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Results of variational computations of the triplet 23 S state in beryllium atom and in some berylliumlike ions
�O4+, Ne6+, and Mg8+� are presented. In each of these systems we determine numerically the total energies of
the 23 S state and various bound-state properties. Analytical formulas are derived for the Z−1�Q−1� expansion of
the total energies of the triplet 23 S states in four-electron atomic systems. The hyperfine-structure splitting in
this state is evaluated for the 9Be atom.

DOI: 10.1103/PhysRevA.79.064501 PACS number�s�: 31.15.ac, 31.15.ae

In this Brief Report we consider the bound-state proper-
ties of the 23 S state in the beryllium atom and some beryl-
liumlike ions. This state is definitely bound �=stable� in the
Be atom. The electric dipole transition �or E1 transition�
from this state into the ground 11 S state of the beryllium
atom is strictly prohibited due to conservation of the total
electron spin. In general, the 23 S states in four-electron at-
oms and ions are quite similar to the triplet states in two-
electron atoms and ions. This follows from the fact that two
electrons in any four-electron atom or ion form a very stable
1s2 electron shell. The binding energy of an electron in this
�1s� shell is much larger than that of an electron in any outer
electron shell. Consequently, the two outer electrons in any
Be-like system can be considered as a quasi-independent
two-electron subsystem. Note that in standard notations used
in atomic physics the triplet 23 S states considered in this
work can be designated as �1s22sns�3 S states, where n�3.

The wave function of the triplet 23 S state in a four-
electron system can be represented as the sum of products of
the spatial and spin wave functions. Below, we shall consider
only one spin wave function �1= ���−�����, where � and
� are the electron spin-up and spin-down functions �1�. The
spin function �1 corresponds to the S=1 and Sz=1 values,
where S is the total �electron� spin of the four-electron sys-
tem, while Sz is its z projection.

Our main interest below is the bound-state spectrum in
four-electron atomic systems. To simplify all following for-
mulas, below we shall use only a.u. in which �=1, me
=1, e=1. The nonrelativistic Hamiltonian of the four-
electron atomic system takes the form �see, e.g., �2��

H = − �1/2���
i=1

4

�i
2 + �1/M��5

2� − �
i=1

4

�Q/ri5�

+ �
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3

�
j=2��i�

4

�1/rij� , �1�

where the subscripts 1, 2, 3, and 4 designate four elec-
trons, while the subscript 5 means the positively charged
nucleus. Also, in Eq. �1� Q is the nuclear charge and
�i= � �

�xi
, �

�yi
, �

�zi
� is the gradient operator of the ith particle

�i=1,2 , . . . ,5�. The notation rij stands for the �ij�-relative
distance coordinate between ith and jth particles, i.e.,
rij = �ri−r j�=rji, where ri are the Cartesian coordinates of the

ith particle. The notation M in Eq. �1� stands for the mass of
the central �heavy� nucleus, i.e., M �me=1. All particles
�i.e., electrons and nuclei� are considered as point particles
with masses me and M and electric charges q=−e and Qe,
respectively.

In this work we need to determine the accurate solutions
of the Schrödinger equation H�=E�, where H is the
Hamiltonian �Eq. �1��, while E is the eigenvalue �total en-
ergy� of the considered bound state, and � is the correspond-
ing wave function. In this study we consider the bound triplet
23 S states in different four-electron atomic systems, includ-
ing the Be atom and a few other similar systems. It should be
mentioned that in this work the bound triplet 23 S states in
four-electron atomic systems are described by the explicitly
correlated trial wave functions; we are not aware of any other
studies employing such wave functions. However, in �3� the
method based on Hartree-Fock configuration interaction was
used for the excited states in the Be atom.

