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We generalize the concept of quantum phase transitions, which is conventionally defined for a ground state
and usually applied in the thermodynamic limit, to one for metastable states in finite-size systems. In particular,
we treat the one-dimensional Bose gas on a ring in the presence of both interactions and rotation. To support
our study, we bring to bear mean-field theory, i.e., the nonlinear Schrödinger equation, and linear perturbation
or Bogoliubov–de Gennes theory. Both methods give a consistent result in the weakly interacting regime: there
exist two topologically distinct quantum phases. The first is the typical picture of superfluidity in a Bose-
Einstein condensate on a ring: average angular momentum is quantized and the superflow is uniform. The
second is where one or more dark solitons appear as stationary states, breaking the symmetry, the average
angular momentum becomes a continuous quantity. The phase of the condensate can therefore be continuously
wound and unwound.
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I. INTRODUCTION

One of the main interests in a many-body quantum system
is to identify its phase diagram and quantum phase transi-
tions �QPTs�. The concept of QPTs �1� is usually formulated
in the ground state in the thermodynamic limit. Some criteria
for classification of a QPT are the order of transition and the
universality class. Ideally, these can be determined from ex-
perimental observables such as energy, susceptibility, and
other bulk measures, and their derivatives with respect to the
system parameter that triggers the transition. More recently,
certain forms of entanglement have been proposed as alter-
nate measures. A suitably defined order parameter character-
izes the symmetry properties of a QPT. A classical phase
transition is driven by thermal fluctuations, while a QPT is
driven by quantum fluctuations, and can be most unambigu-
ously understood at zero temperature.

In this paper we show that the conventional ways of de-
fining QPTs in Bose-Einstein condensates �BECs� can also
be applied to phase transitions in metastable states in finite
systems. The issue of QPTs in excited states has been ad-
dressed previously in nuclear physics �2,3�, where nuclei are
generically finite and signatures of QPTs can be identified in
certain excitation spectra. We choose a one-dimensional in-
tegrable system of bosons as a concrete example. Studies of
one-dimensional systems relevant to our chosen model have
a long history, including exactly solvable quantum systems
�4–6�, decay of persistent current �7–11�, and classical soli-
tons �12�.

The most important fact concerning BECs in the thermo-
dynamic limit is the theorem of Hohenberg �13�, which states
that in an interacting and infinite homogeneous system, con-
densation does not occur in less than three spatial dimensions
at finite temperature and in one dimension at absolute zero.
This is specifically proven in the Lieb-Liniger model in the
thermodynamic limit �14�. However, this is not true in finite-
size systems or spatially confined systems �15�: motional

ground-state condensation in two and three dimensions is
shown to be possible �16�. Furthermore it is also proved �17�
via the Bogoliubov inequality that off-diagonal long-range
order is allowed to exist not only in the ground state, but also
in the general excited states. The exact theoretical treatment
on low-dimensional Bose gases in finite temperature is de-
scribed, for example, in Ref. �18�.

In areas of study such as quantized vortices in superfluid
systems, metastability plays a key role in the study of quan-
tum dynamics and transport properties. This is particularly
the case for well-insulated systems, such as ultracold quan-
tum gases, where there is only negligible exchange of energy
and particles with the environment. In particular, in meta-
stable states of matter waves, such as soliton trains �19,20�,
the effects of dissipation can be suppressed and a metastable
condensate is observable. The main focus of past studies of
QPTs has been on ground states and the thermodynamic
limit, but ultracold quantum gases necessitate a re-
examination of the role of excited states. Moreover, experi-
ments in these systems have precise control over the effec-
tive dimensionality, so that one and two dimensions can be
studied for a wide range of interactions �21–23�, both repul-
sive and attractive.

In our previous analysis �24� we showed that the average
angular momentum of weakly repulsive bosons in a one-
dimensional ring undergoes a continuous change in its meta-
stable excited states as a function of interaction and rotation.
This phenomenon is intuitively understood in terms of bifur-
cation of stationary excited-state energy branches of the
plane-wave state propagating on the ring, and of localized
soliton trains within the mean-field theory. Each excited state
has a denumerably infinite number of bifurcations from the
plane wave to a state containing 1,2 , . . . dark solitons; each
such bifurcation corresponds to a QPT. Moreover, for attrac-
tive interactions there is a set of QPTs even for the ground
state �25�. For completeness, we compare both repulsive and
attractive interactions in our present mean-field study, al-
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though our main focus is on the repulsive case. In our pre-
vious analysis �24� we did not discuss in which parameter
regime and in which energy regime the above phenomenon
is observed. The aim of the present work is to reveal prop-
erties of metastable QPTs within the mean-field theory and
investigate the linear stability of the mean-field solutions in
order to show their metastability. We specifically obtain the
phase boundary for general soliton solutions, which are char-
acterized by the number of density notches and phase-
winding number, in the experimentally variable parameters,
i.e., the strength of repulsive interaction and the frequency of
the rotating drive. The energy diagram of the different phases
is also shown. In order to show that these excited-state solu-
tions do not undergo any dynamical instability, and thereby
that the solutions are metastable, we investigate the linear
stability of all the solutions of the mean-field theory.

