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We investigate nonautonomous optical soliton dynamics accurately governed by the nonlinear Schrödinger
equation with varying fiber loss and/or Raman gain. Based on the Painlevé analysis a Painlevé integrability
condition of this equation, which means a balance between the dispersion, nonlinearity, and the fiber loss
and/or gain, has been obtained. Under this condition the optical soliton transmission in fibers can be exactly
controlled by proper dispersion and nonlinearity managements and the Raman gain. The existing experiments
confirm the validity of our result, which provides a general guidance to design a fiber in information
transmission using optical solitons.
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The concept of solitons proposed by Zabusky and Kruskal
�1� in 1965 describes a nonlinear wave with a finite localized
energy; its shape and velocity keep unchanged during propa-
gation and after collisions just like an elementary particle.
The robustness of a soliton is due to the balance between
dispersion and nonlinearity in a medium. Soon after that Ha-
segawa and Tappert found that a soliton can also be formed
in fiber systems, i.e., the optical soliton �2–5�. Due to the
particlelike property of the soliton, they proposed that the
optical soliton could be an ideal subject to transmit optical
signals. The realization of the optical soliton transmission
was first reported by Mollenauer et al. �6�. Since then the
fundamental properties of optical solitons and their applica-
tions in optical communication have been extensively inves-
tigated. For a review one refers to Refs. �3–5,7–11�.

However, an ideal optical soliton communication is very
difficult to obtain since the fiber loss is inevitable in the
propagation of the optical soliton. The dissipation would
weaken the nonlinearity and finally the optical soliton would
broaden and lose its signal due to dispersion. To overcome
the fiber loss it is possible to compensate for the fiber loss by
optical gain via Raman amplification. The first optical soliton
transmission experiment using the Raman gain showed that
the optical soliton can transmit more than 4000 km �12�.
Another way is to use a technique of dispersion management
�13�, which has been intensively investigated in recent years
�10�. It should be pointed out that in both schemes the optical
solitons are modified because the balance between dispersion
and nonlinearity cannot be kept constant during propagation
of the optical solitons. In a sense of average �14� the modi-
fied soliton is known as a quasisoliton �15�, but the overall
features are far from an ideal soliton. The serious modifica-
tion of the solitons would inevitably increase the bit error
rate and degrade the reliability of the soliton communication.
Therefore it is desired to obtain an ideal optical soliton trans-
mission in fibers but the question arises: how to properly
manage the dispersion and nonlinearity in fibers even in the
presence of dissipation and/or gain?

A clear answer for this question highly depends on our
knowledge of the exact dynamical behavior of the optical
solitons during propagation along the fibers. The dynamics
of optical solitons are governed by a nonautonomous nonlin-

ear Schrödinger �NLS� equation �16� �see below� due to the
managements of dispersion and nonlinearity and the pres-
ence of dissipation and/or gain �17�. In this paper we present
optical soliton solutions of the nonautonomous NLS equation
in the presence of dissipation and/or gain. Through the Pain-
levé analysis we find a generalized integrability condition of
the nonautonomous NLS equation. This condition shows
how to balance dispersion, nonlinearity, and dissipation
and/or gain in the transmission of optical solitons. Mean-
while under this condition the nonautonomous NLS equation
can be reduced to the standard one as discussed early in �18�.
The canonical soliton solution of the standard NLS equation
can be recast into the corresponding solitonlike of the non-
autonomous NLS equation, which is an excellent object to
realize an ideal optical soliton communication in fibers when
dispersion, nonlinearity, and fiber loss and/or gain can be
accurately balanced by modern optical technology.

