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We consider multiple teleportation in the Knill-Laflamme-Milburn �KLM� scheme. We introduce adaptive
teleportation, i.e., such that the choice of entangled state used in the next teleportation depends on the results
of the measurements performed during the previous teleportations. We show that adaptive teleportation enables
an increase in the probability of faithful multiple teleportation in the KLM scheme. In particular if a qubit is to
be teleported more than once then it is better to use nonmaximally entangled states than maximally entangled
ones in order to achieve the highest probability of faithful teleportation.
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Quantum teleportation is one of the basic primitives of
quantum information theory �1�. Together with entanglement
distillation, it allows sending quantum information reliably
even through quantum channels of vanishing zero-way quan-
tum capacity �2�. It can be also very useful in implementa-
tion of controlled quantum gates �3�. The latter application is
very important in linear optical quantum computation, where
controlled quantum gates are implemented by means of
quantum teleportation �4�. If Alice wants to teleport a qubit
to Bob, then she performs complete Bell measurement on a
qubit to be teleported and a qubit from the maximally en-
tangled pair which she shares with Bob. After learning the
result of Alice’s measurement Bob performs one of four uni-
tary operations. However, sometimes the parties cannot per-
form complete Bell measurement. Such a situation naturally
occurs in quantum information processing with linear optics
�5�. Partially due to this fact, the first experimental demon-
stration of quantum teleportation succeeded only in 25% �6�.
Knill et al. presented a protocol which enables linear optical
teleportation with high probability �4�. In their protocol a
qubit is encoded in superposition of vacuum and one photon
state. The protocol also uses a special N-photon entangled
state. The probability that quantum teleportation succeeds is
equal to 1− 1

N+1 and when it happens, the fidelity of the tele-
ported qubit with the original qubit is equal to 1. Recently
the protocol was generalized to polarization encoding �7�. In
�8� we have found that the maximally entangled state gives
the highest probability of successful single teleportation in
the KLM protocol.

The situation is quite different when one considers a chain
of linear optical teleportations, i.e., Alice teleports a qubit to
Bob, then Bob teleports the qubit, which he received from
Alice, to Charlie and so on. If we assume that each party
performs KLM protocol and uses identical entangled state,
then for a sufficiently large number of teleportations the non-
maximally entangled states give the highest probability of
successful teleportation �9�. However, in order to achieve
faithful teleportation one has to correct errors after the last
teleportations by performing local filtering.

In this paper we show, how one can further increase the
probability of faithful multiple linear optical teleportation.
We introduce adaptive teleportation. In this protocol the

choice of entangled state used in the next teleportation de-
pends on the results of measurements obtained during the
previous teleportations. We show that the simple version of
this protocol enables an increase in the probability of two
teleportations. Moreover, the protocol has a built-in error
correction, i.e., the last teleportation corrects errors. We also
compare the adaptive teleportation with the multiple telepor-
tation when one uses identical entangled states in all telepor-
tations.

In order to illustrate the adaptive teleportation we con-
sider three-party scenario in which Alice teleports a qubit to
Bob and then Bob teleports the qubit received to Charlie
�Fig. 1�. We assume that each party performs the KLM pro-
tocol and uses the entangled state with N vertically polarized
photons and N horizontally polarized photons. The entangled
state used in each teleportation can be different. Moreover,
Bob and Charlie can choose the entangled state which they
use in teleportation after learning the result of Alice’s mea-
surement. Our aim will be maximization of probability of
faithful multiple teleportation. The teleportation is faithful if
fidelity of the teleported qubit after the last teleportation with
the original qubit is equal to 1.

We assume that Alice and Bob share the entangled state of
the form

�t1� = �
i=0

N

c1�i��V�i�H�N−i�H�i�V�N−i, �1�

where �V�i stands for �V�1�V�2 . . . �V�i, i.e., one vertically po-
larized photon in each of the subsequent modes. Similarly,
�H�N−i stands for �H�i+1�H�i+2 . . . �H�N, i.e., one horizontally
polarized photon in each of the subsequent modes. The first
N modes are held by Alice and the next N modes are held by
Bob. If all amplitudes c1�i� are the same, then the state is
maximally entangled. In order to teleport a qubit in the state
���=��H�+��V� Alice applies to the input mode and the first
N modes of the entangled state the N+1-point quantum Fou-
rier transform
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FN�hk
†� =

1
�N + 1

�lk=0

N
�klkhlk

† ,

FN�vk
†� =

1
�N + 1

�lk=0

N
�klkvlk

† , �2�

where hk
† �vk

†� is the creation operator for a horizontally �ver-
tically� polarized photon in mode k and �=ei2�/N+1. Next,
Alice measures the total number of horizontally and verti-
cally polarized photons in each of these modes. If the sum of
vertically polarized photons detected is m �0�m�N+1�,
then the modified state of the qubit is found in the
�N+m�th mode. After phase correction the state of the qubit
is

