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The key characteristic of an optical mode in a microcavity is its quality factor describing the optical losses.
The numerical computation of this quantity can be very demanding for present-day devices. Here we show for
a certain class of whispering-gallery cavities that the quality factor is related to dynamical tunneling, a phe-
nomenon studied in the field of quantum chaos. We extend a recently developed approach for determining
dynamical tunneling rates to open cavities. This allows us to derive an analytical formula for the quality factor
which is in very good agreement with full solutions of Maxwell’s equations.
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I. INTRODUCTION

Optical microcavities in which photons can be confined in
three spatial dimensions are a subject of intensive research as
they are relevant for applications, such as ultralow-threshold
lasers �1,2�, single-photon emitters �3,4�, or correlated
photon-pair emitters �5�. Especially whispering-gallery cavi-
ties such as microdisks �6–8�, microspheres �9,10�, and mi-
crotoroids �11� have been investigated as they can trap pho-
tons for a long time near the boundary by total internal
reflection. The corresponding whispering-gallery modes have
a very high quality factor Q, which makes these cavities a
candidate for the above-mentioned devices. While the micro-
disk emits the photons isotropically, cavities with deformed
surfaces may additionally lead to directed emission �12–23�.
A particularly interesting geometry is the annular cavity
�24–26�—a microdisk with a circular-shaped inclusion. A
nonconcentric �air� hole as inclusion allows for unidirec-
tional emission and high quality factors simultaneously �17�
which for most applications are desirable.

In this paper we connect the quality factors Q of optical
microcavities to the concept of dynamical tunneling �27�. We
provide an explicit prediction for the quality factors of
whispering-gallery modes in the annular microcavity; see
Fig. 1. Microcavities typically have a mixed phase space
where regions of regular and chaotic motion coexist. Dy-
namical tunneling occurs between these dynamically sepa-
rated phase-space regions. While for one-dimensional sys-
tems the tunneling process through an energetic barrier is
well understood, e.g., by means of WKB theory �28�, dy-
namical tunneling is a subject of intensive research experi-
mentally �29–31� as well as theoretically �24,32–45�. Using a
fictitious integrable system �41�, recently an approach has
been developed �44,45� which successfully predicts dynami-
cal tunneling rates for quantum maps and billiards. In this
paper we extend this approach to open optical microcavities,
in particular to the annular cavity, to predict quality factors Q
of whispering-gallery modes.

This paper is organized as follows. In Sec. II we introduce
the annular cavity. In Sec. III we define the quality factors
and derive the dynamical-tunneling contribution, which is
then compared with numerical results. A summary is given in
Sec. IV.

II. ANNULAR MICROCAVITIES

Optical cavities are described by Maxwell’s equations
which in the case of quasi-two-dimensional microdisks re-
duce to a two-dimensional scalar mode equation �46�

− �2� = n2�x,y�k2� , �1�
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FIG. 1. �Color online� Inverse quality factors 1 /Q for the annu-
lar microcavity with refractive index neff=2.0. Shown is the theo-
retical prediction �solid line�, which is the sum of the direct tunnel-
ing contribution �dotted line� and the dynamical tunneling
contribution �dashed line, Eq. �15�� and numerical data �dots� for
angular quantum number m=19 and radial quantum number n=1
vs the hole position d. The insets show the resonant state at
d=0.2475 and d=0.33.
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with �effective� index of refraction n�x ,y�, wave number
k=� /c, frequency �, and the speed of light in vacuum c.
The mode equation �1� is valid for both transverse mag-
netic �TM� and transverse electric �TE� polarization. We
focus on TM polarization with the electric field E� �x ,y , t�
= (0,0 ,��x ,y�e−i�t) perpendicular to the cavity plane. The
wave function � and its normal derivative are continuous
across the boundary of the cavity. At infinity, only outgoing-
wave components are allowed.

The mode equation �1� with the above-mentioned bound-
ary conditions has analytical solutions only for special
geometries such as the circle �see the Appendix� or several
concentric circles. General geometries require numerical
schemes such as the boundary element method �47� which
we use in this paper. In this approach the two-dimensional
partial differential equation �1� is rewritten as a one-
dimensional integral equation involving Green’s functions.
Outgoing-wave conditions can be easily fulfilled by using
the outgoing solution for the Green’s functions. The bound-
ary element method turns out to be very efficient even for
computing highly excited modes and their quality factors.