The wave function of the triplet 23 S state in the four-
electron atomic system is represented in the form

� = 	L=0�	rij
���� − ����� , �2�

where 	L=0�	rij
� is the radial part �also called spatial part� of
the total wave function. All computations below are per-
formed with the use of only one electron spin function
�1 which corresponds to the S=1 and Sz=1 values.
The two other spin functions �0= ���−������+��� and
�−1= ���−����� correspond to the S=1, Sz=0 and
S=1, Sz=−1 values, respectively. These three spin functions
�1 ,�0 ,�−1 form a regular triplet. To describe the experimen-
tal situations with no external magnetic field present we can
use only one of these three spin functions. In this work we
shall always choose �1= ���−����� �see Eq. �2� above�.

Now, we need to obtain the spatial part of the total wave
function with the correct permutation symmetry between all
identical particles 1–4 �electrons�. The corresponding spatial
projector is obtained in this work by calculating the explicit
expression for the following spin expectation value:

P = C���� − ������Â���� − ������ , �3�

where C is the normalization factor, while Â is the complete
four-particle �or four-electron� antisymmetrizer,
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Â = ê − P̂12 − P̂13 − P̂23 − P̂14 − P̂24 − P̂34 + P̂123 + P̂132 + P̂124

+ P̂142 + P̂134 + P̂143 + P̂234 + P̂243 − P̂1234 − P̂1243 − P̂1324

− P̂1342 − P̂1423 − P̂1432 + P̂12P̂34 + P̂13P̂24 + P̂14P̂23. �4�

Here ê is the identity permutation, while P̂ij is the permuta-
tion of the ith and jth identical particles. Analogously, the

operators P̂ijk and P̂ijkl are the permutations of three identical
particles �i, j, and k� and four identical particles �i, j, k, and
l�, respectively. After some algebra one finds from Eq. �3� the
explicit formula for the corresponding spatial projector

P =
1

26
�2ê + 2P̂12 − P̂13 − P̂23 − P̂14 − P̂24 − 2P̂34 − 2P̂12P̂34

− P̂123 − P̂124 − P̂132 − P̂142 + P̂134 + P̂234 + P̂243 + P̂143

+ P̂1432 + P̂1234 + P̂1243 + P̂1342� . �5�

This projector creates the spatial part of the total �triplet�
wave function with the correct permutation symmetry be-
tween all four identical particles �electrons�.

The radial part 	L=0�A ; 	rij
� of the total wave function
�Eq. �2�� is represented in the form �4,5�

	L=0�A;	rij
� = P�
k=1

NA

Ck exp�− �
ij

�ij
�k�rij

2 � , �6�

where NA is the number of basis functions used and Ck are
the linear parameters of the variational expansion �Eq. �6��.
The notation �ij

�k� stands for the nonlinear parameters of the

variational expansion �Eq. �6��. The notation 	rij
 designates
the set of relative coordinates which are needed for a com-
plete description of the five-body systems �or four-electron
atomic system�. In fact, for all berylliumlike ions and atoms
considered in this study the notation 	rij
 stands for ten rela-
tive coordinates: r12, r13, r14, r15, r23, r24, r25, r34, r35, and r45.
Note that these relative coordinates rij = �ri−r j� are transla-
tionally and rotationally invariant. Therefore, there is no
need to separate the center of mass in the original system or
perform any other similar transformation. The radial basis
functions in Eq. �6� are called the ten-dimensional gaussoids
of the relative coordinates �5�. The summation over all pos-
sible pairs �ij�, where �ij�= �ji� in the exponents of Eq. �6�, is
taken over all possible different pairs of particles.

Analytical formulas for all matrix elements needed in
bound-state computations of four-electron atomic systems
are presented in our earlier work �4� �see also �5�� and are not
repeated here. We use the same basis set as in �4�. For dis-
cussion of optimization of the nonlinear parameters in the
radial wave functions the reader is referred to �6� �also see
below�. In fact, in our present computations we have used
variational wave functions which contain 300 basis functions
�Eq. �6��. All nonlinear parameters in these basis wave func-
tions have been well optimized very carefully. The final ac-
curacy was determined from direct comparisons of our re-
sults with the analogous results obtained with the use of 400
basis functions �Eq. �6��. Now, let us consider the bound-
state properties of the triplet 23 S state in the Be atom. Our
second goal is to evaluate the hyperfine splitting in the 23 S
state of the 9Be atom.