��� =
1

�p�m�
��c1�m��H� + �c1�m − 1��V�� , �3�

where

p�m� = ��c1�m��2 + ��c1�m − 1��2 �4�

is probability that the sum of vertically polarized photons
detected is equal to m. Next, Bob teleports a qubit which he
received from Alice to Charlie. We assume that Bob and
Charlie share several entangled states of the form

�t2;m� = �
i=0

N

c2;m�i��V�i�H�N−i�H�i�V�N−i. �5�

The amplitudes c2;m�i� can be different from c1�i�. Moreover,
they can also be different for each entangled state shared by
Bob and Charlie. The choice of the entangled state used in
the teleportation depends on the result of Alice’s measure-
ment. After the choice of the entangled state, Bob applies the
N+1-point quantum Fourier transform to the input mode and
the first N modes of chosen entangled state and measures the
total number of horizontally and vertically polarized photons
in each of these modes. If the sum of vertically polarized
photons detected is n �0�n�N+1� then the modified state
of the qubit is found in the �N+n�th mode. After the phase
correction the state of the qubit is

��� =
1

�p�m,n�
��c1�m�c2;m�n��H�

+ �c1�m − 1�c2;m�n − 1��V�� , �6�

where

p�m,n� = p�n�m�p�m�

= ��c1�m�c2;m�n��2 + ��c1�m − 1�c2;m�n − 1��2 �7�

is the probability that the sum of vertically polarized photons
detected during the first teleportation is equal to m and the
sum of vertically polarized photons detected during the sec-
ond teleportation is equal to n. We require that the qubit is
teleported faithfully, i.e., its state after the second teleporta-
tion is equal to

��� = ��H� + ��V� , �8�

and hence the amplitudes c1�m� and c2;m�n� should satisfy
the condition

c1�m�c2;m�n� = c1�m − 1�c2;m�n − 1� . �9�

If c1�m��c1�m−1� �c1�m��c1�m−1��, then the amplitudes
c2;m�n� should form an increasing �decreasing� geometric se-
quence.

Now we make the following assumptions:
�1� Entangled states used in both teleportations have even

N �10�.
�2� The entangled state used in the first teleportation has

the amplitudes given by the formula

c1�m� = �a1��q1�N/2−�m−N/2�, �10�

where q1�1, i.e., for m�N /2 the amplitudes c1�m� form an
increasing geometric sequence and for m	N /2 they form a
decreasing geometric sequence. From the normalization con-
dition �m=0

N �c1�m��2=1 we obtain

a1 =
1 − q1

2 − q1
N/2�1 + q1�

. �11�

From Eq. �9� we obtain that the entangled state used in the
second teleportation has the amplitudes given by the formula

c2;m�n� = �a2��q2�n, �12�

where q2=1 /q1 if the number of vertically polarized photons
m detected during the first teleportation is lower or equal to
N /2 and q2=q1 if the number of vertically polarized photons
m detected during the first teleportation is greater than N /2,
i.e., Bob and Charlie choose one from two entangled states
which they share depending on the result of Alice’s measure-
ment. From the normalization condition �n=0

N �c2;m�n��2=1 we
obtain

a2 =
1 − q2

1 − q2
N+1 . �13�

In order to obtain the probability of faithful double telepor-
tation we have to calculate the probability that both Alice
and Bob register from 1 to N vertically polarized photons. If
one of them registers 0 or N+1 vertically polarized photons,
then teleportation fails. Hence, our probability is given by
the following expression

FIG. 1. Adaptive quantum teleportation. Bob and Charlie share
two different entangled states. For some results of Alice’s measure-
ment Bob teleports the qubit to Charlie using the “upper” entangled
state and for some results of Alice’s measurement Bob teleports the
qubit to Charlie using the “lower” entangled state.
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p = �m=1

N �n=1

N
p�m,n� = �m=1

N �n=1

N
�c1�m�c2;m�n��2.

�14�

Substituting formulas �10� and �12� together with Eqs. �11�
and �13� into Eq. �14� we obtain the following expression for
the probability of faithful double teleportation:

p = 2
q − qN/2+1

2 − qN/2�1 + q�
qN − 1

qN+1 − 1
. �15�

This probability should be optimized over q. In Table I we
present the optimized probabilities for different N when one
performs adaptive double teleportation and when one per-
forms double teleportation with the use of maximally en-
tangled states. We see that if the qubit is to be teleported at
least two times, then it is better to perform adaptive telepor-
tation than that with the use of maximally entangled states.

