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We study the tunneling of Bogoliubov excitations through a barrier in a Bose-Einstein condensate. We
extend our previous work �S. Tsuchiya and Y. Ohashi, Phys. Rev. A 78, 013628 �2008�� to the case when
condensate densities are different between the left and right of the barrier potential. In the framework of the
Bogoliubov mean-field theory, we calculate the transmission probability and phase shift, as well as the energy
flux and quasiparticle current carried by Bogoliubov excitations. We find that Bogoliubov phonons twist the
condensate phase due to a back-reaction effect, which induces the Josephson supercurrent. While the total
current given by the sum of quasiparticle current and induced supercurrent is conserved, the quasiparticle
current flowing through the barrier potential is shown to be remarkably enhanced in the low-energy region.
When the condensate densities are different between the left and right of the barrier, the excess quasiparticle
current, as well as the induced supercurrent, remains finite far away from the barrier. We also consider the
tunneling of excitations and atoms through the boundary between the normal and superfluid regions. We show
that supercurrent can be generated inside the condensate by injecting free atoms from outside. On the other
hand, atoms are emitted when the Bogoliubov phonons propagate toward the phase boundary from the super-
fluid region.
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I. INTRODUCTION

In the pioneering work by Bogoliubov �1�, it was shown
that the Bose-Einstein condensate �BEC� of weakly interact-
ing bosons has a phonon-type excitation mode. It is now
called the Bogoliubov mode, which is a Nambu-Goldstone
mode associated with a spontaneous broken U�1� symmetry
�2�. This collective mode dominates low-energy properties of
BEC, so that it is an important key to understand physical
properties of BEC �3�. In particular, the existence of Bogo-
liubov phonon is essential for the Bose-condensed phase to
acquire superfluidity �4�. Since the realization of BECs in
ultracold atomic gases �5,6�, the study of Bogoliubov mode
has been one of the main issues in cold atom physics �3,7�.
Because of the high degree of controllability, the BECs of
cold atomic gases offer good opportunities to explore novel
properties of Bogoliubov excitations.

Recently, Kovrizhin and co-workers �8–10� predicted that
the Bogoliubov mode exhibits striking tunneling properties.
They showed that the transmission probability of Bogoliubov
phonon through a potential barrier increases in the low-
energy region with decreasing the incident energy. In the
low-energy limit, the perfect transmission is realized irre-
spective of the height of the barrier. This interesting tunnel-
ing property of Bogoliubov mode is referred to as the
anomalous tunneling �10�. Since their prediction �8–10�, the
anomalous tunneling has attracted much attention and has
been addressed by many papers �11–19�.

As the origin of the anomalous tunneling effect, various
mechanisms have been proposed such as quasiresonance
scattering �10�, localized components of Bogoliubov mode
appearing near the barrier �11�, and anomalous enhancement
of quasiparticle current �12�. For the perfect transmission in
the low-energy limit, the importance of the coincidence of
the condensate and excitation wave functions �13�, as well as

supercurrent behavior of low-energy Bogoliubov phonons
�14�, has been pointed out. The anomalous tunneling phe-
nomenon was shown to occur even in the supercurrent state
�11,14,20�, as well as at finite temperatures �13�. It has been
also studied in the presence of a periodic potential �15,16�, as
well as a random potential �17�. It has been also pointed out
that similar phenomena to this can be seen in the scattering
of Bogoliubov phonon by a spherical potential in three di-
mensions �18�, as well as the refraction of Bogoliubov
phonons �19�.

In this paper, we investigate tunneling properties of Bo-
goliubov phonon in a BEC at T=0. In Ref. �12�, we have
considered the case when the incident and transmitted Bogo-
liubov phonons feel the same condensate densities on both
the right and left of the barrier. In this paper, we extend this
previous paper to the case when the condensate density is
different between the right and the left of the barrier. As an
extreme case, we also deal with the case when the conden-
sate density is absent on one side of the barrier. Applying the
finite element method to the Bogoliubov coupled equations,
we numerically calculate the transmission probability and
phase shift of Bogoliubov phonons. We find that Bogoliubov
phonons twist the phase of the BEC order parameter �con-
densate wave function� due to a back-reaction effect, which
leads to the induction of Josephson supercurrent. The in-
duced supercurrent is shown to satisfy the Josephson relation
with respect to the twisted phase when the condensate den-
sity is the same on both sides of the barrier. The supercurrent
is induced only in the region near the barrier when the con-
densate has the same densities across the potential barrier. In
the case when the condensate density is different between the
right and left of the barrier, the supercurrent is also induced
in the region far away from the barrier. In addition, the ex-
cess quasiparticle current is supplied from the condensate to
conserve the total current, so that one obtains the enhance-
ment of the transmission probability of quasiparticle current
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in the low-energy region. We also show that the supercurrent
is induced when one injects free atoms from the outside of
condensate. In addition, atoms are shown to evaporate from
the surface of superfluid region when Bogoliubov excitation
propagates toward the superfluid-normal phase boundary.

This paper is organized as follows: in Sec. II, we present
the model and formalism of the Bogoliubov mean-field ap-
proximation, as well as the finite element method which we
apply for solving the Bogoliubov equations. In Sec. III, we
study the tunneling of Bogoliubov phonons through a rect-
angular potential barrier. We give a detailed discussion on
the origin of the anomalous tunneling and induced Josephson
supercurrent. In Sec. IV, we study the tunneling in the pres-
ence of a step potential which yields the different condensate
densities across the potential barrier. In Sec. V, we discuss
the tunneling of excitations and atoms between superfluid
and normal regions.

II. MODEL AND FORMALISM

We consider tunneling phenomena of Bogoliubov mode
through a barrier potential as schematically shown in Fig. 1.
We assume that the barrier potential U�x� only depends on x
and ignore the motion of atoms in the y and z directions, so
that we consider a one-dimensional tunneling problem along
the x direction. This kind of one-dimensional geometry has
been recently realized �21�. In Ref. �21�, a BEC was prepared
in a narrow elongated trap with a wall-type potential barrier,
which varies only in the axial direction and the potential
width is much longer than the radial size of the gas cloud.
We also ignore temperature effects as well as effects of a
harmonic trap. The latter assumption is justified when the
BEC is trapped in an elongated trap �21,22� or a box-shaped
trap �23�.

We treat the tunneling of Bogoliubov mode within the
Bogoliubov mean-field theory for a weakly interacting Bose
gas at T=0 �1,24,25�. To describe the BEC phase, we divide

the Bose field operator �̂�r� into the condensate wave func-
tion �0�r� and the noncondensate part, as

�̂�r� = �0�r� + �
j

�uj�r��̂ j − v j�r���̂ j
†� , �1�

where �̂ j
† is the creation operator of a Bogoliubov excitation

in the jth state. The condensate wave function �0�r�

= ��̂�r�� satisfies the static Gross-Pitaevskii �GP� equation
�24,26�

�−
�2

2m
+ U�r� + g	�0	2
�0 = ��0. �2�

Here, m, �, and U�r� represent the mass of a boson, chemical
potential, and barrier potential, respectively. g��0� is a re-
pulsive interaction between bosons. In Eq. �1�, uj�r� and
v j�r� satisfy the Bogoliubov coupled equations,

�−
�2

2m
+ U�r� + 2g	�0	2 − ��uj − g�0

2v j = Ejuj , �3�

�−
�2

2m
+ U�r� + 2g	�0	2 − ��v j − g��0

��2uj = − Ejv j ,

�4�

where Ej is the Bogoliubov excitation spectrum. To solve
Eqs. �3� and �4� with an appropriate boundary condition, we
use the finite element method �27�. For this purpose, it is
convenient to rewrite Eqs. �3� and �4� in the matrix form

