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We present the improved calculations over the results of Korobov �Phys. Rev. A 74, 052506 �2006�� for the
energy levels and hyperfine structure of the hydrogen molecular ion H2

+, including the relativistic corrections
of orders �2 Ry and �2me /mp Ry, using variationally constructed basis sets in Hylleraas coordinates. In
particular, the computational uncertainty of 3 kHz in Korobov’s calculation for the �2 Ry correction to the
two-photon transition frequency �L=0,v=0�→ �L=0,v=1� is eliminated.
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I. INTRODUCTION

In recent years, H2
+ and its isotopes were cooled to a few

mK sympathetically with laser-cooled beryllium ions by
Schiller and co-workers �1,2� aiming at a spectroscopic ac-
curacy of 10−10 level. Meanwhile, experiments on high-
resolution spectroscopy for the two-photon transition �L ,v
=0�→ �L ,v=1� in H2

+ were proposed by Karr et al. �3,4� to
achieve a few kHz accuracy. The two-photon transition be-
tween the lowest rovibrational states of H2

+ can be used to
derive an improved value of the electron-proton mass ratio
me /mp �5,6�. Schiller and Korobov �7� studied in detail the
theoretical dependence of the rovibrational transition fre-
quency of H2

+ on me /mp.
The CODATA recommended values �8� of the fundamen-

tal constants for me /mp is accurate to about five parts in 1010.
In order to obtain an improved value for me /mp by 1 order of
magnitude in precision, the theory and experiment must be
accurate at least to a few parts in 1012 or better �2,9,10�.
Thus, relativistic and QED corrections of orders �5 Ry and
�6 Ry should be included in the calculations, which in turn
requires very high-precision nonrelativistic wave functions.
Korobov �11� evaluated the nonrelativistic rovibrational en-
ergy levels H2

+ to a precision of 10−15 for v=0–4 and L
=0–4. After that, the relativistic and radiative corrections up
to �6 Ry for H2

+ and HD+ have been calculated �11–14�.
Relativistic corrections of order �6�m /M� Ry to the hyper-
fine structure have also been estimated as well �15,16�. How-
ever, these results have not been confirmed independently.
Furthermore, the computational uncertainty in the lowest-
order relativistic correction of �2 Ry is about 3 kHz, which is
at the level of 40 parts in 1012 to the total transition fre-
quency of �0,0�→ �0,1� �11,14�. Up to now, the most precise
nonrelativistic energies for the low-lying states of H2

+ were
determined variationally by Li et al. �10� and Hajikata et al.
�17� using a completely different approach from �11�. As an
example, the ground-state energy of H2

+ has been calculated
to 30 significant digits. The purpose of this Brief Report is
to report our calculations for the leading relativistic correc-
tions to the low-lying rovibrational states in H2

+, which pro-
vides an independent verification of Korobov’s calculations.
At the same time, much-improved results for the energy lev-
els and hyperfine structure will be presented. Atomic units

��=e=me=1� are used throughout this Brief Report, unless
otherwise stated. The proton-electron mass ratio is chosen to
be 1836.152 672 61�85� �18�.

II. NONRELATIVISTIC WAVE FUNCTIONS

Consider the hydrogen molecular ion H2
+. After eliminat-

ing the center of mass degrees of freedom, the eigenvalue
problem for the nonrelativistic Hamiltonian H0 becomes �10�

H0� = E0� , �1�

with

H0 = �1�r1

2 + �2�r2

2 + �12�r1
· �r2

+ V . �2�

In the above, r1 and r2 are, respectively, the position vectors
of the electron and one proton, relative to the other proton
situated at the origin, �1=−�1+mp� / �2mp�, �2=�12=−1 /mp,
V=−1 /r1+1 /r2−1 /r12 is the coulomb interaction among the
three particles, and r12=r1−r2. The energy eigenvalue prob-
lem for H0 is solved variationally in the following Hylleraas
basis set:

�ijk�r1,r2� = r1
i r2

j r12
k e−�r1−�r2Yl1l2

LM�r1,r2� , �3�

where Yl1l2
LM�r1 ,r2� is the vector coupled product of spherical

harmonics for the electron and the proton. More details on
the construction of basis set for H2

+ can be found in �10�.
The basic type of integrals required in the calculation of
matrix elements can be evaluated analytically �19� using Per-
kins’ expansion for r12

c . Singularities of singular integrals that
appear in the evaluation of Breit interaction can be canceled
out according to the procedure in �20�.

