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Probabilistic ancilla-free phase-covariant telecloning of qudits with the optimal fidelity
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We study the ancilla-free 1 — 2 phase-covariant telecloning for qudits. We show that the fidelity of the two
clones can probabilistically reach that of the clones in the optimal 1 — 2 phase-covariant cloning (involving an
ancilla). More interestingly, that can realize the above nonlocal cloning tasks are suitable nonmaximally
entangled states rather than the maximally entangled states.
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It is impossible to exactly copy (that is, clone) an arbitrary
quantum state because of the linearity of quantum mechanics
[1,2]. Nevertheless, the question of how well one can clone
an unknown or partially unknown quantum state has been
attracting much interest [3] since BuZek and Hillery [4] first
introduced the concept of approximate quantum copying, be-
cause it is related to quantum computation, quantum commu-
nication, and quantum cryptography (see, e.g., [5-8]). If the
input quantum state is chosen from a subset of linear inde-
pendent states, exact copying can be realized probabilisti-
cally [9,10]. For the input state |)= E ae'j) (d=2 is the
dimension) with a; being real numbers satlsfymg the nor-
malization condmon Ed (}az—l and 0; [0,27), three types
of (approximate) quantum cloning have been intensively
studied, i.e., universal quantum cloning with «; and 6; being
completely unknown [11-13], real state cloning with 6,=0
and a; being unknown [14-16], and phase-covariant clomng
with a;=1/ Vd and 6, being unknown [14,17]. In general, the
more the 1nf0rmat10n about the input state is known, the
better the state can be cloned. As a consequence, the optimal
fidelities of clones (the fidelity limit that quantum mechanics
allows) in the real state cloning and phase-covariant cloning
are higher than that in the universal quantum cloning. Re-
cently, more attention was paid to phase-covariant cloning
because of its use in connection with quantum cryptography
[18].

Quantum-cloning process can be regarded as distribution
of quantum information from the initial system to a larger
one. Thus quantum cloning combining with other quantum-
information processing tasks may have potential applications
in quantum communication, distributed quantum computa-
tion, and so on [19,20]. This leads to the advent of the con-
cept of telecloning [21], which is the combination of quan-
tum cloning and quantum teleportation [22]. Telecloning
functions as transmitting multiple copies of an unknown (or
partially unknown) quantum state to distant sites, i.e., realiz-
ing one-to-many nonlocal cloning, via previously shared
multipartite entangled states. The entanglement channel for
telecloning can be directly constructed by the corresponding
cloning transformation [23].

In the aforementioned quantum cloning and telecloning,
the ancillas (extra quantum systems besides the ones used to
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carry the cloned states) play an important role. Recently,
quantum cloning without ancillas, i.e., the so-called ancilla-
free (or economical) cloning [24-27], has attracted much
interest, because it may be easier than the one with ancillas
for experimental implementation [28]. Durt et al. [27]
showed that an ancilla-free version of the 1—2 universal
cloning with the optimal fidelity (the fidelity limit that quan-
tum mechanics allows) cannot be realized in any dimension,
and ancilla-free versions of both the 1 — 2 Fourier-covariant
[29] and phase-covariant cloning with the optimal fidelity
can be implemented only for qubits. They also presented an
ancilla-free phase-covariant cloning machine for qudits, with
the fidelity being lower than that of the optimal phase-
covariant cloning machine involving an ancilla. Note that
what they discussed is the deterministic cloning where clon-
ing is realized with 100% probability. Because of the rela-
tionship between the cloning and the corresponding teleclon-
ing [23], their conclusions also imply that the ancilla-free 1
— 2 phase-covariant telecloning with the optimal fidelity for
qudits and universal telecloning with the optimal fidelity in
any dimension cannot be realized in deterministic protocols.
Now a question arises: whether the ancilla-free 1 —2 phase-
covariant telecloning for qudits and universal telecloning in
any dimension with the optimal fidelity can be implemented
with a certain probability? This deserves our investigation.