Our results for the total energies of this state and for some
other bound-state properties can be found in Table I. In Table

TABLE I. The expectation values �in a.u.� of some properties for the bound 23 S states of the 
Be atom and 
O4+, 
Ne6+, and 
Mg8+ ions
with infinitely heavy nuclei. The notation N means the positively charged nucleus, while e designates the electron. The threshold energies of
three-electron ions are taken from Refs. �6,7�.

System Be O4+ Ne6+ Mg8+

E −14.43005943 −65.92092051 −105.8388513 −155.2018581

Etr 14.324763177 62.228542083 102.68223148 150.136196605

�ree� 4.708416 1.536522 1.159892 0.932359

�reN� 2.630860 0.884010 0.670119 0.540109

�ree
2 � 35.09338 3.476096 1.965085 1.263618

�reN
2 � 17.13250 1.687122 0.953494 0.613169

�ree
3 � 318.022 9.46608 4.00311 2.05774

�reN
3 � 147.408 4.23305 1.78258 0.91427

�ree
4 � 3239.8 28.904 9.1427 3.7564

�reN
4 � 1451.4 12.139 3.8087 1.5578

�ree
−1� 0.619331 1.489611 1.920863 2.351610

�reN
−1� 2.036021 4.399377 5.580079 6.760696

�ree
−2� 1.503650 7.421729 12.075210 17.85915

�reN
−2� 14.27389 62.76288 99.96781 145.8098

�− 1
2�1� 3.60761579 16.48037599 26.4597983 38.8004773

��eN� 8.696398 77.824429 155.59634 272.92805

��ee� 0.39902 4.30195 8.89917 16.0001

��eeN� 37.576 3445.90 14259.9 44083.0
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I we also consider the 23 S states in the O4+, Ne6+, and Mg8+

ions. The total energy of the triplet 23 S state of Be atom
with the infinitely heavy nucleus �
Be atom� is lower than
−14.324 763 176 47 a.u. Infinite nuclear masses are often
used in atomic calculations since the actual nuclear masses
are determined experimentally and are thus subject to revi-
sion. The energy Etr=−14.324 763 176 47 a.u. corresponds
to the total energy of the three-electron 
Be+ ion in its
ground 12 S state. In other words, it represents the atomic
dissociation threshold for the 
Be atom. In general, the sta-
bility of an arbitrary LS state in the 
Be atom means its
stability against the dissociation 
Be�LS�→ 
Be+�12 S�+e−.
Here and below, the bound state in the Be atom is designated
with the use of notation LS, where L is the angular momen-
tum and S is the total spin of all four electrons; for the 23 S
state of the Be atom L=0 and S=1. Note that the total energy
of the ground state in the three-electron Be+ ion is known to
a much better accuracy than the total energy of any bound
state in the four-electron Be atom. Briefly, this state in the
four-electron Be-like ion �or atom� is bound if the sum of its
total energy with the absolute value of the total energy of the
ground 12 S state in the corresponding three-electron ion is
negative. In general, such a negative sum is called the bind-
ing energy.

In addition to the triplet 23 S state in the Be atom we also
consider a number of similar four-electron �or berylliumlike�
ions O4+, Ne6+, and Mg8+ in their 23 S states. All nuclear
masses in these computations are assumed to be infinite. In
reality, the following recalculations to the finite nuclear
masses are easy to perform. As follows from Table I all these
ions have stable triplet 23 S states since the sum E+Etr�0
for each of these ions. The Etr values have been taken from
�6,7�. In Table I we also present some basic bound-state
properties of all berylliumlike ions mentioned in this work
�in the 23 S state�. The physical meaning of all properties,
e.g., �rij� and �rij