A particularly suited example to study the influence of a
mixed phase space onto the quality factors Q is the annular
cavity. Its geometry is given by the radius R of the large disk,
the radius R2 of the small disk and the minimal distance
between the two disks d, see Fig. 2�a�. Without loss of gen-
erality we choose R=1. Under the variation in the two pa-
rameters d and R2 the dynamics inside the cavity changes
drastically from completely regular behavior when the two
disks are concentric �d=R−R2� to mixed regular-chaotic be-
havior for the general eccentric case. This is clearly visible
for different trajectories in the Poincaré section, see Fig.
2�b�. The Poincaré section is a two-dimensional phase-space
representation. Whenever the trajectory hits the cavity’s
boundary, its position s �arclength coordinate along the cir-
cumference� and tangential momentum p=sin � �the angle of
reflection � is measured from the surface normal� is re-
corded. The large disk has an effective refractive index neff
while inside the small disk and outside of the cavity the
refractive index is unity. For the visualization of the ray dy-
namics we used an annular cavity with hard wall boundary
conditions at the outer disk, neglecting ray-splitting effects.

The annular cavity has been studied extensively in the
context of quantum chaos �25�, optomechanics �26�, avoided
resonance crossings, and resonant tunneling �24�. For appli-
cations it is of high interest as it allows for unidirectional
light emission from high-Q modes which has been predicted
by the authors in Ref. �17� and has been confirmed in recent
experiments �21�. The closed system with perfectly reflecting
walls, i.e., the annular billiard, is a paradigm for dynamical
tunneling �35,38�.

III. QUALITY FACTORS

The quality factor Q of a mode in an open cavity is related
to the corresponding resonance with complex wave number
k=Re�k�+ i Im�k� via

Q = −
Re�k�

2 Im�k�
. �2�

In the annular cavity the quality factor Q of a regular mode
has two contributions which are assumed to be additive

1

Q
=

1

Qdir
+

1

Qdyn
. �3�

Here, Qdir accounts for the direct coupling of the regular
mode to the continuum, as in the case of the circular cavity,
see the Appendix. Note that for this contribution the mixed
phase-space structure induced by the small disk is irrelevant.
The second contribution, Qdyn, is given by dynamical tunnel-
ing from the regular mode to the chaotic sea, which for �p�
� pc is strongly coupled to the continuum, see Fig. 2�b�.
Here we assume that there are no further phase-space struc-
tures within the chaotic sea that affect the quality factor. A
priori it is not obvious, which of these contributions will
dominate.

A. Dynamical tunneling contribution

We now want to derive a prediction for the dynamical
tunneling contribution Qdyn of regular modes in optical mi-
crocavities. After presenting the general approach we will
apply it to the annular microcavity.
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FIG. 2. �Color online� �a� Annular cavity with R=1, R2=0.22,
and d=0.33. �b� Corresponding Poincaré section �s , p=sin �� for
neff=2.0, where s is the arclength along the boundary and � is the
angle of reflection. Between the critical lines �dashed� with �pc�
=1 /neff is the leaky region, where the condition for total internal
reflection is not fulfilled. �c� Circular cavity and �d� its completely
regular phase space.
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1. General approach

We first review a quantum-mechanical approach for deter-
mining dynamical tunneling rates using a fictitious integrable
system �44,45�; the relation to the quality factor Qdyn will be
given below. The tunneling rate � of a regular state to the
chaotic sea is described by Fermi’s golden rule �using units
�=2M =1�

� = 2���v��2�ch, �4�

where �ch denotes the density of chaotic states and ��v��2 is
the averaged squared matrix element between the considered
regular state and the chaotic states of similar energy. Accord-
ing to the Weyl formula for closed two-dimensional billiards
the density of chaotic states is given by �ch�Ach / �4��,
where Ach is the area of the billiard times the fraction of the
chaotic phase-space volume. The eigenmodes of a system
with a mixed phase space are mainly regular or chaotic, i.e.,
concentrated on a torus inside the regular region or spread
out over the chaotic component. To calculate the coupling
matrix elements v these so-called regular and chaotic eigen-
modes cannot be used as they have small, but still too large,
admixtures of the other type of modes compared to the tun-
neling rate. Instead, we determine v by introducing a ficti-
tious integrable system Hreg as it was first suggested for dy-
namical tunneling in Ref. �41�. Hreg has to be chosen such
that its classical dynamics resembles the regular dynamics of
the mixed system as closely as possible and extends it to
phase-space regions where H has a chaotic sea. The eigen-
states �reg of Hreg are localized in the regular region of H and
decay into the chaotic sea of H. With chaotic states �ch,
which live in the chaotic region of phase space, the coupling
matrix element is given as �44,45,48�

v = 	
R2

�ch
� �x,y��H − Hreg��reg�x,y�dxdy . �5�

Note that this equation is applicable for general systems but
the determination of a sufficiently accurate Hreg is a difficult
task. As previously mentioned we assume that there are no
further phase-space structures within the chaotic sea that af-
fect the tunneling rates �. This approach was previously used
to predict tunneling rates for quantum maps �44� and closed
billiard systems �45�.

The described approach can be extended to open cavities
in the following way: �i� as a fictitious integrable system Hreg
we choose a cavity such that it resembles the regular dynam-
ics of H. The quantum system has resonance states �reg. �ii�
As a model for the chaotic resonances �ch a random wave
model will be used, which in addition fulfills the relevant
cavity boundary conditions. �iii� The tunneling rate � deter-
mines the quality factor Qdyn by

Qdyn =
2 Re�k�2neff

2

�
, �6�

where we used the quantum-mechanical relation between en-
ergy and momentum E0− i �

2 = p2, with p=neffk in a refractive
medium such that �=−2neff

2 Im�k2�=−4neff
2 Re�k�Im�k�.

2. Application to the annular cavity

To evaluate Eq. �5� we have to find an appropriate regular
system Hreg. For the annular cavity a natural choice is given
by the circular cavity as it correctly reproduces the regular
whispering-gallery motion of the annular cavity and extends
it into the chaotic region of phase space. The whispering-
gallery modes are labeled by the two quantum numbers m
and n. Rewriting the mode equation �1� as an eigenvalue
equation H�=k2� the Hamiltonian of the annular cavity can
be introduced as

H = − �2 + �1 − n�x,y�2�k2 �7�

where the refractive index n�x ,y� is neff inside and 1 outside
the cavity and in the disk of radius R2. As the regular system
Hreg we choose the circular cavity

Hreg = − �2 + �1 − nreg�x,y�2�k2 �8�

where the refractive index nreg�x ,y� is neff inside and 1 out-
side the circular cavity. Thus H and Hreg differ only inside
the small disk of radius R2 with H−Hreg= �1−neff

2 �k2 and the
integral in Eq. �5� reduces to an integral over the small disk.
For the regular states inside the circular cavity we choose, as
in the numerical studies, the even eigenmodes

�reg
mn�r,	� = NmnJm�neffkmnr�cos�m	� , �9�

where kmn are the complex resonant wave numbers, accord-
ing to the Appendix, and �reg

mn is normalized to one with the
numerically determined normalization constant Nmn.

To model the chaotic modes �ch within the small disk we
employ a random wave description �49�, which has been
extended to systems with a mixed phase space �50�. While
this model accurately describes the random behavior in a
medium with constant refractive index, it cannot account for
the change in refractive index at the border of the small disk
at �=R2. We extend a boundary-adapted random wave model
�51� to account for this boundary condition. This is essential
especially for low Re�k� as then all chaotic modes decay
inside the small disk, which cannot be reproduced by the
usual random wave model. Therefore we construct the cha-
otic states �ch as a random superposition of modes of a cir-
cular cavity of radius R2 with refractive index 1 which is
surrounded by a medium with refractive index neff. As fol-
lows from Eq. �A4� these modes, at a fixed complex wave
number kmn and within the small disk, are

�l��,
� = AlJl�kmn��cos�l
�, � � R2. �10�

The chaotic states �ch are then constructed by a random su-
perposition of these modes

�ch��,
� =
1


Ach
�
l=1

�

al�l��,
� . �11�

Here the coefficients al are Gaussian random variables with
mean zero and �alak�=
l,k. The random waves, constructed
in such a way, fulfill the normalization condition ���ch�2�
=1 /Ach required for the annular cavity.

