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Half-integer-photon resonances in a periodically shaken double well are investigated on the level of the
N-particle quantum dynamics. Contrary to nonlinear mean-field equations, the linear N-particle Schrödinger
equation does not contain any nonlinearity which could be the origin of such resonances. Nevertheless, analytic
calculations on the N-particle level explain why such resonances can be observed even for particle numbers as
low as N=2. These calculations also demonstrate why fractional photon resonances are not restricted to
half-integer values.
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I. INTRODUCTION

Tunneling control of ultracold atoms via time-periodic
shaking �1–4� of potentials is currently established as an ex-
perimental method both on the single-particle level �5� and
on the level of Bose-Einstein condensates �BECs� �6�. An
interesting effect is an analog of photon-assisted tunneling in
periodically shaken systems of ultracold atoms. It was pre-
dicted theoretically both for the case that the driving fre-
quency matches the potential difference between neighboring
wells �3,7� and for the case that the driving frequency is
resonant with the interaction energy �8�. The n-photon reso-
nances essentially are a single-particle effect which survives
interactions; one- and two-photon resonances have been ob-
served experimentally for BECs in periodically shaken lat-
tices �9�. The “photons” are time-periodic potential modula-
tions in the kilohertz regime.

However, photon-assisted tunneling is not restricted
to integer-photon resonances. Also half-integer
Shapiro-type �10� resonances have been predicted numeri-
cally both on the mean-field �Gross-Pitaevskii� level and on
the level of the multiparticle quantum dynamics �down to
N=2 particles� �3�. While the occurrence of higher or lower
harmonics in nonlinear equations is easy to understand quali-
tatively, it is not clear a priori how these resonances should
occur in the linear N-particle Schrödinger equation. Thus,
analytic calculations which can explain the occurrence of
such resonances within the linear quantum dynamics will
explain how effective nonlinearities can arise from linear dy-
namics even for small particle numbers. Realistic experimen-
tal values for the number of atoms in a double well can be on
the order of 1000 atoms �11� for BECs and down to less than
6 atoms �12� for few-atom experiments.

Often, Floquet states �13� are useful to understand the
physics of BECs in periodically driven systems �14–17�. The
focus of the present paper lies on a different approach: ana-
lytic calculations on the N-particle level developed in Ref.
�18� �cf. Ref. �19��. By assuming the experimentally realistic
initial condition of all particles being in one well �11�, the
calculations are done analogously to the time-dependent per-
turbation theory.

The paper is organized as follows: after introducing the
two-mode model for a BEC in a double well �Sec. II�, we
develop the technique to calculate half-integer resonances in
Sec. III. A crucial test is to show that the analytic result
vanishes in the limit of noninteracting particles �Sec. IV�.
Other fractional resonances are discussed in Sec. V.

II. MODEL: A BEC IN A DOUBLE WELL

Bose-Einstein condensates in double-well potentials are
interesting both experimentally and theoretically �11,20–26�.
In order to describe a BEC in a double well, we use a model
originally developed in nuclear physics �27�: a multiparticle
Hamiltonian in two-mode approximation �28�,

Ĥ = −
��

2
�ĉ1ĉ2

† + ĉ1
†ĉ2� + ���ĉ1

†ĉ1
†ĉ1ĉ1 + ĉ2

†ĉ2
†ĉ2ĉ2�

+ ���0 + �1 sin��t���ĉ2
†ĉ2 − ĉ1

†ĉ1� , �1�

where the operator ĉj
�†� annihilates �creates� a boson in well j,

�� is the tunneling splitting, ��0 is the tilt between well 1
and well 2, and ��1 is the driving amplitude. The interaction
between a pair of particles in the same well is denoted by
2��.

