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The propagation characteristics of a single-cycle pulse, at 0.8 �m wavelength, are studied numerically in
one spatial dimension. It is shown that Raman term does influence the propagation characteristics by counter-
acting the self-steepening effect.
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I. INTRODUCTION

During the last few years, remarkable developments have
taken place in experimental techniques for generating and
stabilizing ultrashort pulses �1–4� which led to the generation
of high-intensity optical pulses with pulse duration equal to
one period of the optical cycle or less. Such ultrashort pulses
have found applications �5–10� in diverse areas of physics
and technology including nonlinear optical devices, all-
optical communication, medical diagnostics and imaging,
controlled manipulation of chemical reactions and bond for-
mation, and coherent quantum control of microscopic dy-
namics. As a result, presently, there is a great deal of interest
in the study of propagation characteristics of a single- and a
few-cycle pulses in linear as well as in nonlinear media.

In 1997, Brabec and Krausz �11� presented a novel model
for nonlinear pulse propagation in the single-cycle regime, in
which they showed that the concept of an envelope could be
generalized for pulses with pulse duration equal to one opti-
cal period in terms of the invariance of the center frequency
of the pulse under a phase shift of the electric field. Based on
this, they derived a nonlinear pulse evolution equation that
represents a generalization of the well-known nonlinear
Schrodinger equation. This model equation has been success-
fully used by several authors �12–16� in various studies in-
cluding nonlinear propagation dynamics of an ultrashort
pulse in a hollow waveguide �12�, supercontinuum genera-
tion by filamentation of a few-cycle pulse �13�, estimation of
the critical power for self-focusing in bulk media and in hol-
low waveguides �14�, simulation of ultrabroadband light
generation via self-channeling of few-cycle pulses in a noble
gas �15�, generation of ultrashort pulses in a hollow-core
fiber filled with a noble gas �16�, etc.

The main motivation of our work is to study the effect of
the Raman term on the propagation characteristics of a
single-cycle pulse. To the best of our knowledge, the influ-
ence of the Raman term on the propagation characteristics of
a single-cycle pulse has not been considered earlier except in
Ref. �17� where Chen and Lu have studied the effect of the
Raman term on a 2.5 fs soliton pulse in a silica glass fiber.
They have shown that for such short pulses the deviation
from the soliton shape is very small. Other authors �18–21�
have also taken the Raman term into account while studying
the spatiotemporal dynamics �self-focusing� of optical pulses

but for longer pulse durations. In the given paper we study
the effect of the delayed nonlinear response on the propaga-
tion characteristics of a single-cycle pulse at 0.8 �m wave-
length in a silica glass fiber within the slowly evolving wave
approximation of Brabec and Krausz for a cubic medium. It
is shown that the Raman term does influence the propagation
characteristics of a single-cycle pulse by counteracting self-
steepening and tending to restore the initial symmetric pulse
shape. Our result is not only consistent with the results of
Zozulya et al. �18�, who studied the spatiotemporal self-
focusing of a pulse with full width at half maximum
�FWHM� of 90 fs but also explains why the deviation in the
pulse in �17� is negligibly small for a 2.5 fs soliton pulse.

II. MODEL EQUATION

The nonlinear wave equation in a cubic nonlinear me-
dium, including the delayed nonlinear response �Raman re-
sponse�, can be written as
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where we have taken into account that the third-order non-
linear polarization consists of two terms:
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Here, in the above equations, E� �r� , t� is the electric field vec-
tor, �0 is the permittivity of free space �vacuum�, ��r� , t� is the
permittivity of the medium, ��3� is the third-order suscepti-
bility, c is the speed of light in free space, � is the fraction of
the electronic contribution to nonlinear polarization, and
gR�t� is the Raman response function. The value of � is taken*ajitk@physics.iitd.ac.in
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to be 0.7 �22,23�. Under the assumption that only one vibra-
tional mode, with linewidth 1 /�2 and the eigenfrequency
1 /�1, is important �24�, the Raman response function is given
by

gR�t� =
�1

2 + �2
2

�1�2
2 e−t/�2 sin� t

�1
� , �3�

where �1=12.2 fs and �2=32 fs. As shown by Brabec and
Krausz �11�, an envelope can be assigned to ultrashort pulses
that contain at least one carrier cycle within their FWHM.
Following that, we represent the electric field of a pulse,
propagating in z direction, as

E�r�,t� = A�r��,z,t�ei�	�0�z−
0t� + c.c., �4�

where r��=xî+y ĵ, A�r�� ,z , t�, is the complex envelope ampli-
tude, 	�0� is the propagation constant and 
0 is the carrier
frequency. In what follows, we shall, for brevity, ignore the
arguments of A�r�� ,z , t� and write it simply as A unless it is
necessary to write the arguments for clarity.