Our presentation is organized as follows. In Sec. II we
introduce the Hamiltonian of our system, which corresponds
to the Lieb-Liniger model in a rotating frame, and describe
its basic properties. In Sec. III we derive all stationary states
within the mean-field theory in the weakly interacting re-
gime, and predict the transition between the persistent-
current state and localized soliton trains. In Sec. IV, we dis-
cuss the linear stability of these solutions in order to
determine their metastability against small perturbations. We
summarize our results and discuss experimental possibilities
to realize our ideas in Sec. V.

II. MODEL

A. Lieb-Liniger Hamiltonian in a rotating frame

Let us consider the Hamiltonian for one-dimensional
bosons with a contact interaction, known as the Lieb-Liniger
model �4�, in position representation,

Ĥ0 = − �
j=1

N
�2

�� j
2 + g1D�

j�k

� �� j − �k� , �1�

where N is the number of bosonic atoms and g1D is the
effective strength of s-wave interatomic interaction in one
dimension �1D� �26�. We impose a periodic boundary condi-
tion by assuming a ring-shaped waveguide or toroidal trap
�27–33� of radius R. The coordinates �azimuthal angles� of
bosons are specified by a set of variables ���
= ��1 ,�2 , . . . ,�N� where � j = �0,2�� for all j= �1, . . . ,N�. The
length and energy units are R and �2 /2mR2, respectively, and
m is the mass of a boson. The coupling strength g1D is mea-
sured in units of �2 /2mR and hence dimensionless. The
Hamiltonian we address in this paper is the Lieb-Liniger
Hamiltonian in the rotating frame of reference,

Ĥ��� = Ĥ0 − 2�L̂ + �2N , �2�

where

L̂ � − i�
j=1

N
�

�� j
�3�

is the angular momentum operator measured in units of �,
the trap rotates at angular frequency �, and the last term in

Eq. �2� is a constant energy associated with rigid-body rota-
tion which is added to the Hamiltonian to make the system
translationally invariant; however it does not change the re-
sults of this paper.

As we will show later, states with angular momentum
equal to an integral multiple of N are always the stationary
solutions �uniform superflow� for repulsive interactions of
Hamiltonian �1�. In terms of the nonlinear Schrödinger equa-
tion approach, there exists another solution with a density
modulation, so-called soliton solutions. In the rest frame, the
soliton solutions have node�s� where the density becomes
zero, and such a density-modulated state with zero-density
node�s� is called “black” or “dark” soliton. The uniform-
density state and black-soliton state have a finite energy gap,
and they cannot cross over each other at finite strength of
repulsive interaction. By the addition of the rotating-drive

term �−2�L̂�, in contrast, a density-modulated state is al-
lowed to have nonzero-density notch�es�, which is called
“gray” soliton. This fact makes possible continuous energy
change between distinct topological states, namely, uniform
superflow and soliton states, because the phase modulation
of the soliton state can range from infinitesimal �almost con-
stant phase� to maximum �corresponding to zero density
notches�. This is the main finding of our work, and we ana-
lytically derive this crossover in this paper. The terms gray
and black are derived from density contrast imaging in BECs
and intensity imaging in optical fibers �34�. We use the term
dark-soliton train to refer to more than one equally spaced
soliton, with gray or black indicating whether or not the soli-
tons have nodes.

B. Periodicity and umklapp processes

All the physical quantities of Hamiltonian �2� are periodic
with respect to � with period of 1 in our units. In order to
show this, we consider a Schrödinger equation as follows
�35�:

Ĥ��������� = E��������� . �4�

The many-body wave function ������ satisfies the single-
valuedness boundary condition

���1, . . . ,� j, . . . ,�N� = ���1, . . . ,� j + 2�, . . . ,�N� �5�

for all atomic positions � j. Substituting the transformation

�0����� = exp	− i��
j

� j
������ �6�

into Schrödinger equation �4� we can eliminate the
�-dependent terms from the equation to yield

Ĥ0�0����� = E0����0����� . �7�

The boundary condition of the wave function is then modi-
fied to be

�0��1, . . . ,� j, . . . ,�N� = e2�i��0��1, . . . ,� j + 2�, . . . ,�N� .

�8�

Noting the fact that the new Schrödinger equation �7� does
not depend on the angular frequency � and that the bound-
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ary condition �8� is periodic with respect to � with period of
1, we observe that the eigenvalue E0��� must be periodic
with the same period. Equation �6� states that once the eigen-

solutions of the Hamiltonian in the rest frame Ĥ0 are found,

the wave function ������ of Ĥ is obtained via the inverse
transformation of Eq. �6�, and the energy is given by

E = E0 − 2��L̂� + �2N , �9�

where �L̂�= ��0
L̂
�0� is the total angular momentum. This is
a conserved quantity and thus a good quantum number. The
periodicity with respect to � enables us to understand our
system in terms of the Bloch energy structure in a solid,
although there is not any direct physical relavance to band
theory. In a solid, the energy dispersion is periodic with re-
spect to quasimomentum and one can thus define a reduced
Brillouin zone in which all information of a system is in-
cluded. In our periodic ring, the energy is periodic with re-
spect to � and one can restrict the analysis within a primitive
Brillouin zone �0,1�. Our restriction of �� �0,1� for the rest
of this paper is therefore completely general.