An ideal optical soliton obeys a normalized standard NLS
equation �2,3�

i
�

�Z
Q�Z,T� + �

�2

�T2Q�Z,T� + ��Q�Z,T��2Q�Z,T� = 0. �1�

Here Q�Z ,T� is the normalized solitary envelope of optical
pules and Z and T denote the normalized distance and time
duration of the temporal propagation of the optical soliton
�3�. �= �1 /2 denote the anomalous and normal dispersion
regions and �= �1 represent the defocusing and focusing
interactions, respectively. Usually, when ���0, Eq. �1� has
bright soliton solutions, otherwise Eq. �1� has dark soliton
solutions. In optical soliton communication the fundamental
bright soliton, which is

Q�Z,T� = sech�T�eiZ/2, �2�

plays a key role. The fundamental bright soliton �2� is ideal
in transmission of optical soliton in fibers. In reality the fiber
loss is inevitable. A long-distance transmission of the optical
solitons requires one to compensate for the fiber loss by the
managements of dispersion, nonlinearity, and Raman gain.
Thus the dynamics of the transmission of optical solitons in
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fibers should be governed by a nonautonomous normalized
NLS equation �16�

i
�u�z,t�

�z
+ �f�z,t�

�2u�z,t�
�t2 + �g�z,t��u�z,t��2u�z,t�

= i
��z�

2
u�z,t� , �3�

where f�z , t� and g�z , t� denote the time- and space-
dependent managements of dispersion and nonlinearity, re-
spectively. Here ��z�=�loss+�R, where �loss means the fiber
loss ��loss�0� and �R the Raman gain ��R�0�. They are
also assumed to be distance dependent. Generally these co-
efficients are assumed to be real. For convenience we use
normalized model and thus all quantities in Eq. �3� are di-
mensionless and one can refer to, e.g., Ref. �3� for their
physical meanings.

To explore the dynamics of the optical soliton obeying
Eq. �3� it is useful first to perform the Painlevé analysis
�19,20� since there is a close connection between complete
integrability and the Painlevé property of partial differential
equations. To proceed, one first expands u�z , t�, f�z , t�, and
g�z , t� on a noncharacteristic singularity manifold and then a
recursion relation of the expanded coefficients of u�z , t� can
be written down. These coefficients can be uniquely deter-
mined by such a relation except for at some resonance points
of j=−1, 0, 3, and 4. For details one can refer to Refs.
�20,21�. These resonance points put forward compatibility
conditions under which Eq. �3� can pass through the Painlevé
test. While the first two give trivial results, the latter two lead
to �i� f�z , t�= f�z� and g�z , t�=g�z� and �ii� a constraint con-
dition on f�z�, g�z� and ��z�,
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�4�

In the absence of ��z� �21�, this condition is completely con-
sistent with the integrability condition given in �16� using the
Lax pair method �22,23�. However, to our knowledge condi-
tion �4� has not yet been given by the Lax pair method. Thus
Eq. �4� is a generalized integrability condition of Eq. �3� in a
sense of the Painlevé analysis. Before discussing physical
implication of Eq. �4� to soliton dynamics, we first explore
explicit solutions of Eq. �3� under the condition.

To obtain an analytic soliton solution of Eq. �3� it is useful
to find a transformation that can reduce Eq. �3� to the stan-
dard NLS Eq. �1�. Such a transformation can have the gen-
eral form �21�

u�z,t� = Q„Z�z�,T�z,t�…eia�z,t�+c�z�. �5�

Note that T�z , t� , Z�z� , a�z , t�, and c�z� are only assumed to
be real functions but no a priori forms, which is in sharp
contrast to the special forms used in the literature �24–26�.

The explicit forms of these transformation functions can be
uniquely determined by the requirement that u�z , t� and
Q�Z ,T� satisfy Eqs. �3� and �1�, respectively. Inserting Eq.
�5� into Eq. �3� and comparing with Eq. �1�, we obtain a set
of differential equations of T�z , t�, Z�z�, a�z , t�, and c�z�,
which have solutions under the condition Eq. �4�,