−1�, uniformly follows from the notation
used. Therefore, here we restrict ourselves only to a few
following remarks. The notation ��ij��=���rij��= ���ri−r j���
stands for the expectation value of the two-particle delta
function between particles i and j. Analogously, ��ijk� and
��ijkl� mean the expectation values of three- and four-particle
delta functions. These delta functions are defined via two-
particle delta functions as follows: �ijk=��ri−r j���ri−rk�
and �ijkl=��ri−r j���ri−rk���ri−rl�. Note also that these val-
ues are symmetric upon any permutations between particles,
e.g., �ijk=�ikj =�kji, etc.

It is clear a priori that for the triplet 23 S state of Be atom
the expectation values of all multielectron delta functions,
e.g., ��eee� , ��eeeN� and ��eeee�, equal to zero identically. This
follows from the fact that two �of three and four� electrons

always have the same spin functions �� in our case�. The
only delta functions which have nonzero expectation values
for the 23 S state of the Be-like atomic system are �eN, �ee,
and �eeN. Their expectation values can be found in Table I.

As follows from the results in Table I the triplet 23 S state
in the Be atom is a weakly bound state. The binding param-
eter ��1�,

 = �E − Etr�/E = 1 − �Etr/E� , �7�

for this state is only �0.0070=0.7%, i.e., it is a very small
value. For many weakly bound Coulomb systems we find
�2%. Systems for which this parameter is �1% can be
considered as extremely weakly bound. The structure of this
state in the Be atom corresponds to a system which is very
close to its dissociation threshold. Briefly, this means that the
outer most electron moves far away from the nucleus. In
other words, the Be atom in its triplet 23 S state can be con-
sidered as a two-particle cluster system �Be++e−�. Such a
cluster structure can also explain the instability of the triplet
23 S state in the four-electron Li− ion �the ground 11 S state
in this ion is bound� �see, e.g., �4,8� and references therein�.
However, if the nuclear charge Q in Be-like atomic systems
grows, then the corresponding binding energies increase rap-
idly. For instance, the triplet 23 S state in the four-electron
O4+ ion is already quite well bound. The binding energy per
electron in this state of the O4+ ion is �0.925 a.u. which
close to the values known for a typical atomic �excited� state.
As follows from Table I the bound-state properties of the
O4+, Ne6+, and Mg8+ ions correspond to the properties which
can be predicted for a typical atomic �excited� state.

Our analysis can be concluded with an approximate for-
mula for the total energies of the 23 S states in four-electron
atomic systems. To obtain such a formula we shall use the
Q−1 expansion, where Q is the nuclear charge of the nuclei in
four-electron atoms and ions. All nuclear masses are as-
sumed to be equal infinity. Our total energies determined for
different four-electron atoms in their 23 S states �see Table II�
can be used as the test points to obtain a number of first
coefficients in the E�Q ;23 S� expansion. Note that in contrast
with �9� our E�Q ;23 S� expansion is written for the total
energy rather than for ionization potential. The explicit for-
mula is written as a Laurent expansion �10� upon Q �here and
below Q�4�, i.e., it takes the form

E�Q;23 S� = a2Q2 + a1Q + a0 + b1Q−1 + b2Q−2 + b3Q−3

+ b4Q−4 + ¯ , �8�

where numerical values of the coefficients
a2 ,a1 ,a0 ,b1 ,b2 ,b3 , . . . must be determined from fitting the
results of accurate numerical computations to Eq. �8�. Note

TABLE II. The nonrelativistic energies of the 23 S states of some berylliumlike systems computed with the use of the trial wave function
�Eq. �2��. The Li− ion is unstable in the 23 S state. The nuclear masses are infinite for all atomic systems mentioned in this table.