The periodicity with respect to � naturally leads us to
define the umklapp process of the total momentum L�=L
+JN, with J�Z as an arbitrary integer �4�. The umklapp
excitations are translations of the center of mass on the ring.
Namely, a state with angular momentum L has an infinite
number of counterparts at angular momenta separated by in-
teger multiples of the number of particles, each counterpart
having identical properties.

C. Conserved quantities

The reduced single-particle density matrix of an N-body
wave function ������ is given by

�1���,�� = �
0

2�

d�2 ¯ d�N�����,�2, . . . ,�N�

	 ���,�2, . . . ,�N� . �10�

The spectral decomposition of �1 takes the form

�1���,�� = �
j


 j� j
������ j��� , �11�

where � j are the eigenvectors in the many-body Hilbert
space and 
 j are the associated eigenvalues. If there is one
and only one dominant eigenvalue of �1, there exists off-
diagonal long-range order �a BEC�, and the corresponding
eigenfunction,

�M��� = 
�M���
ei�M���, �12�

is regarded as an effective one-body quantity called the con-
densate wave function. Although Bose condensation does not
occur in the thermodynamic limit in 1D, here we consider
finite systems for which N does not tend to infinity, and the
concept of BEC in 1D is therefore valid.

The superfluid velocity is defined from the phase of the
condensate wave function in Eq. �12�,

vs��� �
�

m

�

��
�M��� . �13�

An integral over the superfluid velocity along a closed path
is called the circulation,

C � �
0

2�

d�vs ��� , �14�

which is quantized as

C =
�

m
���2�� − ��0�� =

�

m
J , �15�

where m is the mass of the constituent particles in the con-
densate.

Number, energy, and angular momentum are also con-
served in the full quantum theory according to the usual
relations. In addition, in the mean-field theory there is a de-
numerably infinite set of conserved quantities as described
by Zhakharov and Shabat �36�. The original many-body
Hamiltonian �1� in one dimension is also integrable, e.g., via
the Bethe ansatz. This will be addressed in a later work �37�.

III. MEAN-FIELD SEMICLASSICAL THEORY

A. Stationary solutions

When the contact atomic interaction is very weak, specifi-
cally, g1DN
O�1�, the bosons form a condensate, whose
static and dynamical properties are described by the nonlin-
ear Schrödinger, or Gross-Pitaevskii �GP�, equation. It is
very useful to study the stationary solutions of the GP equa-
tion to develop intuitive knowledge of the condensate prop-
erties.

For convenience we introduce a dimensionless parameter

� �
g1DN

2�
�16�

that represents the ratio of the mean-field interaction energy
to the kinetic energy �note that our � is not the Tonks-
Girardeau parameter�. The GP equation under a rotating
drive takes the form

	�− i
�

��
− ��2

+ 2��
����
2
���� = ����� , �17�

where ���� is the condensate wave function from Eq. �12�.
Equation �17� has two kinds of solutions �38�: plane wave
�PW�,

�J
�PW���� = eiJ�/�2� �18�

and soliton train �ST�,

�J,j
�ST���� = �� j���ei�J,j���, �19�

where J�Z is the phase-winding number, and j� 
Z
 is the
number of density notches in the soliton train. The derivation
of the soliton solutions is summarized in the Appendix. The
amplitude of the soliton-train solution for repulsive interac-
tions, g1D�0, is given by
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�� j��� = N�1 + � dn2� jK�� − �0�
�

,k� , �20�

where dn�u ,k� is the Jacobi dn function with elliptic modu-
lus k� �0,1�, and K�k� and E�k� are elliptic integrals of the
first and second kinds, respectively. The parameter �0 is an
arbitrary coordinate in the interval 0��0�2�, indicating
that the soliton solution is a spontaneous-broken-symmetry
state.

The normalization constant N is determined so that the
order parameter is normalized to be unity on the ring:

N =� K

2��K + �E�
. �21�

The depth � of density notches is obtained by substitution of
the amplitude into the GP equation as

� = −
2�jK�2

g
� �− 1,0� . �22�

We define the functions

f � �2� − 2�jK�2 + 2j2KE , �23�

g � f + 2�jK�2, �24�

h � f + 2�jkK�2 �25�

for simplicity. Then the integration of the imaginary part of
the GP equation gives an analytical expression for the phase
prefactor:

�J,j
�ST���� = �� −

S
jK
�gh

2f
���;

jK�� − �0�
�

,k� , �26�

where ��� ,u ,k� is an elliptic integral of the third kind with
an amplitude parameter

� � −
2�jkK�2

f
�27�

and a sign function

S � sgn�� − J� = �+ 1, � � J

− 1, � � J .
� �28�

The soliton-train solution �20� has two limiting behaviors.
First, in the limit �→0, both the amplitude and phase ap-
proach the plane-wave solution with the same phase winding
J. Second, in the limit �→−1 �equivalent to f →0�, the wave
function is found to approach the Jacobi sn function, which
corresponds to a black-soliton train with �-phase jumps and
density notches which form nodes �39�. In this limit �→
−1, the condensate wave function, chemical potential, and
energy are given by

���� =� k2K

2��K − E�
sn � jK�� − �0�

�
,k�ei��, �29�

�J,j
�sn� = � jK

�
�2

�1 + k2� , �30�

EJ,j
�sn� = � jK

�
�2 �1 + k2�E − �1 + 2k2�K

3�E − K�
. �31�

From analysis of the equation f =0 that determines the ellip-
tic modulus, k2 can be expanded near the critical point as

k2 �
4

j2� −
10

j4 �2 + O��3� . �32�

In between these limits �−1���0� we say that Eq. �20�
describes gray solitons. In Fig. 1 we show typical amplitude
and phase profiles of gray soliton trains for j=1, 2 , and 3.