Using the fictitious regular system and the random wave
model for the chaotic states we obtain an integral over the
small disk for the coupling matrix element
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vmn = 	
0

R2 	
0

�

�d�d
�ch
� ��,
��1 − neff

2 �kmn
2 �reg��,
� .

�12�

For the tunneling rate this results in

�mn =
1

2
Nmn

2 �1 − neff
2 �2�kmn

2 �2�
l=1

�

�Il�2, �13�

where

Il = 	
0

R2 	
0

�

�d�d
�l
���,
�Jm�neffkmnr�cos�m	� , �14�

with r=r�� ,
� geometrically related to 	=	�� ,
�, see Figs.
2�a� and 2�c�. With Eq. �6� we finally obtain the dynamical
tunneling contribution to the quality factor

Qdyn
mn =

4neff
2

Nmn
2 �1 − neff

2 �2�kmn
2 ��l=1

�
�Il�2

�15�

of whispering-gallery modes in the annular microcavity for
each quantum number m and n.

B. Results

Now we compare our theoretical prediction for the quality
factor �Eq. �3�� for the annular microcavity with numerical
data obtained using the boundary element method �47�. Fig-
ure 1 shows the inverse quality factors at fixed quantum
numbers m=19 and n=1 under variation in the distance d
between the small and the large disk. The direct contribution
1 /Qdir, see the Appendix, is independent of the distance d. It
is dominated by the dynamical tunneling contribution 1 /Qdyn
�Eq. �15��, which decreases exponentially with d, as expected
from the increasing regular phase-space region. We find ex-
cellent agreement of the prediction and the numerical data.

As a further test we consider the quality factors for fixed
radial quantum number n=1 and increasing angular quantum
number m=7, . . . ,21, comparing the theoretical prediction
with numerical results, see Fig. 3. We find that for small
Re�k� the direct tunneling from the whispering-gallery
modes to the continuum is relevant while for large Re�k� the
dynamical-tunneling contribution dominates. Here, our pre-
diction again shows excellent agreement with the numerical
data. Note that for other systems, such as the one considered
in Ref. �42�, only Qdyn may be the relevant contribution. Also
we point out, that our theory allows us to determine quality
factors for large Re�k�, where numerical methods fail. The
boundary element method cannot compute the quality factors
of quantum numbers n=1 and m�21 reliably as the expo-
nentially increasing quality factor requires an extremely fine
spatial discretization.

C. Additional phase space structures

In the derivation of the dynamical tunneling contribution
1 /Qdyn to the quality factor we assumed that there are no
further structures in the chaotic part of phase space, such as

small regular islands and partial barriers. If this assumption
is not fulfilled, the tunneling rate � is modified and conse-
quently the quality factor.

This can be demonstrated when choosing d=0.33, R2
=0.22, and increasing neff from 2.0 to 2.3. At neff=2.0 no
visible additional structures exist in the chaotic part of phase
space above the critical line �see Fig. 2�b��. At neff=2.3 the
critical line pc is shifted to smaller values and a period-three
island chain is now above pc as can be seen in the inset in
Fig. 4. These structures presumably cause the oscillations on
top of the numerically determined quality factors that are
visible in Fig. 4. To support the conjecture, that the island
chain is responsible for the oscillations, Figs. 5�a� and 5�b�
display the incident Husimi functions �52�, representing the
wave analog of the Poincaré section �see also �53��, of the