The Gross-Pitaevskii dynamics can be mapped to that of a
nonrigid pendulum �20�. Including the term describing the
periodic shaking, the Hamiltonian function is given by

Hmf =
N�

�
z2 − �1 − z2cos��� − 2z��0

�
+

�1

�
sin� �

����,

� = t� , �2�

where � and z are canonically conjugate variables. The
quantity z /2 is the population imbalance with z /2=0.5
�z /2=−0.5� referring to the situation with all particles in
well 1 �well 2�. The corresponding observable on the
N-particle level is given by

Jz�t�
N

=
�	�t�	ĉ1

†ĉ1 − ĉ2
†ĉ2		�t�


2N
. �3�

For integer-photon-assisted tunneling, the potential differ-
ence between both wells, 2��0, has to be bridged by an
integer number of photons,*christoph.weiss@uni-oldenburg.de
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2��0 = n��, n = 1,2, . . . . �4�

The 1/2-integer resonance occurs for

2��0 = 1
2�� . �5�

For an interacting Bose gas, these resonances are further-
more shifted �3�.

For some parameter regimes �especially for interactions
comparable to the onset of the self-trapping transition �11��,
the differences between mean-field �Gross-Pitaevskii� dy-
namics and the N-particle quantum dynamics can be quite
remarkable �29�. However, when concentrating on the �ex-
perimentally measurable �11�� time-averaged population im-
balance,

�Jz
T

N
=

1

T
�

0

T Jz�t�
N

dt �6�

for low interactions, the qualitative agreement between
mean-field and N-particle dynamics for the occurrence of
both integer and half-integer-photon-assisted tunnelings is
excellent �3�.

Photon-assisted tunneling is clearly visible in the
experimentally measurable time-averaged population
imbalance �6�. Figure 1 shows integer resonances �Eq. �4��,
namely, the one-photon peak with ��3 � and the two-
photon peak at ��1.5 �. Furthermore, there are pro-
nounced fractional-integer resonances at ��6 �, ��2 �,
and ��1.2 � corresponding to the 1/2-, 3/2-, and 5/2-
photon peaks. While some of the resonances disappear �3�
for specific choices of the driving amplitude, the initial phase
of the periodic driving �cf. �4�� does not influence the occur-
rence of resonances in the situation investigated in this paper.

Figure 2 shows that it is not essential to start with all
particles in one well in order to observe photon-assisted tun-
neling. Both for the ground state of the untilted undriven
system �for which the initial population imbalance is zero�
and for the ground state of the tilted system with an initial
population imbalance of 
0.467, the main resonances of
Fig. 1, where all particles were initially in well 1, can easily
be identified.

Figure 3 displays the half-integer resonance for N=2 par-
ticles. Contrary to what was observed for both larger particle
numbers and for mean field, the position of the 1/2-photon
resonance does not shift with increasing energy. A first test of
our analytic calculations toward the end of Sec. III will thus
be to explain this feature.

III. ANALYTIC CALCULATIONS

In order to analytically describe the time evolution of the
interacting system, the Fock basis 	

�	N−
 ,

 is used. The
label 
=0, . . . ,N refers to a state with N−
 particles in well
1 and 
 particles in well 2. Hamiltonian �1� now is the sum
of two �N+1�� �N+1� matrices,

H = H0�t� + H1. �7�

While the nondiagonal matrix H1 is given by the tunneling
terms of Eq. �1�, the diagonal matrix H0 includes both the
interaction between the particles and the applied potential
difference. For the solution of the Schrödinger equation,

i�
�

�t
	��t�
 = �H0�t� + H1�	��t�
 , �8�

the ansatz

�
	��t�
 = a
�t�exp�−
i

�
�

0

t

�
	H0�t��	

dt�� �9�

turned out to be useful �18�.
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FIG. 1. �Color online� Time-averaged population imbalance
�Jz
T /N with averaging time T=100 /�, static tilt 2�0 /�=3, and
interaction N� /�=0.4 for N=2 particles initially in well 1. The full
�red� line with driving amplitude 2�1 /�=1.8 �close to the maxi-
mum of the J1-Bessel function� has, among others, a pronounced
resonance at the driving frequency �=3 � �one-photon resonance�
and also a weaker resonance at �=6 � �1/2-photon resonance�. As
the dashed �black� line shows, these resonances are also visible
when the system is driven with an initial 
 /2 phase shift
��1 cos��t� instead of �1 sin��t� in Eq. �1��, while they are
strongly suppressed with driving amplitude 2�1 /�=3.83 �close to
the first zero of J1� illustrated by the dotted �blue� line.
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FIG. 2. �Color online� Time-averaged population imbalance
�Jz
T /N with averaging time T=100 /�, static tilt 2�0 /�=3, and
interaction N� /�=0.4 with N=2 particles for two different initial
states. The dotted line corresponds to the ground state of the tilted
system, while the full line displays �Jz
T /N with the ground state of
the untilted system as initial state. In both cases the 1/2-photon
resonance at �=6 � appears.
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Within this framework, a set of differential equations
was derived �18� which is mathematically equivalent
to the N-particle Schrödinger equation governed by
Hamiltonian �1�,