B. Phase diagram

The value of the elliptic modulus k has so far been left
undetermined. To practically obtain the physical quantities
such as energy, the density profile, and so on, one needs a
concrete value of k. The elliptic modulus is determined from
the requirement that the phase of the order parameter satis-
fies the single-valuedness condition:

�J,j�� + 2�� = �J,j��� + 2�J , �33�

where the index J physically means the phase-winding num-
ber. Henceforth, we call condition �33� the phase-boundary
condition for the soliton. Equation �33� can be read as

2�
� − J
 = 2�jk�K�2�2f

gh
+�2fh

g
+ j��1 − �0�� \ ��� ,

�34�

where

k� � �1 − k2, �35�

� � arcsin�f/h , �36�

and �0�� \�� is Heuman’s lambda function whose definition
is given in Eq. �A20� of the Appendix. Equation �34� has a
unique real solution k� �0,1� if and only if the soliton-train
solution exists in the �� ,��-parameter plane. Otherwise only
the plane-wave solutions with an arbitrary phase-winding

FIG. 1. Amplitude 
�J,j
�ST����
 �upper panels� and phase profiles

�J,j��� �lower panels� of solitonic condensate wave function �19�
for various numbers of density notches j. Left: �j ,� ,��
= �1,0.7,0.45�; middle: �j ,� ,��= �2,0.7,0.55�; right: �j ,� ,��
= �3,0.7,0.45�. For the weakly interacting regime the phase-
winding number J is determined by a fixed set of parameters
�j ,� ,��.
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number exist. That is, when there is a real solution k of Eq.
�34�, GP equation �17� has the soliton solution in addition to
the plane-wave solution, which is always a formal solution
of the GP equation.

For repulsive interactions both the soliton and the plane-
wave solutions are stable, as we demonstrate in Sec. IV.
However, for attractive interactions ���0� the situation is
different: above a certain magnitude of attractive interaction
the plane-wave solutions become dynamically unstable
�40,25�, and hence the stability of the plane-wave solution
does not hold for attractive interactions. The metastable
bright soliton-train solutions can be obtained in a similar
manner as shown in the Appendix.

We solve the phase-boundary condition of Eq. �34� for j
=1, 2, and 3 solitons for repulsive interactions, and show the
solutions in Figs. 2�a�–2�c�, respectively. In the filled regions
the soliton-train solution with j density notches coexists with
plane-wave solutions of arbitrary phase winding, and the un-
filled region signifies that the soliton-train solution with j
density notches does not exist. The phase boundaries written
in solid curves will be later identified as the parabolas given
by Eq. �56� from the Bogoliubov theory of Sec. IV. Each
boundary curve corresponds to different value of J in Eq.
�56�. The integer value written next to each parabola in Figs.
2�a�–2�c� represents different values of the phase-winding
number J.

We can analyze the phase boundaries in Fig. 2 as follows.
Two parabolic curves with two distinct phase windings J and

J� intersect at certain values of �, which we denote by
�nodes�
J−J�
�, satisfying 
J�−J
= j. That is, a soliton state
with j density notches and phase winding J, and one with j
density notches and phase winding J�, become the same sn
soliton with j nodes at �nodes, provided that the difference
between J and J� is equal to j. Along lines �nodes�
J−J�
� for
arbitrary �, the phase of the soliton slips by 2�
J−J�
 and the
wave function is given by the black-soliton train with j den-
sity zeros, or nodes. For instance, for the triple-soliton-train
case j=3 �Fig. 2�c��, in the filled region the soliton solutions
�J=2,j=3

�ST� and �J=−1,j=3
�ST� exist in 0���0.5 and 0.5���1,

respectively. There is thus a discontinuous phase jump at
�nodes�
J−J�
�=0.5, where the soliton solution is written as
the black-soliton train with three density zeros. The phase-
jump lines correspond to �nodes�3�� ��0.5, �1.5, . . .� for j
=3 for arbitrary �. We note that the phase jump also occurs
for plane waves at �nodes.

Typical behavior of the elliptic modulus k, determined by
Eq. �34� for j=1, is shown in Fig. 2�d�. The solution k is zero
on the phase boundary, rapidly grows once the parameters
�� ,�� enter the soliton regime, and quickly approaches
unity. This behavior is qualitatively the same for j�1 soliton
trains.