Re(k)
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FIG. 3. �Color online� Inverse quality factors 1 /Q for the annu-
lar microcavity with neff=2.0. Shown is the theoretical prediction
�solid line� which is the sum of the direct tunneling contribution
�dotted line� and the dynamical tunneling contribution �dashed line,
Eq. �15��, and numerical data �dots� for m=7, . . . ,21 and n=1 at
d=0.33. The insets exemplarily show the resonant states of angular
quantum number m=7 �left� and m=21 �right�.
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FIG. 4. �Color online� Inverse quality factor 1 /Q for the annular
microcavity. Shown is the theoretical prediction �solid line� which
is the sum of the direct tunneling contribution �dotted line� and the
dynamical tunneling contribution �dashed line�, and numerical data
�dots� for m=7, . . . ,21, n=1 at d=0.33 and neff=2.3. The inset
shows a Poincaré section of the classical phase space, where the
critical line p= pc is marked �dashed line�.
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mode m=14 �near the minimum of the oscillation� and m
=18 �near the maximum�. In the former case the island chain
is clearly a barrier for the mode. The mode cannot penetrate
the leaky region so easily, which increases its quality factor.
In the latter case the island chain seems not to have a strong
influence on the mode. While the average behavior of the
quality factors is still well predicted by Eq. �15�, these oscil-
lations cannot be explained by our theory as it assumes a
strong coupling of the chaotic modes to the continuum.
Other situations where this coupling is weak are due to dy-
namical localization �54� or to an additional tunnel barrier
surrounding a cavity �24�. We leave the interesting task of
the prediction of tunneling rates through more complicated
phase-space structures in the chaotic sea as a future chal-
lenge.

IV. SUMMARY

We have presented a theory for the intrinsic optical losses
of annular microcavities. It is assumed that the ray dynami-
cal phase space is divided into regular regions and a chaotic
region which does not show additional structures such as
small regular islands or partial barriers. Our theory gives an
analytical expression for the quality factor which is in very
good agreement with the full numerical simulations of Max-
well’s equations. We would like to emphasize that our theory
can predict quality factors also in the regime of large wave
numbers where numerical methods fail due to the exponen-
tial increase in the quality factor.
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APPENDIX: THE CIRCULAR MICROCAVITY

For completeness, let us consider a circular microcavity
of radius a in more detail. Inside the cavity the refractive
index is denoted by n1 and outside by n2�n1 �see Fig. 2�c��.
In the classical ray picture trajectories stay inside the cavity

if their angle of incidence with the boundary is larger than
the angle of total internal reflection arcsin�n2 /n1�. The dy-
namics is completely regular. The circular cavity in TM po-
larization is described by the Schrödinger equation in polar
coordinates �r ,	�

− �2��r,	� = n�r�2k2��r,	� , �A1�

where n�r� changes from n1 inside to n2 outside the cavity.
The radial and the angular part can be separated using the
ansatz ��r ,	�=u�r���	�. We immediately obtain ��	�
=eim	, where m�Z denotes the angular quantum number.
The radial part

− � �2

�r2 +
1

r

�

�r

u�r� + Veff�r�u�r� = k2u�r� �A2�

describes the motion of a particle in an effective potential

Veff�r� = k2�1 − n�r�2� +
m2

r2 . �A3�

Metastable states inside this potential exist for m / �n1a��k
�m / �n2a� and correspond to states with evanescent leakage
that, in the ray picture, are fully confined by total internal
reflection. The solutions of the radial equation are given as

u�r� = �AmJm�n1kr� r � a

Hm
�2��n2kr� + SmHm

�1��n2kr� r � a ,
� �A4�

where the incoming wave is described by the Hankel func-
tion of the second kind Hm

�2��n2kr� and the scattered one is
described by the Hankel function of the first kind
SmHm

�1��n2kr� with a certain scattering amplitude Sm. Am de-
scribes the amount of probability entering the cavity. Using
that the radial solutions and their derivative have to be con-
tinuous at r=a and that the scattering matrix has a pole at
a resonance position, this complex resonance position
k=Re�k�+ i Im�k� can be found by numerically solving

n1Jm+1�n1ka�Hm
�1��n2ka� = n2Jm�n1ka�Hm+1

�1� �n2ka� �A5�

for complex k. From this Qdir=−Re�k� / �2 Im�k�� is obtained.
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FIG. 5. �Color online� Husimi functions �gray
scale and contour lines� of the modes with angu-
lar quantum number �a� m=14 and �b� m=18 su-
perimposed onto part of the Poincaré section of
the classical phase space, where the critical line
p= pc is marked �dashed line�. The radial quan-
tum number is n=1 and the refractive index is
neff=2.3 as in Fig. 4.
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