In this Brief Report, we present a scheme for ancilla-free
1 —2 phase-covariant telecloning of qudits. We show that
the fidelity can probabilistically reach that of the 1—2
phase-covariant cloning machine of Ref. [17]. That is, the
fidelity of the clones in our ancilla-free telecloning scheme
can hit to the optimal fidelity with a certain probability. More
interestingly, the suitable quantum channels for realizing the
above telecloning tasks are nonmaximally entangled states
rather than the maximally entangled states.

First, we briefly review Durt’s ancilla-free 1 —2 phase-
covariant (Symmetric) cloning machine for a d-dimensional
system. For the input state

d-1
. 1 .
[y, = =2 elj), (1)
\’d/:o

the cloning machine (transformation) functions as [27]

j102) — |#), (2)

where
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|¢(0)>12 = |0102>,

. 1
|p) 1, = V_E(|j102> +101/2), j#O. (3)

Here, we have assumed that the second quantum system (car-
rier) is initially in the state |0,). The output state reads

-1
1 . .

[ 1n = —\QE el )y, (4)
'd j=0

The fidelity of each clone (copy) is
Foeon(d) = <W"|1(2)Tr2(1)(|%[/)m>12<¢0m|)|‘y">1(2)

_ ﬁ[(d_ D2+(142\2)@-1)+2].  (5)

However, the optimal fidelity of 1 — 2 phase-covariant clon-
ing (with an ancilla) is [17]

1 A . . .
F,,(d)= a(d +2+\d>+4d-4). (6)
It can be verified that for d=2, F,,,,(2)=F,,(2), while for
d>2, F,.,n(d) <F,,/(d). Thus this type of ancilla-free phase-
covariant cloning is “suboptimal.”

We now describe our telecloning protocol. The task is:
Alice wants to transmit one copy of the state |c,/f">A1 of par-
ticle A; to distant Bob and Charlie, respectively. Assume that
the quantum channel among them is a three-particle en-
tangled state as follows:

d-1
|q’>Ach = E xj|jA2>| e (7)

where x; are probablhty amplitudes satisfying normalization
condition Ed 0] 2=1. For simplicity, we have assumed that X;
are real numbers Here, particle A, is on Alice’s hand and
particles B and C are held by Bob and Charlie, respectively.

The von Neumann entropy of ps =trgc(|W)a,5c(P|) is

d-1
S(pa) == 2 x; log, x;. (8)
j=0

The state of the total system is
(V) sorar = 19", ® [W)a,pc

d—l d-1 d-1
= _2 E | >A Azz e—2m]k/d ¢(]®l)> C> 9)
l 0 k=0

where j @ [ denotes j+I modulo d and |CI>>A1
Bell-basis states given by

A A, = rE exp(

4, are generalized

>|J>|J (10)

Alice performs a complete projective measurement jointly on
partlcles A; and A, in the generalized Bell-basis
{|CI)>A A ,1,k=0,1,2,...,d—1}. If Alice gets the outcomes
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|CI>>9\Ii A, (with probability 1/d), the state of particles B and C
collapses into
d-1
e =2 e e | e (11)
=0

After receiving the measurement outcome, Bob and Charlie
perform, respectively, their particles the following local op-
eration:

! (2771 jk

= Eo exp )|]>A(B)<]| (12)
i

Then the state of Eq. (11) evolves into

d-1
[ Ype = 2 3¢ ). (13)
j=0
The fidelity of clones that Bob and Charlie obtained is
d-1 d-2 d-1
emn(d)——(l +\'2xozx > > xxk> (14)
Jj=1 k=j+1

Unlike Ref. [23], our protocol does not involve ancillas and
thus it is ancilla-free.

If x;= 1/, S(pAz):logz d and the quantum channel is a
maximally entangled state in terms of the subsystem of Alice
(particle A,) and the subsystem of Bob and Charlie (particles
B and C). Then the state [ ). reduces to |¢”"")p given in
Eq. (4) and F,,,(d)=F,,,(d) less than F,,(d) for d>2. In
the following, we shall show that the ﬁdehty F! . .(d) can be
equal to F,,(d) for any d with another choice of {x;}.