�Ĥ̄ − Ēj�3�� j = 0, �5�

where

Ĥ̄ = �− �̄2 + Ū�r� + 2	�̄0	2 − 1 − �̄0
2

− ��̄0
��2 − �̄2 + Ū�r� + 2	�̄0	2 − 1


 ,

�6�

� j = �uj�r�
v j�r�


 , �7�

�3 = �1 0

0 − 1

 . �8�

In Eq. �5�, we have introduced dimensionless variables r

r /�, Ēj 
Ej /�, Ū
U /�, and �̄0
�0 /n0, where n0

� /g is the condensate density far away from the barrier,
and �
1 /�2mgn0 is the healing length. To simplify our no-
tations, we omit the bars and indices of eigenstates in the
following part of this section. Equation �5� can be obtained
from the variational principle 	L=0, when the Lagrangian L
has the form

L = �



dr����†� · ���� + �†�U�r� + 2	�0	2 − 1 − �0
2�+

− ��0
��2�−�� − E�3� . �9�

Here, 
 is the volume of the system and �� are given by

�+ = �0 1

0 0

, �− = �0 0

1 0

 . �10�

We introduce N spatial positions ri�i=1,2 , . . . ,N� in the
system, which are referred to as nodes in the literature of the
finite element method �27�. We then assign the interpolation
function Ni�r� at each ri, which equals unity at r=ri and

x

U(x)

Ψ0(x)

t
r

FIG. 1. Schematic of the system. The arrows on the left describe
the incoming �upper arrow� and reflected �lower arrow� Bogoliubov
excitations. The arrow on the right describes the transmitted one.
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linearly decreases to zero at adjacent nodes of ri. Namely, the
interpolation function satisfies

Ni�r j� = �1 �i = j�
0 �i � j� .

� �11�

For example, in one-dimensional case, we define the nodes at
xi �i=1,2 , . . . ,N�. The interpolation function Ni�x� is given
by

Ni�x� =�
x − xi−1

xi − xi−1
�xi−1 � x � xi�

−
x − xi+1

xi+1 − xi
�xi � x � xi+1�

0 �x 
 xi,x � xi+1� .
� �12�

Using Ni�r�, one can approximately write u�r� and v�r� in
the forms

u�r� = �
i

uiNi�r� , �13�

v�r� = �
i

viNi�r� . �14�

Substituting Eqs. �13� and �14� into Eq. �9�, we obtain

L = �
i,j

�ui
��Ki,j − Mi,j

− �uj + vi
��Ki,j + Mi,j

+ �v j − ui
�Pi,jv j

− vi
�Pi,j

� uj� , �15�

where

Ki,j = �

i,j

dr��Ni� · ��Nj� , �16�

Mi,j
� = �


i,j

drNi�E � �U�r� + 2	�0	2 − 1��Nj

= �E � 1��

i,j

drNiNj � �
l

Ul�

i,j,l

drNiNjNl

� 2�
l,l�

�f l − igl��f l� + igl���

i,j,l,l�

drNiNjNlNl�,

�17�

Pi,j = �

i,j

drNi�0
2Nj

= �
l,l�

�f l + igl��f l� + igl���

i,j,l,l�

drNiNjNlNl�. �18�

In obtaining Eqs. �17� and �18�, we have expanded U�r� and
�0�r� as

U�r� = �
l

UlNl�r� , �19�

�0�r� = �
l

�f l + igl�Nl�r� . �20�

Here, Ul=U�rl�, f l=Re��0�rl��, and gl=Im��0�rl��. In Eqs.
�16�–�18�, 
i,j, 
i,j,l, and 
i,j,l,l� mean that the integrations
are carried out in the regions where NiNj, NiNjNl, and
NiNjNlNl� are finite, respectively. The integrations in Eqs.
�16�–�18� can be evaluated in the standard manner of the
finite element method �27�.

Equation �15� can be rewritten in the matrix form as

L = u†�K̂ − M̂−�u + v†�K̂ + M̂+�v − uP̂v − v†P̂�u , �21�

where �u�i=ui, �v�i=vi, �K̂�i,j =Ki,j, �M̂��i,j =Mi,j
�, and �P̂�i,j

= Pi,j. The equations for u and v are, respectively, obtained
from 	L /	u†=0 and 	L /	v†=0, which give

�K̂ − EM̂−�u − P̂v = 0 , �22�

�K̂ + EM̂+�v − P̂u = 0 . �23�

The advantage of using the finite element method is that
one can obtain the solutions by simply diagonalizing Eqs.
�22� and �23� under an appropriate boundary condition in-
stead of solving the differential Eqs. �3� and �4�. In the fol-
lowing sections, we will numerically solve Eqs. �22� and
�23� for given barrier potentials.

III. TUNNELING THROUGH THE RECTANGULAR
POTENTIAL BARRIER

In this section, we consider the one-dimensional tunneling
problem of Bogoliubov excitations through a rectangular
barrier potential shown in Fig. 1. The potential barrier is
given by

U�x� = U0��d

2
− 	x	
 , �24�

where ��x� is the step function. U0 and d describe the height
and width of the barrier, respectively, and we consider the
case of repulsive potential barrier �U0�0�. In this section,
we treat the case when the condensate densities are the same
on both sides of the barrier, as shown in Fig. 1. Although this
case has been examined in our previous paper �12�, we give
further analyses for the tunneling of Bogoliubov phonon
here. In Secs. IV and V, we will also compare the results in
this section with the case when the condensate density on the
left of the barrier is different from that on the right of the
barrier.

In the present case, the GP equation can be solved ana-
lytically �10�, as
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�̄0�x̄� =�tanh� 1
�2
�	x̄	 −

d̄

2

 + arctanh �� �	x	 � d/2�

�

cn��K2 + �2

2
x̄,q
 �	x	 
 d/2� .�

�25�

Here, d̄
d /�, K
��2+2�Ū0−1�, and q
K /�K2+�2,

where Ū0
U0 /�. �cn�x ,q� is the Jacobi’s elliptic function

�28�.� �
�̄0�x̄= d̄ /2� and �
�̄0�0� are determined from
the boundary conditions in terms of �0�x� and d�0 /dx at
x= �d /2, which give

� =
�

cn��K2 + �2

2

d̄

2
,q
 , �26�

�2 =
1

2Ū0

��4 + 2�Ū0 − 1��2 + 1� . �27�

The values � and � are determined by numerically solving
Eqs. �26� and �27�.

To solve Bogoliubov equations �22� and �23�, we need
asymptotic solutions for x= ��. In our tunneling problem,
each eigenstate with index j in Eqs. �3� and �4� corresponds
to Bogoliubov excitation with energy E injected from one
side of the barrier. In Secs. III–V, we omit the index for
eigenstates for simplicity. Far from the barrier �	x	���, the
Bogoliubov mode is described by the plane-wave
�u�x� ,v�x��= �uE ,vE�eipx. Substituting this into Eqs. �3� and
�4�, one obtains the well-known Bogoliubov excitation spec-
trum as �1�

Ep = ��p��p + 2gn0� , �28�

where �p= p2 /2m. Namely, for a given mode energy E, there
are four particular solutions in terms of the momentum p,
given by

p =� ��2m��E2 + �gn0�2 − gn0

 � k ,

�i�2m��E2 + �gn0�2 + gn0

 � i� .� �29�

The first two solutions �p= �k� describe the ordinary propa-
gating waves in the �x directions. The remaining two imagi-
nary solutions �p= ��� describe localized states. We note
that while the latter localized solutions are actually not nec-
essary in a homogeneous system, we cannot ignore them in
the present inhomogeneous system. The amplitudes of the
propagating components are given by

�uE
P

vE
P 
 =�� 1

2L
��E2 + �gn0�2

E
+ 1


� 1

2L
��E2 + �gn0�2

E
− 1
� 
 �a

b

 , �30�

where L is the system size in the x direction. On the other
hand, the amplitudes for the localized states are given by
�uE

L ,vE
L�= �−b ,a�. Thus, in contrast to the propagating solu-

tion in Eq. �30�, the normalization of the localized compo-
nents becomes negative as �uE

L�2− �vE
L�2=−1 /L.