C. Metastable quantum phase transition

We identify the metastable quantum phase transition in
the mean-field theory, as alluded to in Sec. I. To do this we
study the energy and chemical potential of all stationary
states. Derivatives of these quantities characterize the order
of the metastable phase transition. Our use of the term meta-
stability refers to the fact that we consider excited as well as
ground states. The energy per particle and chemical potential
of the plane-wave state are given by

EJ
�PW� = �� − J�2 +

�

2
, �37�

�J
�PW� = �� − J�2 + � . �38�

For soliton solutions the energy per particle and chemical
potential are

EJ,j
�ST� = � + � j

�
�2

�3KE − �2 − k2�K2�

+
2K2

3�
� j

�
�4

�3E2 − 2�2 − k2�KE + K2�1 − k2�� ,

�39�

�J,j
�ST� =

3�

2
+ � j

�
�2

�3KE − �2 − k2�K2� . �40�

The elliptic modulus k, which appears explicitly both in Eqs.
�39� and �40� and in the complete elliptic integrals K=K�k�
and E=E�k�, contains �, �, J, and j implicitly, as described
in Eq. �34�.

The energy diagram shown in Fig. 3 summarizes the key
result of mean-field theory. The figure plots all the
stationary-state energies �choosing the zero of energy to be

FIG. 2. �Color online� Parameter space where soliton solutions
can exist. Filled regions present the regimes where the stationary �a�
j=1, �b� j=2, and �c� j=3 soliton solutions coexist with plane-wave
solutions. Boundaries are given by the parabolas of Eq. �56� with a
phase-winding number J, as indicated by an integer value next to
the corresponding parabolic curve. The path C in panel �c� denotes
a typical path for observing the continuous change in the topology
of the order parameter �see Secs. III C and III D�. �d� Elliptic pa-
rameter k2 for a single soliton on the ring �j=1� as a function of
rotational drive �� �0,0.5� and mean-field strength �� �
−1.5,1.5�. For �=0.5 the soliton solution is given by the Jacobi sn
and cn functions for repulsive and attractive interactions, respec-
tively. For �=0 the soliton solution is given by the Jacobi dn func-
tion for attractive interactions.

METASTABLE QUANTUM PHASE TRANSITIONS IN A… PHYSICAL REVIEW A 79, 063616 �2009�

063616-5



� /2 for plotting convenience� for various phase-winding
numbers J as a function of �, with � being fixed. Taking � /2
as the zero of energy removes the trivial � dependence of
EJ

�PW�, and we can thus study the excess or shortage of soli-
tonic energy from the plane-wave energy for a given strength
of interaction. The plane-wave energies are trivial parabolas,
and the different values of J �written as integer values next to
the parabolas in the figure� result in a discrete phase-winding
number with respect to �. Let us call the regime E−� /2
�0.52 the ground-state regime, 0.52�E−� /2�12 the first-
excited-state regime, 12�E−� /2�1.52 the second-excited-
state regime, and so on.

We substitute the solution k of the phase-boundary condi-
tion of Eq. �34� for �=1 into Eq. �39�, and plot EJ,j

�ST�−� /2
for various values of J and j in Fig. 3�a�. We find that soliton
branches bifurcate from the plane-wave branches with the
same winding number at the phase boundary, so that

EJ
�PW� = EJ,j

�ST�, ��EJ
�PW� = ��EJ,j

�ST�. �41�

This shows that a plane wave with phase winding J can be
continuously deformed into a soliton with the same winding
number without an energy jump.

Furthermore, at the points �nodes, where the gray-soliton
train becomes a black-soliton train, the difference in adjacent
phase-winding numbers of solitons equals the number of
density notches j of the soliton train as shown before, and
satisfies

EJ�j,j
�ST� = EJ,j

�ST�, �42�

which, again, shows that there is no energy jump associated
with the self-induced phase slip caused by the soliton. Simi-
lar relations hold for the chemical potential:

�J
�PW� = �J,j

�ST� �43�

at the phase boundary, and

�J�j,j
�ST� = �J,j

�ST�, �44�

at the phase-slip points �nodes. The first derivative of the
chemical potential is a second-order cross derivative of the
energy, and is discontinuous:

���J
�PW� � ���J,j

�ST� �45�

at the phase boundary, where ���E /�N. Therefore the
phase transition is second order. All of this is true for both
repulsive and attractive interactions.

For repulsive interactions �Fig. 3�a��, the ground state is a
plane wave located in the ground-state regime, with a
ground-state phase-winding number of J= ��+1 /2�, where
�x� is the floor function which gives the integer closest to but
not below x. We note that there is no soliton solution in the
ground-state regime and the bifurcations of soliton branches
from the plane-wave branch exist only for excited metastable
states. This is because the total energy increases upon the
formation of soliton trains for repulsive interactions, as the
density modulation costs in both the kinetic and interaction
energies. The lowest possible bifurcation thus starts from the
first-excited-state regime, forming the upward swallowtail-
shaped structure �41� where these two branches coexist, as
can be seen in Fig. 3�a�. The area of this swallowtail van-
ishes in the noninteracting limit �=0, and the area increases
with increasing magnitude of interaction.