i�ȧ
�t� = �
	H1	
 + 1
h
�t�a
+1�t�

+ �
	H1	
 − 1
h
−1�t��a
−1�t� . �10�

In Eq. �10�, the notation a−1�t��aN+1�t��0 was used; the
phase factors are given by

h
�t� = exp�i�2�N − 1 − 2
��t + 2�0t − 2�1 cos��t�/���
�11�

with −cos��t� /�=�0
t sin��t��dt�. To simplify the expression

for subsequent integrals, one can use the expansion in terms
of Bessel functions �30�,

eiz cos��t� = �
k=−�

�

Jk�z�ikeik�t. �12�

Equation �10� furthermore needs

�
	H1	n
 = −
��

2
�
,n+1

�N − n�n + 1

−
��

2
�
,n−1

�N − n + 1�n , �13�

where �n,m is the Kronecker delta �which is zero except for
n=m where �n,n=1�. The idea is to proceed along the lines of
time-dependent perturbation theory �31�. Starting with a
typical experimental initial condition such that all particles
are in the first well �11�, one has in zeroth-order perturbation
theory,

a0
�0��t� = 1, a1

�0��t� = a2
�0��t� = ¯ = 0, �14�

where a
=�k=0
� a


�k�. In first-order perturbation theory, one
gets

a

�1��t� = 0 �15�

if 
�1 and

a1
�1��t� = i

�

2
�N�

0

t

h0
��t�a0

�0��t� . �16�

Using Eqs. �11� and �12� one thus has

a1
�1��t� = i

�

2
�N �

k=−�

�

ikJk�2�1/���
0

t

exp�i�kt��dt� �17�

with

�k � k� − 2�0 − 2�N − 1�� . �18�

Therefore, after solving the integral, Eq. �17� is a sum of
time-periodic functions except for the special case with �k
=0 which recovers the integer-photon resonances of Eq. �4�
investigated in Refs. �3,9�. While for a double well as in
Ref. �3� the population imbalance is ideal to investigate
photon-assisted tunneling, the experiment �9� was performed
in an optical lattice. The signatures of photon-assisted tun-
neling were seen in the width of the BEC after expansion in
the shaken lattice. Surprisingly, a Jn

2 dependence was mea-
sured. While this might be interpreted as being an indication
for transition from ballistic to diffusive transport �9�, the
present experiments cannot exclude other explanations. The
Jn

2 dependence could either be an interaction-induced effect
�32� or the result of an effective average over the precise
instant within the cycle at which the current is measured �4�.

As the aim of the present paper is to understand the frac-
tional photon peaks like the interaction-induced half-integer
resonances in Ref. �3�, we can discard the integer-photon
resonances characterized via �k=0 �33� and thus write

a1
�1��t� = i

�

2
�N �

k=−�

�

ikJk�2�1/��
ei�kt − 1

i�k
. �19�

In second-order perturbation theory one has �see the Appen-
dix�
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FIG. 3. �Color online� Time-averaged population imbalance for
N=2 particles in a periodically shaken double-well potential as a
function of both driving frequency � and driving amplitude �1 for
a static tilt of 2�0 /�=3. Upper panel: N� /�=0.2; lower panel:
N� /�=0.4. The averaging time is �T=100; the values plotted are
shifted such that 0 corresponds to all particles having always stayed
in the first well �a value of 1 would correspond to all particles being
in well 2�. Surprisingly, contrary to the case of N�2 or the mean-
field case �3� for N=2 particles the resonance does not shift with
increasing interactions.
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a2
�2��t� = �i