Using the propagating solution �uE
P ,vE

P�e�ikx and localized
one �uE

L ,vE
L�e��x, we construct the asymptotic forms of the

Bogoliubov wave function for x→ ��. Assuming that the
Bogoliubov phonon is injected from x=−�, we obtain the
asymptotic solutions as

0

0.5

1

W

-1

0

1

0 1 2 3

δ

E/µ

FIG. 2. Calculated transmission probability W and phase shift 	
as functions of the incident energy E for a rectangular potential
barrier. We set the width d and height U0 of the barrier as �d ,U0�
= �� ,2�� �solid line�, �� ,5�� �dashed line�, �� ,10�� �dotted line�,
and �4� ,2�� �dash-dotted line�.

0

20

40

(a)

|u(x)|2L
|v(x)|2L
U(x)/µ

0

1

2

3

-10 -5 0 5 10
x/ξ

(b)

FIG. 3. Spatial variation in the Bogoliubov wave function
�u�x� ,v�x��. �a� E /�=0.01�1 �anomalous tunneling�. We set
�d ,U0�= �� ,10��. �b� E /�=1.68. We set �d ,U0�= �4� ,2��. In this
case, the resonance tunneling �W=1� is realized as shown in Fig. 2
�see the dash-dotted line�. The dotted line is the potential barrier
U�x� in units of �.
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��
u

v

 = �a

b

eikx + r�a

b

e−ikx + A�− b

a

e�x �x → − ��

�u

v

 = t�a

b

eikx + B�− b

a

e−�x �x → �� . �

�31�

Here, r and t are, respectively, the reflection and transmission
amplitudes, which satisfy

	r	2 + 	t	2 = 1. �32�

As will be discussed later, this condition is deeply related to
the conservation of energy flux. In Eq. �31�, A and B repre-
sent the amplitudes of the localized components near the
potential barrier.

We numerically solve the Bogoliubov coupled Eqs. �22�
and �23� for a given incident energy E. In this procedure, the
condensate wave function in Eq. �25� is used, and the solu-
tion is determined so as to satisfy the asymptotic solution in
Eq. �31�.

Figure 2 shows the calculated transmission probability
W
	t	2, as well as phase shift 	
arg�t�, as functions of the
incident energy E for various barrier heights and widths. We
call attention to the characteristic features of W and 	 in the
low-energy region �E /��0.5�. One can clearly see the
anomalous tunneling behavior discussed in �8–10� in Fig. 2.
Namely, below a certain incident energy �E /��0.5�, W in-
creases and 	 decreases with decreasing E, in contrast to the
behaviors above that energy �W decreases and 	 increases as
E decreases�. Furthermore, W and 	 approach unity and zero
in the low-energy limit E→0, respectively, irrespective of
the values of d and U0. When the incident energy E is very

large �E���, since the Bogoliubov phonon loses its collec-
tive nature, the tunneling property becomes close to that of a
single particle.

We note that the perfect transmission of Bogoliubov pho-
non �W→1,	→0� shown in the low-energy limit in Fig. 2 is
quite different from the typical tunneling properties of a
single particle, where W and 	 approach 0 and −� /2 in the
low-energy limit, respectively. Namely, in the latter case the
particle is completely reflected by the potential barrier �29�.

We also note that the energy region in which W and 	
exhibit the anomalous tunneling behavior �W increases and 	
decreases with decreasing E� depends on the height U0 and
width d of the potential barrier. This region becomes nar-
rower for higher and wider potential barrier, as shown in Fig.
2.

In Fig. 2, we find that W=1 is also obtained at finite
energy �E /�=1.68� in the case of �d ,U0�= �4� ,2�� due to
the resonance tunneling effect. To see the difference between
the resonance tunneling effect and the anomalous tunneling
effect, we show in Fig. 3 the wave functions in the two cases.
In the case of resonance tunneling, one sees that while 	u	2 is
enhanced in the barrier, 	v	2 is suppressed there. The peak of
	u	2 is a clear signature of the formation of a resonance state.
The suppression of 	v	2 indicates that the Bogoliubov excita-
tion behaves like a single particle during the tunneling
through the barrier. In contrast, in the case of the anomalous
tunneling, both 	u	2 and 	v	2 simply become small in the bar-
rier and almost coincide with each other. Indeed, it was
shown in Refs. �13,14� that u�x� and v�x� reduce to the con-
densate wave function �0�x� in the low-energy limit. The
difference mentioned above indicates that the anomalous
tunneling and resonance tunneling are different phenomena.

We briefly note that, as shown in Ref. �14�, the anomalous
tunneling effect originates from the fact that the wave func-
tions of a Bogoliubov phonon with a small momentum p has
the same form as the condensate wave function in the super-
current state, accompanied by a finite superflow Js=n0p /m.
Recently, Morgan et al. �30� have presented a modified Bo-
goliubov theory where the wave function of Bogoliubov
mode is constructed so as to be orthogonal to the solution
obtained from the GP equation. Since their formalism does
not affect the current-carrying component of the Bogoliubov
wave function �which dominates the anomalous tunneling
phenomenon�, the perfect transmission of low-energy Bogo-
liubov phonon is still expected to occur. Thus, the anomalous

0

0.5

1
∆J

q(
x)

/(
k/

m
L

)
E/µ=

(a)

0.01
0.1
0.2
0.5

-0.5

0

-10 -5 0 5 10

N
0θ

(x
)

x/ξ

N0φ

(b)

FIG. 4. �a� Excess quasiparticle current �Jq�x�
Jq�x�−Jq

�x=−�� when �d ,U0�= �� ,10��. The dash-double dotted line is the
condensate density ns�x� in units of n0. �b� Phase ��x� of the con-
densate wave function �0�x� created by the tunneling of Bogoliu-
bov phonon. We set ��x=−��=0. � is the phase difference between
condensates at x= ��. N0=n0L is the number of condensate atoms.
In both the panels, the dash-dotted line indicates the region of the
potential barrier.

0

0.5

1

0 0.2 0.4 0.6 0.8 1

∆J
q(

x=
0)

/(
k/

m
L

)

E/µ

d=ξ U0/µ=2
5

10

FIG. 5. Excess quasiparticle current in the potential barrier
�Jq�x=0� as a function of the incident energy E.
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tunneling phenomenon does not depend on the definition of
the wave function of Bogoliubov mode.

Propagation of Bogoliubov phonon is accompanied by

quasiparticle current Jq, as well as energy flux Qq. When one
uses the asymptotic solutions in Eq. �31�, they are given by

Jq = �
k

mL
�1 − 	r	2� −

2ab

mL
e�x�� Im�A�e−ikx + r�eikx�� + k Re�A�e−ikx − r�eikx��� �x � − ��

k

mL
	t	2 −

2ab

mL
e−�x�� Im�tB�eikx� + k Re�tB�eikx�� �x � �� , � �33�

Qq = �
kE

m
�a2 + b2��1 − 	r	2� �x � − ��

kE

m
�a2 + b2�	t	2 �x � �� . � �34�

The detailed definitions of Jq and Qq are summarized in Ap-
pendix B. Since the energy flux Qq is conserved �see Appen-
dix B�, one obtains 	r	2+ 	t	2=1 from Eq. �34�. Using this, we
find that the quasiparticle current Jq is also conserved in both
limits x= �� as Jq�x=−��=k�1− 	r	2� /mL=Jq�x=��
=k	t	2 /mL. However, except for the limits x= ��, the last
terms in Eq. �33� become finite, which come from the cou-
pling between the propagating and localized components in
Eq. �31�. As a result, while Qq is conserved everywhere, we
expect that Jq is not conserved near the barrier.