a�z,t� =
1

4�f�z�� d

dz
ln� f�z�

g�z�� − ��z�	t2 + C1
g�z�
f�z�

e��z�t

− �C1
2
 dz�

g�z��2

f�z��
e2��z�� + C2, �6�

T�z,t� =
g�z�
f�z�

e��z�t − 2�C1
 dz�
g�z��2

f�z��
e2��z��. �7�

Z�z� =
 dz�
g2�z��
f�z��

e2��z�� + C3, �8�

c�z� =
1

2
ln

g�z�
f�z�

+ ��z� , �9�

where ��z�=�0
z��z��dz� and C2=C3=0 if one takes initial

condition u�0, t�=Q�0, t�. The constant C1 is related to the
central position of soliton and without loss of generality we
take C1=0. This means that the moving solutions in time
domain and the phase contributed by the related terms in
a�z , t� are not considered. It is also interesting to point out
that the results obtained are in agreement with the perturba-
tion solutions of the nonautonomous NLS equation without
the dispersion and nonlinearity managements but the fiber
loss was taken into account �3�. However, the present results
are exact and not limited to the weak dissipation cases.

Importantly these equations provide a systematic way to
find the selected form solutions of the nonautonomous NLS
Eq. �3� from the solutions of the standard NLS Eq. �1�. For a
given nonautonomous NLS equation, if its coefficients sat-
isfy the Painlevé integrability condition �4�, then the nonau-
tonomous NLS equation can be reduced to the standard NLS
equation by the transformation proposed. Thus all solutions,
including the canonical solitons, of the standard NLS equa-
tion can be converted into the corresponding solutions of the
nonautonomous NLS Eq. �3�. The result can be applied to
any modulation and gain/loss functions if they satisfy Eq.
�4�. This evidently provides a possibility to control exactly
transmission of optical soliton even in the presence of the
fiber loss and/or the Raman gain, as discussed below.

Before showing how to control exactly the soliton dynam-
ics, let us first demonstrate the physical meaning of Eq. �4�
by experiments �27,28�. These two experiments transmitted
optical soliton in a lossy fiber with a nearly exponential
group-velocity dispersion �GVD� profile. It was found that
solitons preserved their width and shape in spite of energy
losses of more than 8 dB/km in a 40 km fiber �27� and a 6.5
ps soliton train at 10 Gps could be transmitted over 300 km
�28�. To fit the experiments, we set g�z�=1 and solve for f�z�
from Eq. �4� f�z�= f0 exp��1

zdz�e�̃�z���f1+�1
z�dz�e−�̃�z��h�z���
,

where �̃�z�=�1
z��z��dz� and h�z��= d

dz�
��z��−�2�z��. Here f0
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and f1 are constants determined by initial conditions. In a
lossy fiber ��z�=�=const, f�z� can be simplified to

f�z� = e�z �10�

when f0=e� and f1=� are chosen. Equation �10� is consistent
with experimental GVD profile. In this case the fundamental
bright soliton solution of Eq. �3� can be written as

u�z,t� = e1/2�z sech�t�ei/2�e�z−1
. �11�

In comparison to the perturbed soliton behavior without the
management of dispersion �3�, the bright solitonlike shown
in Eq. �11� maintains its width and shape, and has a much
slow decay of its amplitude, which is qualitatively consistent
with the experimental observations �27,28�.

After having confirmed the validity of our results, we dis-
cuss how to control the soliton dynamics in a general case.
Equation �9� provides an explicit way to control the shape of
soliton, which can be written as

g�z� = f�z�e2�̃�z�. �12�

Here �̃�z�=c�z�−��z�. According to ansatz �5�, if c�z�=0,
then the amplitude of optical soliton remains unchanged. If

c�z��0 �or �0� means that the soliton’s amplitude increases
�or decreases� exponentially. When c�z� changes periodically
its sign during the propagation of optical soliton, as a result,
the optical soliton oscillates with the same period. From Eq.
�12�, Eq. �4� can be further simplified to

��z�
d

dz
f�z� − 	�z�f�z� = 0, �13�

where ��z�=��z�+2 d
dz �̃�z� and 	�z�= d

dz��z�−�2�z�. Equa-
tion �13� has a closed form solution f�z�
=exp��0

zdz�	�z�� /��z��� with f�0�=1. When one takes into
account the expression of 	�z�, f�z� is

f�z� =
��z�
��0�

e−�0
z��z��dz�, �14�

where ��z�=�loss�z�+�R�z�. Here �loss�z� denotes the fiber
loss and �R�z� represents the Raman gain, which can be mod-
eled by �R=�R�n=1