The Fourier transform of the first term on the right-hand
side of Eq. �1� with respect to the time coordinate, Taylor
expansion of k�
� around the carrier frequency 
0 followed
by an inverse Fourier transform yields
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is the dispersion operator. The quantities 	�
� and ��
� are
the real and the imaginary parts, respectively, of k�
�. Taking
into account that
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and expanding �A�t− t���2 into a Taylor series around t�, we
obtain
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We now go over to the moving frame by introducing the
variables

� = t − 	�1�z = t −
z

vg
, � = z , �11�

where vg is the group velocity, divide Eq. �10� throughout by
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Further simplification is made by adding and subtracting the
expression
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in Eq. �12�. It yields
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Note that in writing Eq. �14�, we have made use of the ex-
pressions
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where n0 and n2 are the linear refractive index and the non-
linear Kerr coefficient, respectively.

Following Brabec and Krausz �11�, we assume that the
conditions
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representing the slowly varying wave approximation, hold
good. The resulting equation is then

�1 +
i


0
������ +

�0

2
− iD̂�A +

1

2i	�0��
�

�
2 A

+
4	�0�n2

3in0
�1 +

i


0
���2

�A�2A

=
4�1 − ��	�0�n2

3in0
TR�1 +

i


0
���2�A

� �A�2

��
� . �17�

FIG. 1. �a� The dimensionless electric field Ē of a single-cycle pulse, at 0.8 �m wavelength, as a function of the dimensionless time t̄,
after 14.0 �m of propagation, for n2=3�10−16 cm2 /W, I=4�1013 W /cm2, 	�2�=0, and �=1.0. The envelope is shown by the dotted

curve. �b� The dimensionless electric field Ē of a single-cycle pulse, at 0.8 �m wavelength, as a function of the dimensionless time t̄, after
14.0 �m of propagation, for n2=3�10−16 cm2 /W, I=4�1013 W /cm2, 	�2�=0.039 23 fs2 /�m, and �=1.0. The envelope is shown by the

dotted curve. �c� The dimensionless electric field Ē of a single-cycle pulse, at 0.8 �m wavelength, as a function of the dimensionless time
t̄, after 14.0 �m of propagation, for n2=3�10−16 cm2 /W, I=4�1013 W /cm2, 	�2�=0.039 23 fs2 /�m, Tr=3 fs, and �=0.7. The envelope
is shown by the dotted curve.
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If we neglect damping and act on Eq. �17�, from left, by the
operator
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we obtain
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If we confine ourselves to second-order dispersion alone, i.e.,

D̂= �−	�2� /2���2 /��2� and multiply throughout by imaginary
i, we get
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In the framework of slowly evolving wave approximation
Eq. �21� governs the propagation characteristics of a single-
and a few-cycle pulse in a cubic nonlinear medium with
Raman response.

III. NUMERICAL RESULTS FOR ONE-DIMENSIONAL
PROPAGATION

For pulse propagation in one spatial dimension, say, in a
silica glass fiber, the above equation reduces to
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In order to nondimensionalize the above equation, we in-
troduce dimensionless quantities:

Ā =
A
�I

, �̄ =
�

�p
, z̄ =

�

LD
, �22�

where I is the input pulse intensity, �p is the pulse width and
LD=T0

2 / �	�2�� is the characteristics dispersion length. The di-
mensionless pulse evolution equation, for one-dimensional
propagation, then reads
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We have numerically solved this equation, using split-step
fast Fourier transform algorithm, for a single-cycle pulse at
0.8 �m wavelength. For pin-pointing the changes brought
about by the Raman intrapulse scattering, in the propagation
characteristics of a single- and a few-cycle pulse, we have
considered three different cases: �i� propagation without dis-
persion and Raman effect, �ii� propagation including disper-
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FIG. 2. The dimensionless electric field Ē of a single-cycle
pulse, at 0.8 �m wavelength, as a function of the dimensionless
time t̄, after 16.3 �m of propagation, for n2=3�10−16 cm2 /W, I
=4�1013 W /cm2, 	�2�=0.039 23 fs2 /�m, Tr=3 fs, and �=0.7.
The envelope is shown by the dotted curve.
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FIG. 3. The dimensionless electric field Ē of a single-cycle
pulse, at 0.8 �m wavelength, as a function of the dimensionless
time t̄, after 32.6 �m of propagation, for n2=3�10−16 cm2 /W, I
=4�1013 W /cm2, 	�2�=0.039 23 fs2 /�m, Tr=3 fs, and �=0.7.
The envelope is shown by the dotted curve.
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sive effects but ignoring Raman effect, and �iii� propagation
with dispersion and Raman effect.