To see the nonconserving behavior of Jq, we directly
evaluate it using the solution of Bogoliubov equations �22�
and �23�. As shown in Fig. 4�a�, we obtain the excess quasi-
particle current

�Jq�x� 
 Jq�x� − Jq�x = − �� �35�

near the barrier. Namely, when the Bogoliubov phonon ap-
proaches the barrier, Jq is enhanced. Jq is constant in the
barrier, and it decreases to be Jq���=Jq�−�� when the pho-
non goes away from the barrier. In Fig. 4�a�, the enhance-
ment of �Jq occurs near the barrier where the condensate
density ns�x� deviates from n0�=ns�x= ����.

In Fig. 4�a�, we find that the enhancement of �Jq is more
pronounced for lower incident energy E. In addition, as
shown in Fig. 5, the excess quasiparticle current is more
remarkable when the barrier is high, although the energy
region where �Jq�x=0� is large is narrower for larger U0.
Since �Jq�x=0� / �k /mL� approaches a constant value, we
also find from Fig. 5 that �Jq�x=0� is proportional to the
incident momentum k in the low-energy limit. �Note that
�Jq�x=0� in Fig. 5 is normalized by the incident quasiparti-
cle current k /mL.�

The enhancement of quasiparticle current near the poten-
tial barrier implies that more quasiparticles than those carried
in the incident current impinge on the barrier. Apparently,
this is expected to lead to the increase in the transmission
probability of quasiparticles. Indeed, comparing the result for

�d ,U0�= �� ,10�� in Fig. 4 with the corresponding result in
Fig. 2, one finds that the energy region where the anomalous
enhancement of transmission probability is obtained �E
�0.1�� coincides with the region where the excess quasipar-
ticle current �Jq�x=0� is remarkable.

As shown in Ref. �12�, the excess quasiparticle current is
supplied from the condensate. Namely, the transmission of
Bogoliubov phonon is considered to be assisted by the sup-
ply of excess current from the condensate. Thus, in a sense,
the mechanism of the anomalous tunneling may be consid-
ered as a kind of screening effect by Bose condensate. This
argument partially explains the physical mechanism of the
anomalous tunneling effect discussed in Refs. �8–10�. How-
ever, apart from the enhancement of low-energy transmission
probability, this argument is not enough to explain the per-
fect transmission in the low-energy limit. In this regard, in
Ref. �14�, we have shown that the perfect transmission can
be understood as a result of the supercurrent behavior of
low-energy Bogoliubov phonon.

In Ref. �12�, it was found that the counterflow of super-
current is induced near the potential barrier due to a back-
reaction effect of quasiparticle current, which restores the
conservation of total current. The induction of supercurrent
indicates that the phase of the BEC order parameter �0�x� is
twisted by quasiparticle current as

�0�x� → ei��x��0�x� . �36�

�Here, we assume that the amplitude of the condensate wave
function is unchanged.� The induced supercurrent by this
phase modulation is given by

�Js�x� =
ns�x�

m
�x��x� . �37�

As shown in Appendix B, �Js�x� is related to the excess
quasiparticle current �Jq as
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�Js�x� = − �Jq�x� . �38�

�Here, we set �� j
†� j�=1 in Eq. �B31� assuming that one Bo-

goliubov excitation is injected.� As a result, the phase ��x� is
evaluated to be

��x� = − m�
−�

x

dx�
�Jq�x��
ns�x��

. �39�

Namely, the phase modulation is caused by the excess qua-
siparticle current �Jq. The assumption in Eq. �36� is valid as
long as ��x� is small, because the change in the amplitude of
the condensate wave function gives higher-order corrections.
Since ��x� is inversely proportional to the number of conden-
sate atoms N0, as shown below, ��x� is negligibly small, so
that the assumption in Eq. �36� is justified. As discussed in
Appendix B, the inclusion of the back-reaction effect of qua-
siparticles on condensates requires the modification of the
GP equation as Eq. �B29�. In the present case, the new con-
densate wave function including the back-reaction effect is
perturbatively obtained with use of the ansatz in Eq. �36�
without solving Eq. �B29�.

Figure 4�b� shows ��x� when the Bogoliubov phonon is
injected from x=−�. The spatial variation in the phase ��x�
is remarkable near and in the barrier, where large excess
current �Jq is obtained �see Fig. 4�a��.

Figure 6 shows the magnitude of induced supercurrent at
x=0 as a function of �
��−��−��x� �see Fig. 4�b��. We
clearly see that 	�Js�x=0�	 satisfies the ordinary Josephson
current relation �31�

I��� = IJ sin � � IJ�, �� � 1� . �40�

�In our case, since � is proportional to the inverse of the total
number of Bose-condensed particles N0, so that ��1.� The
Josephson critical current IJ in the present case has the form

IJ = �� n0

m�

 , �41�

where � is determined from the slope of the lines in Fig. 6.
This result means that the Josephson critical current IJ may
be evaluated from the analysis of quasiparticle tunneling
without directly examining the Josephson current.

Finally, we remark that the tunneling properties of Bogo-
liubov excitation discussed in this section suggest an impor-
tant role of Bogoliubov phonons on the fluctuation of the
relative phase between two condensates at finite tempera-
tures. When Bogoliubov phonons are excited on both sides
of the barrier at finite temperatures, they tunnel through the
potential barrier and twist the relative phase. This is expected
to lead the fluctuation of the phase difference between the
condensates on the left and right of the barrier. In particular,
large phase fluctuations may be induced in the temperature
region where the population of Bogoliubov phonon becomes
dominant. This phase fluctuation due to the tunneling of Bo-
goliubov phonons could be observed in a BEC in a double-
well potential, where the thermally induced fluctuations of
the relative phase between two condensates were recently
observed �32�.

IV. TUNNELING BETWEEN CONDENSATES WITH
DIFFERENT CONDENSATE DENSITIES

In Sec. III, we considered tunneling properties of Bogo-
liubov phonons through the rectangular potential barrier in
the case when the left and right of the barrier have the same
condensate densities. In this section, we consider the more
general case when the condensate densities are different be-
tween the right and left of the barrier. This situation is
achieved by simply imposing a uniform potential on the right
side of the barrier, as

U�x� = U0��d

2
− 	x	
 + U1��x −

d

2

 . �42�

In this case, the condensate density at x→� is given by

ñ0 = �0�x = ��2 = �1

g
�� − U1� �0 � U1 
 ��

0 �U1 � �� .
� �43�

In this section, we consider the case of 0�U1
�. The case
of U1�� will be discussed in Sec. V. The barrier potential,
as well as the condensate wave function �0�x�, is schemati-
cally shown in Fig. 7.