Turning to attractive interactions �Fig. 3�b��, we observe
that the density modulation gains in interaction energy. The
soliton branch thus has lower energy than the plane-wave
branch, forming the downward swallowtail structure, as seen
in the figure. For small attractive interaction of −0.5��
�0, the ground-state branch is either the plane-wave or a
single bright-soliton state with a ground-state phase-winding
number of J= ��+1 /2� �42�—the two solution types are ex-
clusive. For soliton solutions in ��−0.5, the gain in the
interaction energy is always larger than the loss of the kinetic
energy. The soliton branch thus separates away from the
plane-wave branch, and the ground state always becomes a
single soliton state �j=1�. In a similar manner, the j=2 soli-
ton branch, which is located in the first-excited-state regime
in Fig. 3�b�, separates away from the parabola for

FIG. 3. �a� Energy diagram of stationary states for a fixed
strength of repulsive ��=1� interaction. The zero of energy is taken
as � /2. The parabolas correspond to the energies of the plane wave,
EJ

�PW�−� /2, for various phase-winding numbers. Other branches bi-
furcating from the parabolas denote the energies of soliton trains,
EJ,j

�ST�−� /2, for j=1 �located in the first excited-state regime�, j=2
�second-excited-state regime�, and j=3 �third-excited-state regime�
dark solitons, respectively. Integers in the figures denote the phase-
winding number J of solitons, which is equivalent to that of the
plane wave. The right panel enlarges the path C which connects the
plane-wave and soliton branches in 0.3
�
0.7 �rough end points
are indicated with the open circles�, starting from the plane-wave
branch, passing through the soliton branch between the phase
boundaries �filled circles�, and again goes back to the plane-wave
branch. �b� Energy diagram of stationary states for attractive ��=
−0.4� interaction. The j=1 bright soliton is located in the ground-
state regime, and j=2 and j=3 bright-soliton trains are located in
the first and the second excited regimes, respectively.
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��−2, and the two lowest-energy states are given by j=1
and j=2 soliton branches. As shown in �42�, the bright-
soliton solution approaches a Jacobi can function at �nodes,
and approaches a Jacobi dn function at the midpoint between
two adjacent node lines �nodes.

The continuity of the first and second derivatives of en-
ergy with respect to a parameter is one way to identify the
order of a ground-state quantum phase transition driven by
that parameter. We generalize this idea to the metastable two-
parameter QPT by using the determinant of the Hessian ma-
trix of a function f�� ,��,

Det�H�f�� �
�2f

��2

�2f

��2 − � �2f

�� � �
�2

. �46�

From Eq. �37�, Det�H�EJ
�PW���=Det�H��J

�PW���=0 for arbi-
trary �� ,�� for the plane-wave solutions. In order to calcu-
late Eq. �46� for soliton solutions near the phase boundary,
we numerically calculate the second derivative of energy and
chemical potential for each parameter �� ,��, and the first
cross derivative with respect to both parameters. Figure 4
shows the structure of the determinant of the Hessian for the
chemical potential � and energy E in the �� ,�� plane. The
result for the chemical potential diverges along the phase
boundary, while the one for the energy is discontinuous
along the phase boundary. The discontinuity for the latter
increases as � approaches �node, and it diverges at �node.

D. Phase winding and unwinding

Consider a condensate initially prepared in an excited
metastable plane-wave state with a repulsive interaction. If it
takes the continuous higher-energy path of the swallowtail
shown in Fig. 3�a� as � is adiabatically changed, the meta-
stable condensate undergoes an energetically smooth transi-
tion between distinct topological phases through a phase slip
at �nodes. Figure 5 illustrates the amplitude ����� and phase
���� along the path C�0.3
�
0.7� indicated in Fig. 3�a�
for a fixed repulsive interaction �=0.6. At first the soliton
branch does not exist, and the amplitude has a constant value
of 1 /�2�. As the rotation � increases, the amplitude starts to
modulate at the phase boundary. The dips in the amplitude
deepen as � approaches �nodes=0.5. At �nodes the amplitude
develops j=3 nodes. At this point the wave function is de-
scribed by the Jacobi sn function. Correspondingly, the gra-
dient of the phase in the plane-wave regime is a constant
value J, while the phase starts to wind in the soliton regime,
keeping �2,3��+2��−�2,3���=4�. For the sn soliton at �
=0.5, the phase jumps by � at the node positions. For �

�0.5 the phase-boundary condition becomes �−1,3��+2��
−�−1,3���=−2� and the phase is gradually straightened, and
gets unwound in the plane-wave regime. These changes oc-
cur in an energetically continuous manner.

In a superfluid or metastable superflow, the angular mo-
mentum per particle is quantized to be an integral multiple of
N. In particular, the ground-state angular momentum L in a
weakly repulsive one-dimensional superfluid ring system is
quantized as an integral multiple of N at zero temperature,
and there are discontinuous jumps between states with dif-
ferent values of the phase-winding number. In fact, this ap-
plies only to the ground state, and we show that the discon-
tinuous jumps are replaced by the continuous crossover of
angular momentum in metastable excited states.