It is interesting that in this simple scenario another strat-
egy is possible which gives the same probability of faithful
double teleportation. Namely, Bob always teleports the qubit
to Charlie with entangled state whose amplitudes form a de-
creasing geometric sequence. However, if Alice detects more
than N /2 photons during the first teleportation Bob applies
NOT gate to the teleported qubit before the second telepor-
tation and Charlie applies NOT gate to the teleported qubit
after the second teleportation. Hence, we replaced the choice
of entangled state by the choice of gate.

Let us now compare the adaptive teleportation with the
multiple teleportation developed in �9� when one uses iden-
tical entangled states in all teleportations and error correction
is made after the last teleportation. We consider only the
simplest nontrivial example when one uses the entangled
states with N=2. We assume that entangled states have am-
plitudes symmetric around i=1 �11�. The probability of faith-
ful multiple teleportation is given by formula �9�

p = �n1=1

2
. . . �nM=1

2


min	�c�n1� . . . c�nM��2, �c�n1 − 1� . . . c�nM − 1��2
 ,

�16�

where M is the number of teleportations. Substituting

q= � c�1�
c�0� �

2 and using the normalization condition
�m=0

2 �c�m��2=1 we obtain

p = � 1

2 + q
�M

�i=0

M M!

i ! �M − i�!
min	qM−i,qi
 . �17�

This probability should be optimized over q.
For less than six teleportations the highest probability of

faithful multiple teleportation with identical entangled states
is achieved for maximally entangled states. Hence, if we re-
place any two teleportations in a chain of two or more tele-
portations with maximally entangled states by double adap-
tive teleportation, then we obtain greater probability of
faithful multiple teleportation. It should be noted that there is
no contradiction because in adaptive teleportation one does
not use identical entangled states.

On the other hand for six or more teleportations the high-
est probability of faithful multiple teleportation with identi-
cal entangled states is achieved for nonmaximally entangled
states. In what follows, we show that if we replace the origi-
nal nonmaximally entangled state used in the last teleporta-
tion by the adapted entangled state, then we increase the
probability of faithful teleportation. Let us assume that the
first sender detected n1 vertically polarized photons, the sec-
ond sender detected n2 vertically polarized photons . . ., and
the �M −1�th sender detected nM−1 vertically polarized pho-
tons. Then the state of the qubit after M −1 teleportations is

��� =
1

�pM−1�n1, . . . ,nM−1�

 ��a�1��H� + �a�0��V�� ,

�18�

where pM−1�n1 , . . . ,nM−1�= ��a�1��2+ ��a�0��2 is probability
of this event. The coefficients a�1� and a�0� are given by
formulas

a�1� = c�n1� . . . c�nM−1� ,

a�0� = c�n1 − 1� . . . c�nM−1 − 1� . �19�

Because for six or more teleportations with identical en-
tangled states, the nonmaximally entangled states give higher
probability of faithful multiple teleportation, then for some
results of measurements we have a�0��a�1�. Without loss of
generality we assume that a�1� is greater than a�0� and write
�a�1��2=q�a�0��2 �q�1�. Let b�nM� be coefficients of en-
tangled state used in the Mth teleportation. If the Mth sender
detected nM vertically polarized photons, then the state of the
qubit after the Mth teleportation is

��� =
1

�pM�n1, . . . ,nM�


��b�nM�a�1��H� + �b�nM − 1�a�0��V�� , �20�

where pM�n1 , . . . ,nM�= �b�nM��a�1��2+ �b�nM −1��a�0��2 is
probability that the first sender detected n1 vertically polar-
ized photons, the second sender detected n2 vertically polar-
ized photons . . ., and the Mth sender detected nM vertically
polarized photons. If b�nM�a�1�=b�nM −1�a�0�, then the qu-
bit is in its original state. If b�nM�a�1��b�nM −1�a�0� then
the optimal strategy to return the qubit to its original state is

TABLE I. Probability of faithful double teleportation with maxi-
mally entangled states �second column� for different N. Optimal
parameter q �third column� and maximal probability of faithful
adaptive double teleportation with entangled states whose ampli-
tudes are given by Eqs. �10� and �12� �fourth column�.