To solve Bogoliubov equations �22� and �23�, we con-
struct the condensate wave function �0�x�, as well as the
asymptotic solutions at x= ��. The former is analytically
obtained from Eq. �2� as
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FIG. 6. Induced supercurrent �Js�x=0� as a function of the rela-
tive phase � across the potential barrier. The slopes of the lines are
�=0.14, 0.050, and 0.015 for �d ,U0�= �� ,2��, �� ,5��, and
�� ,10��, respectively.
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FIG. 7. Schematic of the system in the presence of the barrier
potential in Eq. �42�.
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�̄0�x̄� =�
tanh�−

1
�2
�x̄ +

d̄

2

 + arctanh �L� �x 
 −

d

2



�

cn��K2 + �2

2
�x̄ − x̄0�,q
 �	x	 � d/2�

�1 − Ū1 tanh��1 − Ū1

2 �x̄ −
d̄

2
 + arctanh� �R

�1 − Ū1


� �x �
d

2
 ,
� �44�

where Ū1
U1 /�, �L
�̄0�−d̄ /2�, and �R
�̄0�d̄ /2�. x0 sat-

isfies the conditions �̄�x̄0�=� and d�0�x� /dx 	x=x0
=0. x0, �,

�L, and �R are determined from the equations

�R =
�

cn��K2 + �2

2
� d̄

2
− x̄0
,q� , �45�

�L =
�

cn��K2 + �2

2
� d̄

2
+ x̄0
,q� , �46�

�R
2 =

1

2�Ū0 − Ū1�
��4 + 2�Ū0 − 1��2 + �1 − Ū1�2� , �47�

�L
2 =

1

2Ū0

��4 + 2�Ū0 − 1��2 + 1� . �48�

Equations �45�–�48� are derived from the boundary condi-
tions at x= �d /2.

The asymptotic solutions of the Bogoliubov equations at
x= �� are obtained in the same manner as in Sec. III. As-
suming that the Bogoliubov phonon with the energy E
=��p��p+2gñ� is injected from x=−�, we have

��
u

v

 = �a

b

eikx + r�a

b

e−ikx + A�− b

a

e�x �x → − �� ,

�u

v

 = t�aR

bR

eikRx + B�− bR

aR

e−�Rx �x → �� . �

�49�

Here, k, �, and �a ,b� are given in Eqs. �29� and �30�. The
parameters appearing in the asymptotic solution at x=� are
given by

kR = �2m��E2 + �gñ0�2 − gñ0
, �50�

�R = �2m��E2 + �gñ0�2 + gñ0
, �51�

�aR

bR

 =�� 1

2L
��E2 + �gñ0�2

E
+ 1


� 1

2L
��E2 + �gñ0�2

E
− 1
� . �52�

Using the condensate wave function in Eq. �44�, we nu-
merically solve the Bogoliubov Eqs. �22� and �23� so as to
satisfy Eq. �49�. Once the wave function �u�x� ,v�x��, as well
as r and t, are determined, we can calculate the transmission
probability from the conserving energy flux Qq. The energy
flux Qq at x�� is given by

Qq =
kRE

mL
�aR

2 + bR
2�	t	2. �53�

The transmission �reflection� probability W �R� is conve-
niently defined as the ratio of the incident and transmitted
�reflected� components of Qq. From Eqs. �34� and �53�, we
obtain

W =
kR�aR

2 + bR
2�

k�a2 + b2�
	t	2, �54�

R = 	r	2. �55�

Equations �54� and �55� satisfy the relation R+W=1 because
of the conservation of Qq as proved in Appendix B.

We note that, when we calculate the transmission prob-
ability from the quasiparticle current, we obtain a different
result from Eqs. �54� and �55�. Using the expression for the
quasiparticle current at x��,

Jq =
kR

mL
	t	2 −

2aRbR

m
e−�Rx��R Im�tB�eikRx� + kR Re�tB�eikRx�� ,

�56�

and Eq. �33�, we define the “transmission �reflection� prob-
ability” WJ�RJ� as the ratio of the incident and transmitted
�reflected� components of Jq�x= ���. Then, we find

WJ =
kR

k
	t	2 =

a2 + b2

aR
2 + bR

2 W , �57�

RJ = 	r	2 = R . �58�
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Since WJ�W, Eqs. �57� and �58� do not satisfy the condition
RJ+WJ=1, unless U1=0. This is because of the fact that Jq is
not conserved, as discussed in Sec. III and Appendix B.
When U1=0 �this case was discussed in Sec. III�, the break-
down of the conservation of Jq is restricted to the region near
the barrier. Namely, all the supplied component �Jq is com-
pletely absorbed after the quasiparticle is transmitted in the
right condensate, as shown in Fig. 4. As a result, the trans-
mission probability, which is defined using Jq�x= ���, is not
affected by this nonconserving character of Jq. On the other
hand, the fact of WJ+RJ�0 when U1�0 indicates that the
nonconserving behavior of Jq remains even at x=�.

Figure 8 shows the calculated transmission probability W,
WJ in Eq. �57�, and the phase shift 	
arg�t�. While the
phase shift 	 approaches 0 in the low-energy limit irrespec-
tive of the value of U1, the perfect transmission �W→1 in
the low-energy limit� is absent when U1�0. In Ref. �19�,
Watabe and Kato have obtained the analytic expressions for
W and 	 in the low-energy limit for arbitrary potential barrier
shape. According to their results, W and 	 read �19�

W →
4�1 − Ū1

�1 + �1 − Ū1�2
, 	 → 0, �E → 0� . �59�

These results can be also obtained in the case of a 	-function
potential barrier �33�. Our results in Fig. 8 are consistent
with their earlier results in Eq. �59�. Equation �59� shows
that the transmission probability W becomes less than unity
when U1�0. As pointed out in Ref. �19�, the low-energy
behaviors of W and 	 are determined only by the potential
difference at x= �� �U1 in the present case�, and they do not
depend on the detail of the potential barrier in the middle.

In Fig. 8�b�, one finds that WJ is remarkably enhanced to
be larger than unity in the low-energy region. To see the
relation of this large enhancement and the nonconserving
character of Jq, we show the spatial variation in Jq in Fig.
9�a�. Comparing this result with Fig. 4, we find that the ex-
cess quasiparticle current �Jq remains finite even far away
from the barrier �x�d� when U1�0. This excess current is
found to be supplied from the condensate through the source
term S�x� defined in Eq. �B14�, as shown in Fig. 9�b�. Figure
9�b� also shows that this supply dominantly occurs in front
of the barrier �−5�x /��0�. �Note that the phonon is in-
jected from x=−�.� As a result, WJ given by the ratio of
incident and transmitted quasiparticle current is remarkably
enhanced.

As discussed in Sec. III, the excess component �Jq�x�
=Jq�x�−Jq�x=−�� is cancelled out by the counterflow of su-
percurrent to conserve the total current. As shown in Fig.
9�c�, the induced supercurrent remains finite even at x→�,
which is in contrast to the case of U1=0, where �Js is only
finite near the barrier. The reason for this can be considered
as follows: as discussed in Sec. III, Bogoliubov phonons
twist the condensate phase when they tunnel through a po-
tential barrier. In addition, Bogoliubov phonons can be re-
garded as quantized oscillations of the phase of the conden-
sate wave function �3�. Since the phase stiffness is weak on
the right side of the barrier due to the small condensate den-
sity, the transmitted Bogoliubov phonons can easily twist the
phase of the right condensate when U1�0. This leads to the
induction of counter superflow far away from the barrier.
Indeed, 	�Js�x���	 and Jq�x��� are larger for larger U1, as
shown in Fig. 9.
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FIG. 8. Transmission probability W �a� calculated from the en-
ergy flux, and WJ �b� calculated from the quasiparticle current Jq,
and phase shift 	 �c�. We set �d ,U0�= �� ,5��.
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V. TUNNELING BETWEEN SUPERFLUID
AND NORMAL REGIONS

In this section, we consider the case when the condensate
density at x�−� is absent. To realize this situation in a
simple manner, we use the potential

U�x� = U2��− x� �60�

with U2��. In what follows, we call the negative x side the
normal region and the positive x side the superfluid region.
In the normal region, Bogoliubov excitations reduce to free
atoms, having the energy

Ep
s = �p + �U2 − �� . �61�

Here, we discuss two different tunneling problems, i.e.,
tunneling of atoms from the normal region to the superfluid
region �N-S tunneling� and the tunneling of Bogoliubov ex-
citations from the superfluid region to the normal region
�S-N tunneling�. These two cases enable us to study how free
atoms are injected into a condensate and emitted from the
surface of the condensate. We note that these tunneling prob-
lems are analogous to the quantum evaporation and conden-
sation at a free surface in superfluid 4He �34�.