The input pulse is taken to be of hyperbolic secant form
with:

A = sech��/�p� . �24�

The calculations have been carried out with the following
parameters: n0=1.45, n2=3�10−16 cm2 /W, I=4
�1013 W /cm2, 
0=2.3483�1015 rad /sec, the speed of
light c=2.9979�108 m /sec, dispersion parameter 	�2�

=0.03923 fs2 /�m �25�, Raman response time TR=3 fs,
�=0.7, and �p=2.67 fs which corresponds to a single optical
cycle at 0.8 �m wavelength.

In Figs. 1�a�–1�c� we have the dimensionless electric

field, Ē�t̄�, of a single-cycle pulse as a function of the dimen-
sionless time t̄ for propagation without dispersion and Ra-
man term, with dispersion but without Raman response, and
with both dispersion and Raman response, respectively. The
plots are for 14 �m of propagation distance which is very
close to the characteristic distance of self-steepening zs

�14.45 �m. As we see in Fig. 1�a� the pulse has undergone
considerable self-steepening, as expected, with the center of
the pulse shifted toward the trailing edge. Figure 1�b� shows
that dispersion partially compensates for steepening of the
wave front, however, as we see, the pulse is still dominated
by self-steepening. In Fig. 1�c� the effect of the delayed Ra-
man response, in helping the pulse to tend to regain its initial
symmetric shape, is clearly visible. This can be physically
understood as follows. In the frequency domain, self-
steepening effect leads to a frequency shift toward the higher
frequencies, in the trailing edge and toward the lower fre-
quencies in the leading edge �26�. Since dispersion is posi-
tive, the leading edge moves faster than the trailing edge and
imparts an asymmetry to the pulse by steepening the trailing
edge. On the other hand, the frequency shift due to Raman
effect is negative �24�, i.e., toward the lower frequencies.
Hence, the frequency shift due to self-steepening is counter-
acted by the frequency shift caused by the intrapulse Raman
scattering. As a result the asymmetry of the pulse, introduced
by self-steepening, gets neutralized and the symmetry of the
pulse shape is restored.
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FIG. 4. The dimensionless electric field Ē of a single-cycle pulse, at 0.8 �m wavelength, as a function of the dimensionless time t̄, after
65.2 �m of propagation, for n2=3�10−16 cm2 /W, I=4�1013 W /cm2, 	�2�=0.039 23 fs2 /�m, Tr=3 fs, and �=0.7. The envelope is
shown by the dotted curve.
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In Fig. 2 we have the same plot but after a propagation
distance of 16.3 �m. As we see, in Fig. 2, the pulse has
broadened due to dispersion but the pulse shape continues to
retain its symmetry even after the pulse has gone past the
characteristic self-steepening length. However, for longer
propagation distance dispersive effects start dominating lead-
ing to the generation of oscillatory structure in the trailing
edge of the pulse. As the pulse travels further and further
away from the characteristic self-steepening length more and
more oscillatory structures are generated. This can be seen in
Fig. 3 and Fig. 4 where we have the plots of the dimension-
less electric field after 32.6 and 65.2 �m propagation dis-
tance, respectively.

IV. CONCLUSION

We have studied the influence of intrapulse Raman effect
on the propagation characteristics of a single-cycle pulse in
the framework of slowly evolving wave approximation. Our

study shows that the Raman term counteracts the self-
steepening effect by neutralizing the asymmetry caused by it
and helps the pulse regain its initial symmetric temporal pro-
file. Our result is not only consistent with the results of Zo-
zulya et al. �18�, who studied the spatiotemporal self-
focusing of a pulse with FWHM of 90 fs, but also explains
why the deviation in the pulse in Ref. �17� is negligibly small
for a 2.5 fs soliton pulse. Further, we have shown that for
propagation distances much larger than the characteristic
self-steepening length, dispersion dominates pulse dynamics
and generates dense oscillatory structure in the trailing edge
of the pulse.
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