III. LEADING-ORDER RELATIVISTIC CORRECTIONS

The leading-order relativistic corrections of order �2 from
the Breit-Pauli Hamiltonian are well established and may be
found in �11,21�. The complete spin-independent contribu-
tions are

Hspin-indep = �2HBreit + Hnuc, �4�

where
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HBreit = Hrc + Ekin + Htr-ph + HDarwin, �5�

Hrc = −
�r1

4

8
+

4�

8
���r1� + ��r12�� , �6�

Hkin = 2�−
1

8mp
3 �r2

4 � , �7�

Htr-ph =
1

2mpr1
3 �r1

2�r1
· ��r1

+ �r2
� + r1r1:��r1

+ �r2
��r1

�

−
1

2mp
2r2

3 �r2
2�r2

· ��r1
+ �r2

� + r2r2:��r1
+ �r2

��r2
�

−
1

2mpr12
3 �r12

2 �r1
· �r2

+ r12r12:�r1
�r2

� , �8�

HDarwin =
1

8mp
2 ���r1� + ��r12�� , �9�

Hnuc =
2��Rp/a0�2

3
���r1� + ��r12�� . �10�

In the above, Hrc is the major relativistic contribution of
order �2 from the bound electron, Hkin is the correction due
to the relativistic kinetic energy of the two protons, Htr-ph is
from the transverse photon exchange, HDarwin is the Darwin
term, and Hnuc is the leading-order correction from the finite
nuclear charge distribution, where Rp=0.8768�69� fm �8� is
the proton root-mean-square charge radius and a0 is the Bohr
radius. The global operator method, proposed by Drachman
�22�, is used to calculate some singular operators such as
��ri� and �ri

4 .

IV. LEADING-ORDER RELATIVISTIC CORRECTIONS
TO HYPERFINE STRUCTURE

The leading-order relativistic corrections to hyperfine
structure of H2

+ are described by the spin-dependent terms of

Breit-Pauli Hamiltonian that sums up pairwise interactions of
the three particles. The electron-proton and proton-proton
spin-orbit interactions are expressed as

Vso-pe = �2�−
1 + 2	e

2
� 1

r1
3 �ir1 
 �r1

� +
1

r12
3 �ir12 
 �r1

�� · se

+
1 + 	e

mp
� 1

r1
3 �ir1 
 �r1

� +
1

r1
3 �ir1 
 �r2

�

+
1

r12
3 �ir12 
 �r2

�� · se +
1 + 2	p

mp
2 � 1

r1
3 �ir1 
 �r1

� · I0

+
1

r1
3 �ir1 
 �r2

� · I0 +
1

r12
3 �ir12 
 �r2

� · I2�
−

1 + 	p

2mp
� 1

r1
3 �ir1 
 �r1

� · I0 +
1

r12
3 �ir12 
 �r1

� · I2�� ,

�11�

Vso-pp = �2�1 + 2	p

2mp
2 � 1

r2
3 �ir2 
 �r1

� · I0 +
1

r2
3 �ir2 
 �r2

� · I0

+
1

r2
3 �ir2 
 �r2

� · I2� +
�p

mp
2� 1

r2
3 �ir2 
 �r1

� · I2

+
1

r2
3 �ir2 
 �r2

� · I2 +
1

r2
3 �ir2 
 �r2

� · I0�� , �12�

TABLE I. Convergence of 	�r1

4 
 and 	�r2

4 
 in the state �0,0�. N
denotes the size of basis set.

N 	�r1

4 
 	�r2

4 


6084 6.2856600593122250 79.7976493122364

6795 6.2856600593122253 79.7976493122401

7560 6.2856600593122214 79.7976493122417

8381 6.2856600593122213 79.7976493122422

9260 6.2856600593122207 79.7976493122427

Extrap. 6.2856600593122200�7� 79.7976493122432�5�

TABLE II. Expectation values of various operators for some rovibrational states of H2
+ and comparison

to Korobov’s work �11�.