We set

4(d-1)

xo=X(d) = m

~ ~ d*+(d-2)D
xj=Y(d) = \/D(D+d—2)(d— 1)

where D=\d*+4d—4. Then it can be verified that Ffmn(d)
=F,,(d) for any d. In fact, the output state (|¢**")gc(y""
of our telecloner is then equivalent to that (p"’”) of the opti-
mal phase-covariant cloner after tracing out the ancilla
[17.18].  Particularly, — pli=[y" )y [+5  with
(" paytra) ()" p4)=0. In this case, the entanglement
channel of Eq. (7) reduces to

j#0, (15

d-1
W) e =X(d)|0, )| ¢V)pc + Y(d) > lia )l sc.
j=1

(16)

If d=2, S(py,)=1 and |‘I”)A23C is a maximally entangled
state. For d>2, however, the amount of entanglement with
von Neumann measure between particle A, and particles B
and C is E(|‘I”)A2(BC))=—X2 log, X>—(d-1)Y? log, Y?
<log, d, which implies that the subsystem of Alice (sender)
and the subsystem of Bob and Charlie (receivers) in the state
of Eq. (16) are only partially entangled. Thus we can safely
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conclude that the ancilla-free 1 — 2 phase-covariant teleclon-
ing with the optimal fidelity can be realized with a certain
probability (1/d) via suitable nonmaximally entangled states
acting as the quantum channel.

In order to reveal clearly the relationship between the fi-
delity of clones and the amount of entanglement of the quan-
tum channel, we show how F',_ (d) varies with the variation
of von Neumann entropy S (pAz) in Fig. 1. For simplicity, we
have assumed that x;=x,=---=x,_,. It can be seen that for
d=2, the increase (decrease) in S(pAz) always leads to in-
crease (decrease) in F',,,(2). For d>2, however, a counter-
intuitive phenomenon appears: when 1/Vd=x,=X(d),
F'...(d) increases (decreases) with the decrease (increase) in
S(pa,)-

Before ending this Brief Report, we should point out that
if Alice’s joint measurement outcome is not |<I>>g’j 4, but

|CI>>£\]‘1 4,/ #0), Bob and Charlie can also obtain the clones of

"), with a certain fidelity F’ " (d) by performing appro-
1 econ

priate local operations. With the quantum channel |\If’>AzBC,
Fg/m(d)zi[l+(d—2+\s’§)X(d),Y(d)+%(d—3+2\s"2)Y2(d)].

It can be easily verified that F,_,(d) is less than F,,,(d) and
F'. .(d). This case will not be discussed in detail because

what we are interested in is to show how to obtain the opti-
mal fidelity (the fidelity limit that quantum mechanics al-

0.7

0.8 0.9 1

lows) of clones in the ancilla-free phase-covariant teleclon-
ing for qudits in this Brief Report.

In conclusion, we have studied the ancilla-free 1—2
phase-covariant telecloning for qudits. We have shown that
the fidelity can probabilistically reach that of the 1—2
phase-covariant cloning machine of Ref. [17]. In other
words, the fidelity of the clones in our ancilla-free teleclon-
ing scheme can hit to the optimal fidelity (the fidelity limit
that quantum mechanics allows for phase-covariant cloning)
with a certain probability. We have also shown that the in-
crease (decrease) in amount of entanglement of the quantum
channel may lead to the decrease (increase) in the fidelity of
clones in the ancilla-free phase-covariant telecloning for qu-
dits. This effect leads to another interesting phenomenon: the
suitable quantum channels for realizing the ancilla-free 1
— 2 phase-covariant telecloning of qudits are special con-
figurations of nonmaximally entangled states rather than the
maximally entangled states. Note that nonmaximally en-
tangled states can be better than the maximally entangled
states for several other quantum tasks has also been reported
[30].
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