We first consider the N-S tunneling. The analytic solution
of the GP Eq. �2� is given by

�̄0�x̄� =�−
�

sinh��
x̄
�2

− C
 �x 
 0�

tanh� x̄
�2

+ arctanh �
 �x � 0� ,� �62�

where �=1 /�2Ū2, �=�2�Ū2−1�, and C=log���
+��2+�2� /��.

The asymptotic solution of the Bogoliubov equations has
the form

��
u

v

 = �1

0

 eikLx

�L
+ r�1

0

 e−ikLx

�L
+ A�0

1

 e�Lx

�L
�x → − ��

�u

v

 = t�a

b

eikx + B�− b

a

e−�x �x → �� , �

�63�

where k, �, and �a ,b� are given in Eqs. �29� and �30�. The
wave numbers kL and �L for x→−� are given by

kL = �2m�E − �U2 − �� , �64�

�L = �2m�E + �U2 − �� . �65�

kL and �L are propagating and localized waves for x→−�,
which are obtained by solving E= �Ep

s in terms of p. We
note that the localized v component in Eq. �63� describes the
�proximity� effect of the condensate in the normal region.

Using Eq. �63�, we obtain the quasiparticle current Jq, as
well as the energy flux of quasiparticles Qq, in the normal
region �x�−�� as

Jq =
kL

mL
�1 − 	r	2� , �66�

Qq =
kLE

mL
�1 − 	r	2� . �67�

Since the localized v component in Eq. �63� does not give
rise to any contribution to the currents, Jq and Qq reduce to
those of free atoms which satisfy the relation Qq=EJq. From
Eqs. �34� and �67�, we obtain the transmission �reflection�
probability W�R� as

W = L
k

kL
�a2 + b2�	t	2, �68�

R = 	r	2. �69�

Since the energy flux is conserved as shown in Appendix B,
they satisfy the condition R+W=1. We also obtain the
“transmission �reflection� probability” WJ�RJ� for quasiparti-
cle current from Eqs. �33� and �66�,

WJ =
k

kL
	t	2 =

1

L�a2 + b2�
W , �70�

RJ = 	r	2. �71�

We again find that W and WJ do not coincide with each other.
Because of WJ
W, we obtain RJ+WJ
1. This implies that
the quasiparticle current decreases on the superfluid region.
Since the ratio between W and WJ is given by L�a2+b2�
=�E2+ �gn0�2 /E, W and WJ become equal when E /gn0�1.

Figure 10 shows the transmission probability W obtained
from the energy flux and the phase shift 	
arg�t�. We also
show the quasiparticle transmission probability WJ

NS in Fig.
11�a�. In Figs. 10 and 11, we note that the origin of E is taken
to be U2−�, because atoms are perfectly reflected when E

U2−�, leading to vanishing WJ

NS and W. We find that both
W and WJ decrease with decreasing E, and W and WJ ap-
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FIG. 10. Transmission probability W obtained from the energy
flux �a� and phase shift 	 �b� in both the N-S and S-N tunneling
cases.
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proach 0 when E→U2−�, while 	 approaches a positive
value in the limit of E→U2−�. Thus, the anomalous tunnel-
ing behavior does not occur in the present case.

Figure 12�a� shows the spatial variation in quasiparticle
current Jq�x�, source term S�x� �defined by Eq. �B14��, as
well as the induced supercurrent �Js�x�. The existence of
transmitted component of Jq�x� shows that the incident cur-
rent of free atoms from the normal region is converted into
the Bogoliubov excitations inside the condensate. Further-
more, one finds that Jq�x� decreases near the surface at x
�0 and the supercurrent �Js�x� is induced around the sur-
face. The source term S�x� becomes negative near the surface
of the superfluid region reflecting the behaviors of Jq�x� and

�Js�x�. These phenomena indicate that injected atoms are
Bose condensed in the superfluid region, which give rise to
the supercurrent �Js. The condition RJ+WJ
1 reflects the
fact that a part of the incident current of free atoms is con-
verted to supercurrent inside the condensate. The supercur-
rent �Js decreases as E increases because the character of
produced Bogoliubov phonon becomes close to that of
single-particle excitation as E increases. As a result, WJ ap-
proaches W when E�gn0.

We next consider the S-N tunneling. Assuming that the
incident Bogoliubov mode comes from x=+�, the
asymptotic solutions �u ,v� for x→ �� are given by

��
u

v

 = t�1

0

 e−ikLx

�L
+ B�0

1

 e�Lx

�L
�x → − ��

�u

v

 = �a

b

e−ikx + r�a

b

eikx + A�− b

a

e−�x �x → �� . �

�72�

Using Eq. �72�, the quasiparticle current Jq and energy flux
of quasiparticles Qq in the normal region �x�−�� are calcu-
lated as

Jq =
− kL

mL
	t	2, �73�

Qq =
− kLE

mL
	t	2. �74�

From Eqs. �34� and �74�, we obtain the transmission �reflec-
tion� probability W�R� obtained from the energy flux as

W =
1

L�a2 + b2�
kL

k
	t	2, �75�

R = 	r	2. �76�

Equations �75� and �76� again satisfy the condition R+W
=1. From Eqs. �33� and �73�, we obtain the transmission
�reflection� probability WJ�RJ� for quasiparticle current as

WJ =
kL

k
	t	2 = L�a2 + b2�W , �77�

RJ = 	r	2. �78�

In contrast to the N-S tunneling, it is clear from Eq. �77� that
WJ�W, which leads to the condition RJ+WJ�1. This im-
plies that the quasiparticle current is supplied around the
surface at x�0. When E�gn0, WJ reduces to W.

It can be generally shown for the Bogoliubov coupled
Eqs. �3� and �4� that W and 	 are both independent of
whether the incident wave comes from x=−� �N-S tunnel-
ing� or x=+� �S-N tunneling� �33�. Hence, W and 	 in the
S-N tunneling case are the same as those in the case of N-S
tunneling in Fig. 10.

The transmission probability for quasiparticle current WJ
SN

is shown in Fig. 11�b�. We find that WJ
SN is enhanced to be

greater than unity at low energies due to the factor L�a2

+b2�=�E2+ �gn0�2 /E in Eq. �77�.
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FIG. 12. Spatial variation in quasiparticle current Jq�x� �solid
line�, induced supercurrent �Js�x� �dashed line�, and source term
S�x� �dotted line�, when U2=2� and E=1.01� for the N-S tunnel-
ing �a� and S-N tunneling �b�. Current density and source term are
in units of kL /mL and kL /mL� in �a�, and k /mL and k /mL� in �b�,
respectively. The dash-dotted line in �a� indicates the condensate
wave function �0�x� in units of �n0 /0.3.
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When the Bogoliubov phonons propagate toward the S-N
phase boundary, Fig. 12�b� shows that atoms evaporate from
the surface. We also find that Jq�x� changes near the surface
and the supercurrent �Js is induced, which flows toward the
boundary. S�x� becomes positive around the surface of the
superfluid region reflecting the behavior of Jq�x� and �Js�x�.
This supercurrent �Js�x� is considered to be induced by the
reflected Bogoliubov mode, which twists the condensate
phase in the superfluid region. The fact of RJ+WJ�1 reflects
that Jq�x� increases during the tunneling through the S-N
phase boundary.