The average angular momentum per particle

L

N
� �

0

2�

d����− i
�

��
�� �47�

of the plane-wave state is the integer J. In contrast, L /N of
the soliton is noninteger, as can be derived from our mean-
field formalism:

LJ,j
�ST�

N
= � −

S
�3�

� fgh

2
. �48�

As the second term becomes zero at the phase boundary, Eq.
�48� coincides with the average angular momentum of plane

FIG. 5. �Color online� Changes in the amplitude 
����
 and
phase ���� in the third-excited-state regime for �=0.6 for the
higher-energy path C shown in Fig. 3. For ��0.3 the amplitude
has a constant value of 
�
=1 /�2� and the gradient of the phase is
equal to 2. As � increases, a bifurcation in the energy occurs at
��0.39 and both the amplitude and phase start to wind in the
higher-energy soliton branch while keeping ��2��−��0�=4�. The
phase-winding number changes from J=2 to J=−1 at �=0.5 and
the amplitude has three nodes where the phase jumps by �. For
��0.5 both the amplitude and phase start to unwind with ��2��
−��0�=−2�, and the winding disappears at ��0.61. The sequence
of unwinding through a single soliton was described in our previous
work �24�.

FIG. 4. Evidence of a second-
order metastable quantum phase
transition: determinants of Hes-
sian matrix for �a� energy and �b�
chemical potential.
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wave LJ
�PW� /N=J. Figure 6 plots the average angular momen-

tum L /N along the path C in Fig. 3, for several strengths of
repulsive interactions. The phase winding and sign S are
given by J=2 and S=−1 in 0���0.5, and J�=−1 and S
=1 in 0.5���1. We denote the critical angular frequency
in each region by �crit

�1� and �crit
�2� , respectively.

The critical frequencies are determined from linear pertur-
bation theory �Eq. �56� in Sec. IV below� by using the values
of �, S, and the corresponding phase-winding number in
each region. As illustrated in Fig. 6, the angular momentum
is smoothly connected at �=�nodes, and linearly depends on
� in the soliton regime �crit

�1� ����crit
�2� with a gradient of

a =
J� − J

�crit
�2� − �crit

�1� . �49�

The angular momentum is thus well fitted by a single line

LJ,j
�ST�

N
= a� + b �50�

in �crit
�1� ����crit

�2� . We find

LJ,j
�ST�

N
�

j� − �J + J���� j

2
�2

+
�

2

j − 2�� j

2
�2

+
�

2

, �51�

where J and J� denote the adjacent phase-winding numbers
that meet at �nodes, and b is determined by the condition
a�crit

�1� +b=J at the phase boundary.
Thus, we have three critical points in our primitive unit

cell for fixed ���0�: there is a point at which the higher-
energy soliton path begins, �crit

�1� . Partway through this path, a
soliton train makes a transition from gray to black, at the
critical point �nodes, which is always either half-integer or
integer and is independent of �. Finally, the higher-energy
soliton path ends at �crit

�2� . A simplified account of this se-
quence can be found in �24�.

IV. LINEAR STABILITY OF METASTABLE STATES

Although all the stationary solutions of the GP equation
are listed in Sec. III, they may or may not be stable in re-
sponse to perturbation. In this section we consider linear per-
turbation. We show linear stability for the two kinds of sta-
tionary solutions for repulsive interaction by studying
fluctuations around the stationary states of the GP equation,
and argue that the soliton branches in Fig. 3 can be realized
in practice.

A stationary solution ���� of the GP equation under a
small perturbation � evolves in time as

�̃��,t� = e−i�t����� + �
n

��un���e−i
nt + �vn
����ei
n

�t�� ,

�52�

where �un ,vn� and 
n are given as eigenstates and eigenval-
ues of the Bogoliubov–de Gennes �BdG� equations �BdGEs�,
respectively, and n� 
Z
 denotes the energy index of excita-
tions. Recalling the structure of solutions in the Bogoliubov
formalism �43�, for each eigenvalue 
n with positive norm,

�
0

2�

d� �
un���
2 − 
vn���
2� = 1, �53�

there is also an eigenvalue 
̄n�−
n with negative norm. The
BdGEs predict an infinite set of such solutions. One excep-
tion to this rule can exist. This exception corresponds to
Nambu-Goldstone modes. For instance, a black soliton is at
rest on the ring with respect to any background superflow in
the rotating frame. The Goldstone mode of the soliton corre-
sponds to a center-of-mass translation of the soliton in this
frame. Henceforth we consider only the Goldstone mode and
eigenstates that satisfy Eq. �53�, since the eigenvalues with
negative norm do not have physical meaning. For the Gold-
stone mode the corresponding eigenvalue is zero, and the
latter eigenstates that have positive norms can be real �i.e.,

FIG. 6. Change in the average angular momentum L /N along
path C for a triple soliton train in the third-excited-state regime,
where the phase-winding number is J=2 �−1� for 0���0.5 �0.5
���1�. The average angular momentum takes the value equiva-
lent to the phase-winding number J in the plane-wave regime, and
linearly depends on � in the soliton regime.

FIG. 7. Eigenvalues of the BdG equations for a fixed strength of
repulsive interaction ��=1�. The input condensate mode �zero ex-
citation energy shown in the solid line� is taken as the higher-energy
metastable state in the third-excited-state regime of Fig. 3�a�.
Dashed and thick curves plot excitation energies from the plane-
wave and soliton-train states, respectively.
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positive or negative� or complex depending on the stability
of the condensate mode. In general, 
n�C.