N ��z−nZa� �29�. In this expression �R is
the Raman-gain coefficient and Za is the distance of two
amplifiers. The fiber loss is usually a constant and here we
set it to be −0.2 dB /LD, where LD is the dispersion distance
�29�. The Raman-gain coefficient is taken as �R=exp
�−�lossZa�−1 �see Figs. 1�a� and 1�b� for Za=1�. Equations
�12� and �14� provide an exact and explicit way to manage
dispersion and nonlinearity in the presence of the fiber loss
and/or the Raman gain. The management of dispersion and
the nonlinearity in the case of c�z�=0 are shown in Figs. 1�c�
and 1�d�, respectively. As a result, the managed optical soli-
ton shown in Fig. 1�f� has the same amplitude as that of the
fundamental optical soliton presented in Fig. 1�e�. However,
the managed optical soliton is compressed rapidly due to
rapid increase of the nonlinearity in compensating for the

FIG. 1. �Color online� The dispersion and nonlinearity managed
optical bright soliton with c�z�=0. �a� The fiber loss �loss

=−0.2 dB /LD, where LD is the dispersion distance �29�. �b� The
Raman gain �R with Za=1. ��c� and �d�� The management of dis-
persion f�z� �Eq. �14�� and nonlinearity g�z� �Eq. �12��, respectively.
��e� and �f�� The canonical optical soliton and the corresponding
nonautonomous optical soliton, respectively.

FIG. 2. �Color online� The dispersion and nonlinearity managed
optical bright soliton with c�z�=0.2 sin�z�. ��a� and �b�� The man-
agement of dispersion f�z� �Eq. �14�� and nonlinearity g�z� �Eq.
�12��, respectively. ��c� and �d�� The nonautonomous optical bright
soliton and its amplitude as a function of the distance. The fiber loss
and the Raman gain are the same as Fig. 1.
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fiber loss in order to keep the amplitude of the optical soliton
unchanged. Another interesting feature of the management of
dispersion and nonlinearity has a direct response to the Ra-
man gain at nZa, as shown in Figs. 1�c� and 1�d�, respec-
tively. This result has not been reported in the literature and
is important for an optimal control of the transmission of
optical soliton.

In the case of c�z��0 the amplitude of the optical soliton
increases or decreases. Figure 2 shows that the amplitude of
the optical soliton is modulated periodically as c�z�
=0.2 sin�z�. Correspondingly the dispersion and the nonlin-
earity are also periodically modulated when the overall be-
haviors are similar to the case of c�z�=0.

Equation �13� can also be written as

d

dz
��z� + �2�z� − � d

dz
ln f�z����z� = 0 �15�

when the amplitude of soliton is controlled to remain un-
changed �c�z�=0�. A general solution of Eq. �15� is

��z� = f�z�/�A + �1
z f�z��dz�� , �16�

where A is a constant related to ��0�. This expression and
Eq. �12� are useful to match properly the Raman gain and the

nonlinearity modulation when the dispersion management is
used in the transmission of optical soliton. The result can
again build the balance between dispersion, nonlinearity, and
the fiber loss and/or the Raman gain, which is helpful to
decrease the bit error rate. This is evidently significant to the
communication of realistic optical solitons.

In conclusion through the Painlevé analysis we obtained a
Painlevé integrability condition of the nonautonomous NLS
equation in the presence of the fiber loss. Under this condi-
tion the nonautonomous NLS equation can be reduced to the
standard NLS equation by a general transformation. This re-
sult provides a possibility to control exactly the transmission
of nonautonomous optical soliton in fibers, even in the pres-
ence of the fiber loss. The result has a significant contribu-
tion to the study of the dynamics of optical soliton and is
expected to be useful to the technology of optical soliton
communication.
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