where 	�=	��q2 /2m. One can easily obtain the usual
excitation spectrum at T=0, by simply setting the corre-
sponding equilibrium profile W0�z ;kz�=2�n0��kz−k0�,
which yields �	−qv0�2=uB

2q2+�2q4 /4m2, where v0=�k0 /m

is the stream speed, uB=�gn0 /m represents the Bogoliubov
sound speed, and n0= �n0�r�� is the average background den-
sity. We immediately conclude that our kinetic approach is
totally equivalent to the usual Bogoliubov-de Gennes
method. Equation �10� shows that these �Doppler-shifted�
second-sound waves are dynamically stable since 	 is al-
ways real. One should notice that the dynamical instability
has no relation with the Landau criterion of superfluidity
�energetic instability�, which strongly depends on the exter-
nal potential. Menotti et al. explicitly showed the difference
between energetic and dynamical instability in the case of a
BEC confined in an optical lattice �25�.

In the counterpropagation configuration, a discussion
about the stability criteria of the excitations deserves some
attention. In order to give a first insight to the problem, we
assume a quasiequilibrium profile describing two incoherent
BEC beams, which is approximately given by W0�r ;k�
=�n0���k−k0�+��k+k0��, where n0 is the mean density. This
assumption is made by noticing that, at T=0, the rms veloc-
ity vrms=���k2� /m of each beam is very small, such that
qvrms�	, which is satisfied for modes such that 1 /q is
much less than the Thomas-Fermi length Z=�m�z /�. We
test the consistence of this approximation at the end of this
work. Under these conditions, the dispersion relation for the
sound waves in the two-stream configuration is finally given
by

1 −
K2

2 � 1

�2�	̃ + K�2 − K4
+

1

�2�	̃ − K�2 − K4� = 0,

�11�

where we have defined the normalized quantities 	̃=	 /�0,
K=�q /muB, and the dimensionless parameter �=v0 /uB.
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Here, �0=uBk0 represents the “resonance” frequency. The
parameter � defines a sonic number, the Mach number at T
=0. It measures if the beam flow is either subsonic ���1� or
supersonic ���1�. The factorization of Eq. �11� provides
two branches,

	̃�
2 =

K2

2�2 �1 + 2�2 + 2K2 � ��1 + 8�2 + 16�2K2�� ,

�12�

one of which �	̃+
2� is always positive and describes stable

oscillations. However, the solution 	̃−
2 is not positive definite

and negative solutions are found for the modes K that verify
the condition 1+2K2+2�2� �1+8�2+16�2K2�1/2. This con-
dition defines two dynamically unstable regions in the �K ,��
plan, as illustrated in Fig. 1. In the subsonic regime, ��1,
all the modes satisfying K�� are unstable; in the supersonic
regime, ��1, unstable modes are obtained for ��2−1�K
��. The representation of the dimensionless growth rate

�̃�K ,��=� /�0, where �=I�	�, shows that such unstable
oscillations occur in both supersonic and subsonic regimes
�see Fig. 2�. In the subsonic regime, all wave modes K are
unstable, until the cutoff given by the condition K=�. This
means that all q modes are unstable up to the cut-off wave
vector qc=k0, when this mode has the same energy of the
beam. In that case, all the wave energy is transferred to the
condensate, and the instability vanishes. In the supersonic
regime, ��1, the picture changes. First, to become unstable,
the phonon must have a momentum higher than the resonant
value qr=�muB /�, where �= ��v0 /uB�2−1�1/2. It means that
the phonon must be resonant with that of the supersonic
beam, so energy can be transferred from the condensate to
the wave. Our calculations also indicate that the increasing in
� increases both the value of the cut-off mode qc and the
value of the resonant mode qr. In the subsonic �supersonic�
regime, the value of the maximum growth rate increases �de-
creases� as � increases. Therefore, the most unstable mode is
obtained for �=1 and corresponds to a maximum growth
rate of �max
0.185�0, relative to the mode qmax
0.795qB,
where qB=muB /�. For the typical experimental conditions
performed with 87Rb �26�, the average density is n0
�1011 cm−3 and the s-wave scattering length is a�1 nm,
as it is known for alkali metals �27�, which provides a Bo-

goliubov speed of the range of uB�10 cm /s. Preparing the
condensate beams at �=1, we expect to observe a maximum
growth period of �=2� /�max�3 ms. The typical wave-
length for which two-stream instability is expected to occur
is at the order of �=2� /qB�1 �m, which is consistent with
the quasi-one-dimensional approximation we have per-
formed. One should also notice that the validity criterion for
the Bogoliubov theory �n0a3�10−3�1 is also satisfied for
the present experimental conditions. A final remark about the
validity of the present results is in order. First, it is well
known that under conditions of reduced effective dimension-
ality, phase fluctuations play an important role �our present
discussion is limited to weakly interacting systems whose
kinematics is low dimensional, but the scattering can still be
seen as a three dimensional process, which is far away from
the Tonks-Gireardeau regime�. For such a system, below the
degeneracy temperature Td=N��t /kB, where �t=���

2 +�z
2,

�the low-dimensional analog of the critical temperature�, one
can define a second characteristic temperature, the “phase
fluctuation” temperature Tph=Td��t /�, where � is the
Thomas-Fermi chemical potential �28�. At T�Tph, the con-
densate phase fluctuates at scales much smaller than the
Thomas-Fermi length, which correspond to the range of tem-
peratures where the two-stream instability mechanism pre-
sented here may be observed. Second, in the presence of a
thermal gas, a more detailed calculation should include the
dynamics of the decoherence and the respective equilibrium
distribution function would correspond to that of a low-
dimensional matter wave interferometer �29�. A simple
model for the condensate at finite temperature introduces a
broadening of the equilibrium profile �30�, and therefore
some wave modes are Landau damped, which suggests that
our results, based on the two-independent beams configura-
tion, correspond to the “best case scenario” for this dynami-
cal instability.

In conclusion, we have theoretically established the crite-
ria for dynamical instability of Bogoliubov waves in BECs
prepared in the two-stream configuration. Threshold condi-
tions for the occurrence of unstable regimes, and the corre-
sponding growth rates were derived. The conditions for the
two-stream instability change in the subsonic and supersonic
limits, where in the later the instability cannot be excited by
an arbitrarily small wave vector. The maximum growth rate
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FIG. 2. �Color online� Normalized wave growth rate �̃

=Im�	̃� /�0 for different values of �. Full line, �=0.5, dashed line,
�=1.0, and dotted line, �=1.5. The maximum growth rate, corre-
sponding to the most unstable mode, occurs for �=1 and K
0.8.
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FIG. 1. �Color online� Stability diagram for the two-stream
BEC. The shadowed area represents the set of parameters for which
the Bogoliubov waves are unstable. The upper curve corresponds to
K=�. The dashed lower curve corresponds to the case K=��2−1
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of the dynamical instability is observed when the nominal
velocity of the wave packets equals the sound speed in the
condensate. The authors consider that the features of the in-
stability mechanism presented here can eventually provide
the basis for future experiments.
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