N
� N

N + 1
�2

qopt popt

2 0.444444 1.29663 0.454167

4 0.640000 1.20892 0.652198

6 0.734694 1.15822 0.746252

8 0.790123 1.12682 0.800565

10 0.826446 1.10569 0.835820
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to perform the generalized measurement given by Kraus op-
erators

ES =
b�nM − 1�a�0�

b�nM�a�1�
�H�H� + �V�V� ,

EF =�1 − �b�nM − 1�a�0�
b�nM�a�1�

�2

�H�H� . �21�

If ES is obtained as a result of the measurement then
the aim is achieved. Otherwise the state of the qubit is irre-
versibly destroyed. Similar measurement exists if
b�nM�a�1��b�nM −1�a�0�. Probability that the first sender
detected n1 vertically polarized photons, the second sender
detected n2 vertically polarized photons . . ., and the Mth
sender detected nM vertically polarized photons, and the er-
ror correction succeeded is

pM�n1, . . . ,nM,S� = min	�b�nM�a�1��2, �b�nM − 1�a�0��2
 .

�22�

In order to obtain the total probability of faithful multiple
teleportation we have to sum these probabilities over the
number of photons detected in each teleportation. Let us first
perform summation over the number of vertically polarized
photons detected in the last teleportation, i.e.,

pM�n1, . . . ,nM−1,S� = �nM=1

2
min	�b�nM�a�1��2, �b�nM

− 1�a�0��2
 . �23�

If we use in the Mth teleportation a state which has ampli-
tudes symmetric around nM =1, i.e., b�0�=b�2� then the
maximal probability pM�n1 , . . . ,nM−1 ,S� is given by the for-
mula

pM
sym�n1, . . . ,nM−1,S� = �a�0��2

1 + q

2 + q
. �24�

On the other hand, if we use in the Mth teleportation a state
whose amplitudes are related by �b�nM −1��2=q�b�nM��2, i.e.,

they form a decreasing geometric sequence, then the prob-
ability pM�n1 , . . . ,nM−1 ,S� is given by the formula

pM
a �n1, . . . ,nM−1,S� = �a�0��2

1 + q

1 + q−1 + q
. �25�

Because q�1 we have pM
a �n1 , . . . ,nM−1 ,S�

� pM
sym�n1 , . . . ,nM−1 ,S�.

If a�1� were smaller than a�0�, then we would use in the
Mth teleportation a state whose amplitudes form an increas-
ing geometric sequence. The relation between a�1� and a�0�
depends on the results of measurements obtained during first
M −1 teleportations and hence, the choice of entangled state
used in the Mth teleportation also depends on the results of
these measurements, i.e., we perform adaptive teleportation.
Summing pM�n1 , . . . ,nM−1 ,S� over all possible results of
measurements obtained during first M −1 teleportations, we
obtain the probability that the state is teleported faithfully.
Because pM

a �n1 , . . . ,nM−1 ,S� for teleportation with an
adapted entangled state is greater than the corresponding
pM

sym�n1 , . . . ,nM−1 ,S� for teleportation with a symmetric state
�with possible exception of probabilities corresponding to the
case with a�1�=a�0�, where they can be equal� we obtain
that it is always better to perform adaptive teleportation as
the last teleportation.

In conclusion, we have introduced the adaptive teleporta-
tion, in which the choice of entangled state used in the next
teleportation depends on the results of measurements ob-
tained during the previous teleportations. We have also com-
pared the adaptive teleportation with the multiple teleporta-
tion when one uses identical entangled states in all
teleportations.

ACKNOWLEDGMENTS

One of the authors �A.G.� was partially supported by Min-
istry of Science and Higher Education under Grant No. N
N206 2701 33 and by the European Commission through the
Integrated Project FET/QIPC SCALA.

�1� C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres,
and W. K. Wootters, Phys. Rev. Lett. 70, 1895 �1993�.

�2� C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K.
Wootters, Phys. Rev. A 54, 3824 �1996�.

�3� D. Gottesman and I. L. Chuang, Nature �London� 402, 390
�1999�.

�4� E. Knill, R. Laflamme, and G. J. Milburn, Nature �London�
409, 46 �2001�.

�5� N. Lutkenhaus, J. Calsamiglia, and K. A. Suominen, Phys.
Rev. A 59, 3295 �1999�.

�6� D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter,
and A. Zeilinger, Nature �London� 390, 575 �1997�.

�7� F. M. Spedalieri, H. Lee, and J. P. Dowling, Phys. Rev. A 73,

012334 �2006�.
�8� A. Grudka and J. Modławska, Phys. Rev. A 77, 014301

�2008�.
�9� J. Modławska and A. Grudka, Phys. Rev. Lett. 100, 110503

�2008�.
�10� Similar calculations can be made for odd N. However, if we

assume that entangled state used in the first teleportation has
amplitudes symmetric around i=N /2, then Bob and Charlie
should choose one of three entangled states rather than one of
two entangled states.

�11� It is very unlikely that entangled states which do not have
amplitudes symmetric around i=1 are optimal. However, we
were not able to prove it rigorously.

BRIEF REPORTS PHYSICAL REVIEW A 79, 064302 �2009�

064302-4