VI. CONCLUSIONS

To summarize, we have investigated tunneling effects of
Bogoliubov excitations at T=0. We have extended our pre-
vious work to the case when the condensate densities are
different on the left and right of the barrier. Within the frame-
work of the Bogoliubov theory, we have evaluated the trans-
mission probability, phase shift, as well as the energy flux
and quasiparticle current carried by Bogoliubov excitations.
We showed that, while the energy flux is conserved, the qua-
siparticle current is not conserved. The excess quasiparticle
current is actually cancelled out by the counterflow of super-
current, which is induced by the back-reaction effects of Bo-
goliubov phonons on the condensate. In the case of a rectan-
gular potential barrier, we directly showed that the induced
supercurrent satisfies the Josephson relation with respect to
the twisted phase by Bogoliubov phonons. When the conden-
sate has different densities on the left and right of the barrier,
the supercurrent is induced in the region far from the barrier
potential. We also studied the tunneling of atoms from the
normal region to the superfluid region, as well as the tunnel-
ing of excitations from the superfluid region to the normal
region. In the former case, we showed that supercurrent is
induced inside a condensate by injecting free atoms from
outside. In the latter case, we found that atoms evaporate
from the superfluid-normal state phase boundary, when Bo-
goliubov excitations propagate toward the surface of the su-
perfluid region. We think these results can be of interest for
the investigation of Bogoliubov mode and its connection to
the superfluidity of BECs in ultracold atomic gases.
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APPENDIX A: FORMALISM OF WEAKLY INTERACTING
BOSE GASES

In this appendix, we summarize the formalism of weakly
interacting Bose gases developed in �1,24–26,35�. We intro-
duce approximations for inhomogeneous Bose condensates
including the Bogoliubov approximation used in this paper.

We consider an interacting Bose gas described by the
Hamiltonian

K̂ =� dr�̂†�r��−
�2

2m
+ U�r� − ���̂�r�

+
g

2
� dr�̂†�r��̂†�r��̂�r��̂�r� , �A1�

where �̂�r� is the Bose field operator, � is the chemical po-
tential, and U�r� is an external potential. We assume a con-
tact interaction between atoms g	�r−r�� with the coupling
constant g=4�as /m, where as�0 is the s-wave scattering
length.

In the Bose condensed phase, we divide the field operator

�̂�r� into the sum of the condensate wave function �0�r�
= ��̂�r�� and the fluctuation part 	�̂ as

�̂�r� = �0�r� + 	�̂�r� . �A2�

Substituting Eq. �A2� into Eq. �A1�, we approximately evalu-

ate the cubic and quartic terms with respect to 	�̂ and 	�̂† as

	�̂†	�̂	�̂ � 2ñ	�̂ + m̃	�̂†, �A3�

	�̂†	�̂†	�̂	�̂ � 4ñ	�̂†	�̂ + m̃�	�̂	�̂ + m̃	�̂†	�̂†,

�A4�

where ñ�r�= �	�̂†	�̂� is the noncondensate density and

m̃�r�= �	�̂	�̂� is the so-called anomalous average �35�. In
this mean-field approximation, Eq. �A1� reduces to

K̂ = K̂0 + K̂1 + K̂2, �A5�

K̂0 =� dr�0
�T̂�0 +

g

2
� dr	�0	2, �A6�

K̂1 =� dr��T̂�0 + g�	�0	2 + 2ñ��0 + gm̃�0
��	�̂† + H.c.� ,

�A7�

K̂2 =� dr�	�̂†�T̂ + 2g�	�0	2 + ñ��	�̂

+
g

2
���0

2 + m̃�	�̂†	�̂† + H.c.�� . �A8�

Here, T̂
− �2

2m +U�r�−�. From the condition that the linear
term in terms of 	� and 	�† vanishes, we obtain the �gener-
alized� Gross-Pitaevskii equation �24,26�

�−
�2

2m
+ U�r� + g�	�0	2 + 2ñ���0 + gm̃�0

� = ��0.

�A9�

The quadratic term K̂2 in Eq. �A8� can be diagonalized by the
Bogoliubov transformation �25�
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	�̂�r� = �
j

�uj�r��̂ j − v j�r���̂ j
†� , �A10�

	�̂†�r� = �
j

�uj�r���̂ j
† − v j�r��̂ j� , �A11�

where �̂ j
† is the creation operator of a Bogoliubov excitation

in the jth state, which obeys the bosonic commutation rela-
tions

��̂i,�̂ j
†� = 	i,j,��̂i,�̂ j� = ��̂i

†,�̂ j
†� = 0. �A12�

Diagonalization of K̂2 is achieved when �uj�r� ,v j�r�� satisfy
the following generalized Bogoliubov equations �24,25,35�:

�−
�2

2m
+ U�r� + 2g�	�0	2 + ñ� − ��uj − g��0

2 + m̃�v j = Ejuj ,

�A13�

�−
�2

2m
+ U�r� + 2g�	�0	2 + ñ� − ��v j − g���0

��2 + m̃��uj

= − Ejv j . �A14�

Then, we have

K̂ = K̂0 + �
j

Ej�̂ j
†�̂ j − �

j

Ej� dr	v j	2. �A15�

The last term in Eq. �A15� is the so-called quantum depletion
describing the noncondensate due to the repulsive interaction
between atoms. It remains finite even at T=0, where
��̂ j

†�̂ j�=0.
We note that Eq. �A9� involves terms originating from

excitations �2gñ�0 and gm̃�0
��. This reflects the fact that the

condensate and excitations affect each other. In the Bogoliu-
bov approximation, both ñ and m̃ are neglected, so that ef-
fects of Bogoliubov excitations on the condensate are not
taken into account. Equation �A9� without ñ and m̃ is the
ordinary static GP equation �24,26�, while Eqs. �A13� and
�A14� without m̃ and ñ are the Bogoliubov coupled equa-
tions. The Bogoliubov approximation is valid at very low
temperatures where ñ and m̃ are very small.

The approximation keeping both ñ and m̃ is the Hartree-
Fock-Bogoliubov approximation �35�. This approximation is
valid at finite temperatures where noncondensate fluctuation
cannot be neglected. In this approximation, however, the ex-
citation spectrum in a uniform system has an energy gap
�35�. This is inconsistent with the Hugenholtz-Pines theorem
�36�, which states that the excitation spectrum must be gap-
less in the BEC phase. Keeping ñ but neglecting m̃ is re-
ferred to as the Popov approximation �3,35�. This approxi-
mation is also considered to be valid at finite temperatures.
Since it yields a gapless excitation spectrum, it has been
widely used in the study of BEC at finite temperatures
�3,35,37�. Tunneling properties of Bogoliubov excitations at
finite temperatures have been also studied using the Popov
approximation �13�.