�

2
�2

�N�N − 1�2

� �
k=−�

�

�
�=−�

�

iki�Jk�2�1/��J��2�1/��

� �
0

t exp�i�kt�� − 1

i�k
exp�i�̃�t��dt� �20�

with

�̃� � �� − 2�0 − 2�N − 3�� . �21�

Again, �̃�=0 can be discarded because it corresponds to
integer-photon resonances. However, if �̃�+�k=0 then a2

�2�

does have parts which increase linearly in time. In order to
see that this indeed corresponds to a half-integer resonance,
we choose N=2 and � /2=2�0. This implies �k=k�−� /2
−2� and �̃�=��−� /2+2� and the condition

�̃� + �k = 0 �22�

thus becomes independent of the interaction; it results in the
simple equation

k + � = 1. �23�

The above reasoning explains why we observe no shift of
the resonance with increasing interaction in the numerics
displayed in Fig. 3. The amplitude to find both particles in
well 2 is given by �Appendix�

a2
�2��t� = �a2

�2��t��oscil −
�2

2 �
k=−�

�

Jk�2�1/��J1−k�2�1/��
t

�k

−
�2

2 �
k=−�

�

Jk�2�1/��J1−k�2�1/��
e−i�kt − 1

i�k
, �24�

where the expression �a2
�2��t��oscil contains oscillatory terms

which can be found in Eq. �A7�. The convergence of this
sum is ensured both by the scaling of �k on k and the behav-
ior of Bessel functions with increasing k �30�,

Jk�z� �
1

�2
k
� z exp�1�

2k
�k

, k → � , �25�

combined with the fact that J−k�x�= �−1�kJk�x� �for integer k�.
Figure 4 shows good qualitative agreement between the ana-
lytic and numeric calculations for the time-averaged prob-
ability that both particles, which initially have been in the
first well, have tunneled to the second well. Already pertur-
bation theory in the first order, in which the half-integer reso-
nance becomes visible, correctly describes the occurrence of
maxima and minima in the probability for both particles to
occupy the second well.

IV. HALF-INTEGER RESONANCES DISAPPEAR
IN THE LIMIT OF LOW INTERACTIONS

Despite the agreement displayed in Fig. 4, at the first
glance Eq. �24� seems to contain a flaw: numerically, we
observe that the half-integer resonance disappears for zero

interaction. However, there seems to be a sum of nonzero
terms proportional to t even for �=0. As it is not obvious
that these terms cancel, the next step will be to demonstrate
that a2

�2� indeed approaches zero for vanishing interaction.
As shown in the Appendix, the terms proportional to t in

a2
�2� are due to situations such that Eq. �22� is fulfilled. In the

limit �→0 this results again in condition �23�, independent
of the particle number. The part of a2

�2� which increases lin-
early in time is thus proportional to

A � �
k=−�

�

Jk�2�1/��J1−k�2�1/��
1

�k
. �26�

Dividing the sum into two parts ��k=1
�

¯+��=−�
0

¯� and then
setting 1−�=k, one obtains

A = �
k=1

�

Jk�2�1/��J1−k�2�1/��� 1

�k
+

1

�1−k
� . �27�

In the limit �→0, the position of the half-integer resonance
approaches the value for N=2 particles. Therefore, one has
�k=k�−� /2 and thus �1−k=−�k which implies

A = 0. �28�

Thus, in agreement with the numerics, the half-integer-
photon peak disappears with vanishing interactions.

V. FRACTIONAL INTEGER RESONANCES

Fractional integer resonances are not, however, restricted
to the half-integer resonances investigated numerically in
Ref. �3� and analytically in Sec. IV. For N=3 particles and a
driving frequency such that � /3=2�0, the condition

�k + �̃� + �̃̃m = 0 �29�

with

�̃̃m = m� − 2�0 − 2�N − 5�� �30�

�throughout this section, N=3� is fulfilled for
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0.001

0 5 10

FIG. 4. �Color online� Time-averaged probability �averaged
over T�=10� that two particles have tunneled to the other well for
the 1/2-photon resonance �N=2, �0=3� /2, �=6 �, and �
=0.2 ��. Wide �green or gray� line: numerical data; dashed �black�
line: perturbation theory �cf. Eq. �A8��. The probabilities displayed
here should be measurable experimentally �see Ref. �12��.
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k + � + m = 1. �31�

The amplitude to find three particles in well 2 again contains
oscillatory terms; the term which becomes the leading-order
term for large t can be obtained by a calculation analogously
to the half-integer resonance in the Appendix,

�a3
�3��linear = −

3�3

4 �
k

�
�

Jk�2�1/��

� J��2�1/��J1−�−k�2�1/��
t

�k��k + �̃��
.