System E �a.u.� System E �a.u.� System E �a.u.�

Be −14.4300594 N3+ −49.5043945 Ne6+ −105.838851

B+ −23.7575327 O4+ −65.9209205 Na7+ −129.339816

C2+ −35.4496814 F5+ −84.6990681 Mg8+ −155.201858
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that the principal part of the expansion �Eq. �8�� includes
only integer powers of Q−1. Such an expansion essentially
follows from the Poincare theorem applied to the
Schrödinger equation with the Hamiltonian �Eq. �1��. As
mentioned above the negatively charged Li− ion is not bound
in its 23 S state. This means that the formula �Eq. �8�� can be
applied to actual systems with Q�4. The coefficients
a2 ,a1 ,a0 ,b1 ,b2 ,b3 , . . . determined with our variational ener-
gies for four-electron atoms or ions can be found in Table III.
The results from Tables II and III can be used in future
numerical computations of the 23 S states in four-electron
atoms and ions.

In contrast with the ground �singlet� state in the Be atom,
the total electron spin of the triplet state in this atom is dif-
ferent from zero. Therefore, there is an interaction between
the total electron spin Se=1 and nuclear spin IN in those
cases when IN�0. This is the case for the 9Be atom, where
IN= 3

2 . In the first approximation, the Fermi-Segré formula
�2� for the hyperfine splitting in the triplet 3S�L=0� states of
the 9Be atom takes the form �in a.u.�

HHF =
8��2

3
�B�NgegN���reN��

�
1

2
�F�F + 1� − IN�IN + 1� − Se�Se + 1�� , �9�

where ���reN�� is the electron-nuclear delta function for the
considered triplet state, Se=1 for the triplet states, IN is the
nuclear spin, and F= �F�, where F is the total angular mo-
mentum operator for the whole atom �i.e., electron shells
plus nucleus�. For IN= 1

2 the splitting can be observed as the
doublet of states with F= 1

2 and F= 3
2 . For IN�1 �the case of

9Be atom� one can observe the triplet of states with
F= IN−1, IN, and IN+1.

The fine structure constant �, proton mass mp, and g fac-
tors used in our present calculations were chosen from
�11,12�,

� = 7.297 352 568 � 10−3, mp = 1836.152 672 61,

ge = − 2.002 319 304 371 8,

gN�9Be� = − 1.177 61� 2
3� = − 0.785 07.

Also, in a.u. �B= 1
2 , �N=�B�me /Mp�. Since the hyperfine

splitting is traditionally expressed in Megahertz, the conver-
sion factor 6.579 683 920 61�109 MHz /a.u. has been used.
Now, one can write Eq. �9� in the form

HHF = 314.121 190 927���reN��

��F�F + 1� − IN�IN + 1� − Se�Se + 1��

= 2731.722 897�F�F + 1� − 23
4 � , �10�

where HHF is in MHz, while ���reN���8.696 398 �in a.u.�
for the 23 S state. The hyperfine structure in the 9Be atom
includes three groups of levels with F= 1

2 , 3
2 , and 5

2 . The
energies of these states are −13 658.614, −5463.446, and
8195.169 MHz, respectively. The hyperfine-structure split-
tings can easily be obtained from these values. Such a
hyperfine-structure splitting can be measured experimentally.

We have considered the bound-state properties and hyper-
fine splitting in the triplet 23 S state of the Be atom. In our
present analysis we have applied the explicitly correlated
wave functions written in relative five-body coordinates, r12,
r13, r14, r15, r23, r24, r25, r34, r35, and r45. It is shown that the
triplet 23 S state in the Be atom is bound �in fact, it is weakly
bound�. A number of bound-state properties of the triplet
23 S states in the Be atom and in analogous O4+, Ne6+, and
Ne8+ ions have been determined to a relatively good accu-
racy. For the 23 S state in beryllium atom our variational
energy is lower than the corresponding energy from �3�. All
nuclei in these systems were assumed to be infinitely heavy,
but by using our method it is straightforward to determine
the corresponding corrections related to the finite nuclear
masses �9�. We have also evaluated the hyperfine splitting in
the 23 S state of the 9Be atom �13�.
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