APPENDIX B: CONSERVATION LAWS FOR BOGOLIUBOV
EXCITATIONS

In this appendix, we discuss the conservation laws in
terms of quasiparticle current and energy flux associated with
Bogoliubov excitations. In the Bogoliubov mean-field ap-

proximation, the total number density n
��̂†�̂� and total

current density J
�1 /m�Im��̂†� �̂� are, respectively, given
by

n = ns + �
j

�nuj
+ nvj

���̂ j
†�̂ j� + �

j

nvj
, �B1�

J = Js + �
j

�Juj
− Jvj

���̂ j
†�̂ j� − �

j

Jvj
. �B2�

In this appendix, the index for eigenstates j is explicitly writ-
ten. Note that in our tunneling problem of Bogoliubov exci-
tation, each eigenstate in Eqs. �B1� and �B2� corresponds to
Bogoliubov excitation with energy E injected from x=−� or
x=�. Here, ns
	�0	2 describes the condensate density and

Js =
1

m
Im��0

� � �0� �B3�

is the supercurrent density carried by the condensate. nuj
, nvj

,
Juj

, and Jvj
are, respectively, given by

nuj
= 	uj	2, �B4�

nvj
= 	v j	2, �B5�

Juj
=

1

m
Im�uj

� � uj� , �B6�

Jvj
=

1

m
Im�v j

� � v j� . �B7�

The total number density n and total current density J satisfy
the continuity equation

�tn + � · J = 0. �B8�

Since the second terms in Eqs. �B1� and �B2� describe the
quasiparticle contributions, the quasiparticle density nq,j and
quasiparticle current Jq,j are, respectively, given by

nq,j = nuj
+ nvj

, �B9�

Jq,j = Juj
− Jvj

. �B10�

Equations �B9� and �B10� show that both the quasiparticle
density nq,j and current Jq,j consist of two components origi-
nating from uj and v j. We note that the current density of v
component appears as −Jvj

in Eq. �B10�. Thus, in a uniform
system, a Bogoliubov phonon is accompanied by two current
components, Juj

= �p /m�a2 and −Jvj
=−�p /m�b2, where a and

b are given in Eq. �30�. Hence, the v component flows in the
oppose direction to the u component. Indeed, these counter-
propagating currents were recently observed �38�. The last
terms in Eqs. �B1� and �B2� describe effects of quantum
depletion.

SUPERCURRENT INDUCED BY TUNNELING BOGOLIUBOV… PHYSICAL REVIEW A 79, 063619 �2009�

063619-13



To derive the continuity equation for quasiparticles, it is
convenient to use the time-dependent Bogoliubov equations
�39� for �u�r , t� ,v�r , t��,

i�3�t�u

v
 = � ĥ − g�0
2

− g��0
��2 ĥ


�u

v
 , �B11�

where ĥ
− �2

2m +U�r�+2g	�0	2−�. Equation �B11� reduces
to Eqs. �3� and �4� in the stationary state, �u�r , t� ,v�r , t��
=e−iEjt�uj�r� ,v j�r��.

Using Eq. �B11�, one obtains the continuity equations for
uj and v j, as

�tnuj
+ � · Juj

=
Sj

2
, �B12�

�tnvj
− � · Jvj

=
Sj

2
, �B13�

where

Sj = − 4g Im��0
2uj

�v j� . �B14�

Thus, the continuity equation for quasiparticles is given by

�tnq,j + � · Jq,j = Sj . �B15�

In Eq. �B15�, Sj works as a source term. This means that the
total number of quasiparticles is not conserved when Sj�0.
In a uniform system, one finds Sj =0, so that the number of
quasiparticles is conserved. On the other hand, since the
source term Sj is finite near the potential barrier in our tun-
neling problem, the number of quasiparticles is not con-
served.

We next consider the energy flux. For this purpose, we
define the energy density operator �̂ as

�̂ = �̂†T̂�̂ +
g

2
�̂†�̂†�̂�̂ , �B16�

where T̂ is defined below Eq. �A8�. Using the Heisenberg

equation i�t�̂= T̂�̂+g�̂†�̂�̂ one obtains the continuity equa-
tion for energy density �̂ as

�t�̂ + � · Q̂ = 0. �B17�

Here, Q̂ is the energy flux operator defined by

Q̂ =
i

2m
����̂†��T̂�̂ + g�̂†�̂�̂� − H.c.� = −

1

m
Re����̂†���t�̂�� .

�B18�

Substituting Eq. �A2� into �= ��̂� and retaining terms up to

O�	�̂2�, we obtain

� = �0
�T̂�0 +

g

2
	�0	4 + �	�̂T̂	�̂� +

g

2
��0

2�	�̂†	�̂†�

+ 4	�0	2�	�̂†	�̂� + ��0
��2�	�̂	�̂�� . �B19�

In obtaining Eq. �B19�, we have used �	�̂�=0. Using Eqs.
�A10�, �A13�, and �A14�, we obtain

� = �0 + �
j

Ej�nuj
− nvj

���̂ j
†�̂ j� − �

j

Ejnvj
−

i

4�
j

Sj ,

�B20�

where

�0 = �0
�T̂�0 +

g

2
	�0	4 �B21�

is the condensate energy density. Since the energy density �
is a real quantity, the last term in Eq. �B20� must vanish,
which gives

�
j

Sj = 0. �B22�

The energy flux Q
�Q̂� can be also calculated in the
same manner. The result is

Q = Q0 + �
j

Ej�Juj
+ Jvj

���̂ j
†�̂ j� + �

j

EjJvj
. �B23�

Here,

Q0 =
i

2m
��T̂�0 + g�	�0	2 + 2ñ��0 + gm̃�0

�����0
�� − c.c.�

�B24�

is interpreted as the energy flux carried by the condensate.
Actually, Q0 identically vanishes when �0 satisfies the �gen-
eralized� GP equation.

The second terms in Eqs. �B20� and �B23� describe the
quasiparticle contributions. Thus, the energy density for qua-
siparticles �q,j and energy flux for quasiparticles Qq,j are,
respectively, given by

�q,j = Ej�nuj
− nvj

� , �B25�

Qq,j = Ej�Juj
+ Jvj

� . �B26�

Equation �B25� shows that the v component has a negative
energy density −Ejnvj

. In Eq. �B26�, the v component ap-
pears as +EjJvj

, which is in contrast to Jq,j in Eq. �B10�,
where the v component appears as −Jvj

. This is because the
v component has a negative energy −Ej and counterpropa-
gating current density −Jvj

. In contrast to the nonconserved
quasiparticle number density in Eq. �B15�, the continuity
equation with respect to the energy density has no source
term, as

�t�q,j + � · Qq,j = 0. �B27�

Namely, Qq,j is conserved everywhere in the stationary state.
To examine the origin of the source term Sj in Eq. �B15�,

it is convenient to consider the divergence of Eq. �B2� in the
stationary state,

� · J = � · Js + �
j

Sj��̂ j
†�̂ j� . �B28�

In obtaining Eq. �B28�, we have used Eqs. �B12�–�B14� and
�B22�. The static GP Eq. �2� guarantees the conservation of
the supercurrent �� ·Js=0�, so that Eq. �B28� contradicts
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with the conservation of the total current J obtained from Eq.
�B8�, unless the last term in Eq. �B28� vanishes identically.

This inconsistency arises because effects of quasiparticles
on condensates �back-reaction effect� are completely ne-
glected in the Bogoliubov approximation. This problem can
be solved by including quasiparticle contribution to the con-
densate in the GP equation as

�−
�2

2m
+ U�r� + g	�0	2��0 − 2g�

j

ujv j
���̂ j

†�̂ j��0
� = ��0.

�B29�

In this modified GP equation, the last term on the left-hand
side originates from the anomalous average m̃ in Eq. �A9� as

g�	�̂	�̂��0
� = − 2g�

j

ujv j
���̂ j

†�̂ j��0
� − g�

j

ujv j
��0

�.

�B30�

Using Eq. �B29�, the conservation of the supercurrent
�� ·Js=0� is modified to be

� · Js = − �
j

Sj��̂ j
†�̂ j� . �B31�

Substituting Eq. �B31� into Eq. �B28�, we obtain the ex-
pected conservation of the total current � ·J=0. In the case
of the one-dimensional model we are using in this paper,
when we integrate Eq. �B31� in terms of x from −� to x, we
obtain Eq. �38�.
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