�32�

This one-third photon resonance can indeed be observed in
the numerics �see Fig. 5�. As this resonance only occurs in
third-order perturbation theory �rather than second order for
the half-integer resonances�, the amplitudes would be rather
small for interactions as in Fig. 3. However, choosing an also
realistic value of N� /�=1.5 leads to a time-averaged popu-
lation imbalance with a peak height on the same order of
magnitude as in Fig. 3. In a similar manner, smaller fractions
could be treated in higher order perturbation theory. As the
resonances thus are a higher order effect, they will tend to
decrease.

VI. CONCLUSION

Contrary to the integer-photon peaks �3�, fractional-
integer-photon peaks cannot be explained by simply replac-
ing the time-dependent Hamiltonian by a time-independent
Hamiltonian with renormalized tunneling frequencies. As
half-integer resonances already appear for two particles in a
double well, this experimentally relevant case �12� was in-
vestigated both numerically and analytically. The perturba-
tion calculations can explain for which parameters the non-
integer resonances occur. As the fractional-integer
resonances are only visible for finite interactions between the
particles, they allow us to investigate beyond single-particle
effects for very small particle numbers. Experiments similar
to Ref. �12� could thus verify fractional-integer peaks in

photon-assisted tunneling and thus are useful to understand
the emergence of effects similar to the nonlinearities of a
mean-field approach well below the limit N→�.
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APPENDIX: SECOND-ORDER PERTURBATION THEORY

When solving the integral

Ik,� � �
0

t 1

i�k
�exp�i��k + �̃��t�� − exp�i�̃�t���dt� �A1�

in Eq. �20�, one can again assume �k�0 and �̃��0 as
�k=0 and �̃�=0 would correspond to the interphoton reso-
nances discarded here. It then remains to distinguish cases
with

�k + �̃� = 0, �A2�

which turn out to be the origin of the half-integer resonance,
from those for which this equation is not fulfilled. If Eq. �A2�
is fulfilled, one has

Ik,� =
1

i�k
�t +

1

i�k
�exp�− i�kt� − 1�� , �A3�

otherwise

Ik,� =
1

i�k
� exp�i��k + �̃��t� − 1

i��k + �̃��
−

exp�i�̃�t� − 1

i�̃�
� .

�A4�

Collecting all terms given by Eq. �A3�, one has the
leading-order contribution,

�a2
�2��t��leading order = −

�2

2 �
k=−�

�

Jk�x�J1−k�x�
t

�k

−
�2

2 �
k=−�

�

Jk�x�J1−k�x�
exp�− i�kt� − 1

i�k
,

�A5�

with

x � 2�1/� , �A6�

and an oscillatory part

�a2
�2��t��oscil = −

�2

2 �
k=−�

�

�
��1−k

Jk�x�J��x�ik+l−1

�k

� � exp�i��k + �̃��t� − 1

�i��k + �̃���
−

exp�i�̃�t� − 1

i�̃�
� .

�A7�
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FIG. 5. �Color online� The plot illustrates the 1/3 resonance for
N=3 particles and interaction parameter N� /�=1.5. Initially, all
three particles were in the lower well; the static tilt is again given
by 2�0 /�=3. The time-averaged probability �averaged over time
T�=100� to find all particles in the upper well as a function of the
driving frequency � /� and the driving amplitude 2�1 /� has a
clear peak at ��9 �.
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While Eq. �A5� includes the leading-order behavior for
large times and most parameters, it vanishes in the limit
�1→0. Thus to evaluate the analytic formula with the
help of a computer algebra program, we include the only
nonvanishing term for �1=0 to obtain the data displayed in
Fig. 4,

�a2
�2��t��approx = �a2

�2��t��leading order −
�2

2

J0�x�J0�x�i−1

�0

� � exp�i��0 + �̃0�t� − 1

�i��0 + �̃0��
−

exp�i�̃0t� − 1

i�̃0
� .

�A8�
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