�L ,v� �0,0� �1,0� �0,1�

	�r1

4 
 6.28566006 6.27803905 6.12451981

This work 6.2856600593122200�7� 6.278039037386287�5� 6.124519807747879�3�
	�r2

4 
 79.7976 85.0505 334.898

This work 79.7976493122432�5� 85.050455613540�5� 334.89830192549�4�
	��r1�
 0.206736476 0.206491321 0.201310665

This work 0.2067364762888147850�1� 0.206491320158817300�3� 0.2013106647020826675�1�
Rpe 1.17012 1.16881 1.14081

This work 1.170117625033754694�1� 1.16881866381904511�8� 1.1408052271300473�2�
Rpp 4.60193 4.83433 12.8961

This work 4.601934312504856498�2� 4.8343364736703696570�6� 12.89614649485648�2�
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where �e=−�1+	e� is the magnetic moment of the electron
in Bohr magneton, �p=1+	p is the magnetic moment of the
proton in nuclear magneton, and I0, I2, and se are the spin
operators for the two nuclei and the electron, respectively.
The electron-proton and proton-proton spin-spin tensor inter-
actions are expressed as

Vss-ep = �2�e�p

mp
� r1

2�se · I0� − 3�r1 · se��r1 · I0�
r1

5

+
r12

2 �se · I2� − 3�r12 · se��r12 · I2�
r12

5

−
8�

3
���r1��se · I0� + ��r12��se · I2��� , �13�

Vss-pp = �2 �p
2

mp
2� r2

2�I0 · I2� − 3�r2 · I0��r2 · I2�
r2

5

−
8�

3
��r2��I0 · I2�� . �14�

The nuclear spin-spin tensor interaction cannot be neglected
and was first considered in �16�.

V. CALCULATIONS AND RESULTS

Table I presents a convergence study for 	�r1

4 
 and 	�r2

4 
 in
�0,0� evaluated using the global operator method. Numerical
values for various spin-independent operators of the Breit
interaction are listed in Table II, together with a comparison

to Korobov’s work �11�. Table III contains the numerical
values for various spin-dependent operators in the state �1,0�.
The notations for orbit-orbit operators are as follows:

Rpe = − 
 1

r1
3 �r1

2�r1
· ��r1

+ �r2
� + r1r1:��r1

+ �r2
��r1

�� ,

�15�

and the definition for Rpp is obtained from Rpe by 1↔2. The
notations for the reduced matrix elements of orbital parts of
spin-dependent operators are

Sj
�i� = 
� 1

ri
3 �iri 
 �rj

���, Sj
�12� = 
� 1

r12
3 �ir12 
 �rj

��� ,

Tpe = 	��r1 � r1��2��
, Tpp = 	��r2 � r2��2��
 , �16�

where i , j=1,2 and the superscript 2 stands for a second-
order tensor.

Table IV lists the contributions to the two-photon transi-
tion frequency �0,0�→ �0,1� from the nonrelativistic energy,
the Breit interaction, and the nuclear charge distribution. In
the table, the uncertainty of 0.4 kHz in �Enr is due entirely to
the uncertainty in the Rydberg constant �8�. �EBreit is the
leading relativistic correction of order �2. In Korobov’s cal-
culations �11,14�, the uncertainty in �EBreit is estimated to be
3 kHz that mainly comes from the computational uncertainty
in 	�r1

4 
. By contrast, the uncertainty of 2 Hz in our value is
due to the uncertainty in the fine-structure constant �. Addi-
tional, the uncertainty due to proton-electron mass ratio �16�
in Breit interactions is about 0.003 Hz. The largest uncer-
tainty of 0.6 kHz �about ten parts in 1012 to the total transi-
tion frequency� is from the proton root-mean-square charge
radius, which is at the level of 0.8% accuracy. A muonic
hydrogen Lamb-shift experiment is currently underway at

TABLE III. Numerical values for reduced matrix elements of
orbital parts of spin-dependent operators in the state �1,0�.

Operator Value

S1
�1� 0.2704494968631�4�
10−4

S2
�2� −0.2996739237238803�7�

S2
�1� −0.2968096504450887�5�

S1
�2� 0.139939978335�3�
10−4

S1
�12� 0.270449496868�5�
10−4

S2
�12� 0.296782605495398�5�

Tpe 0.21539521185521�1�
Tpp 0.3283262297065680565838�1�

TABLE IV. Contributions to the transition frequency �0,0�
→ �0,1� in MHz.

This work Korobov

�Enr 65687511.0686�4� 65687511.0686a

�EBreit 1091.081355�2� 1091.081�03�b

�Enuc −0.0410�6� −0.0410�3� b

aTable VI of Ref. �11�.
bObtained using data of Table IV in Ref. �11�.

TABLE V. Hyperfine structure of H2
+ for the state �1,0�, in MHz.

�F̃ ,J�

�Ehfs �C1

 ,C3


�

This work Ref. �15� This work Ref. ��4��.

�1/2,3/2� −930.433201�8� −930.4332 �−0.999878130, 0.015611707� �−0.999878, 0.015612�
�1/2,1/2� −910.757885�8� −910.7579 �−0.999243469, 0.038890742� �−0.999243, 0.038891�
�3/2,5/2� 474.106321�4� 474.1063 �0, 1� �0, 1�
�3/2,3/2� 481.953402�4� 481.9534 �0.015611707, 0.999878130� �0.015612, 0.999878�
�3/2,1/2� 385.398521�4� 385.3985 �0.038890742, 0.999243469� �0.038891, 0.999243�
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the Paul Scherrer Institute �23� with a purpose of reducing
the uncertainty of Rp to 0.1%. Thus a further reduction of
uncertainty in �Enuc to a few parts in 1012 is feasible in the
near future.

The leading-order relativistic corrections to the hyperfine
structure are calculated in the angular coupling scheme

I = I0 + I2, F = I + se, J = L + F .

The possible values of F and J are listed in �4�. It should be
pointed out that F is an approximate quantum number for the
case when L is odd. Thus, for an L=1 state, I can only be 1
and the eigenstates of J=L


1
2 are the linear combination of

F=1 /2 and F=3 /2 hyperfine states �see Eq. �20� in �4��

�v,L,se,I,F̃,J = L 

1

2
� = C1


�v,L,
1

2
,1,

1

2
,L 


1

2
�

+ C3

�v,L,

1

2
,1,

3

2
,L 


1

2
� .

�17�

Since the mixing between F=1 /2 and F=3 /2 states is quite
weak, one can label the states by the dominant F, denoted by

F̃. Here only the hyperfine structure of �1,0� state is consid-

ered. Our results are listed in Table V. The uncertainties in
our calculations are mainly due to the proton magnetic mo-
ment. One can see that good agreement with �4,15� is ob-
tained.

The effective spin Hamiltonian is used according to �15�

Heff = bF�I · se� + ce�L · se� + cI�L · I�

+
d1

�2L − 1��2L + 3�
�2

3
L2�I · se� − ��L · I��L · se�

+ �L · se��L · I��� +
d2

�2L − 1��2L + 3�
�1

3
L2I2

−
1

2
�L · I� − �L · I�2� . �18�

Numerical values of the coefficients contained in Eq. �18� are
listed in Table VI. Uncertainties in the coefficients are
mainly caused by the uncertainty in �p �8�, while uncertain-
ties from the operators in Table III are negligible. It is worth-
while to emphasize that the 10 Hz difference in cI with Ko-
robov’s calculation �15� in Table VI is related to the
discrepancy in S1

�2�, where Korobov’s value �27� is about
10−16 whereas ours is 10−5. However, it will not introduce
noticeable effect on the final results of the hyperfine split-
tings at the level of kHz �16�.

In conclusion, we have presented an independent calcula-
tion of the leading-order relativistic corrections to the �0,0�,
�0,1�, and �1,0� states of H2

+, including the hyperfine struc-
ture. The computational uncertainties that exist in previous
work have now been eliminated and all uncertainties are due
entirely to the fundamental physical constants.
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