Let us recall the excitations of a uniform superflow. When
a plane-wave state with phase-winding number J is regarded
as a condensate mode, fluctuations from that condensate
mode are given by the eigensolutions of the BdGE with posi-
tive norm,


l
�J,PW� = �l2�l2 + 2�� − 2l�� − J� , �54�

ul � ei�J+l��, vl � e−i�J−l��, �55�

where l�Z denotes the single-particle angular momentum of
the excitation, which serves as a good quantum number since

�Ĥ��� , L̂�=0.
For ��−0.5, all the eigenvalues 
l

�J,PW� are real, as appar-
ent from Eq. �54�. From Eq. �54� we also find that several
negative eigenvalues �associated with eigenstates of positive
norm� appear when we take a metastable excited state as a
condensate mode. These negative eigenvalues correspond to
other plane-wave branches located in lower-energy regimes
than the input condensate mode itself. For the case of repul-
sive interactions, the number of negative eigenvalues thus
coincides with the number of metastable states that are lo-
cated in a lower-energy regime than the metastable state un-
der consideration. In Fig. 7 we show excitation energies with
respect to the plane-wave state with J=2 in the third-excited-
state regime for 0���0.5. For 0.5���1 the excitation
energies from the plane-wave state with J=−1 are symmetric
with respect to �=0.5.

One of the negative eigenvalues changes its sign at a cer-
tain set of parameters ��crit ,�crit�. This set of critical values
is found by equating l to be Sj in Eq. �54� and imposing the
condition 
l=Sj

�J,PW�=0 as

�crit − J = S�� j

2
�2

+
�crit

2
. �56�

This equation has two real solutions S= �1. These solutions
determine the phase boundary at which the soliton branch
starts or ends its coexistence with the plane wave. The region
���crit is identical to requiring that the phase-boundary con-
dition Eq. �34� has a real solution.

In Fig. 7 are shown the Bogoliubov excitation energies
from the gray-soliton branch �J=2,j=3

�ST� along half of the path C
indicated in Fig. 3. The eigenvalues of the BdGE with the
soliton condensate mode taken as the stationary state ���� in
Eq. �52� are also real in the attractive case, so long as ��
−0.5. The soliton-train solutions are therefore linearly stable.
�They are also nonlinearly stable �44� for ��0, although we
do not demonstrate that here, and, according to a quantum
tunneling analysis, metastable for −1���0 with an expo-
nentially long lifetime �45�, where the difference in the criti-
cal point is associated with the inclusion of the Fock term.�
The excitation energies from the soliton branch are found to
be close to those from the plane-wave branch. The notable
feature in the soliton regime is that there appears a Nambu-
Goldstone mode, which is continuously connected with one
of the negative eigenstates with l=Sj from the plane wave.
This mode reflects the spontaneous symmetry breaking of

the soliton-train state. At the point �nodes, a degenerate pair
of excitation branches emerges, where the phase jumps up or
down by � at each soliton in the soliton train. For �
��nodes the excitation branches from the soliton train are
also symmetric with respect to �nodes.

We proceed to consider the attractive case in more detail.
While all of the excitation energies from the plane-wave
state 
l are real for any ��−0.5, some of the eigenvalues
become complex for ��−0.5 as seen from Eq. �54�. Inde-
pendent of �, the excitation energies with l= �1 �i.e., exci-
tation modes of ei�J�1��� become complex for ��−0.5, and
those with l= �2 �i.e., excitation modes of ei�J�2��� become
complex for ��−2, indicating the modulational instability
of these modes �46�. These complex modes indicate that in
Fig. 3�b� the j=1 soliton branch separates down from the
parabolic plane-wave branch in the ground-state regime for
��−0.5, and the soliton branch becomes the ground state,
while the plane-wave branch is no longer stable. Similarly,
when the j=2 soliton branch separates from the parabolic
plane-wave branch, it becomes the first excited state. The
plane-wave branch has complex 
l and the plane wave and
soliton cannot coexist, in contrast to the repulsive case.

For the potential experimental verification of the continu-
ous crossover between the distinct topological states, one
may use circular waveguides or toroidal traps to confine a
weakly interacting atomic cloud. First one has hot atoms
above the condensation critical temperature, subjected to a
rotating drive with a certain angular frequency. In order to
set a system to a metastable uniform superflow, one quickly
stops the rotation and then lowers the temperature to make
the cloud condense. Then the angular frequency of the rotat-
ing drive should be changed adiabatically. In this process,
microscopic roughness or small distortion of the trap is
enough to create noise sufficient to break the translation
symmetry of the condensate, making it take the higher-
energy path of a metastable soliton state, without any artifi-
cial distortion of the trap. Finally, one stops the adiabatic
change in the frequency of the rotating drive at the correct
points, resulting in a superflow with a different winding
number from the initial state.

Supposing parameters approximately those realized in the
experiment of Gupta et al. �28�, using N=105 87Rb atoms in
a trap with a transverse frequency of 2�	50 Hz of the cir-
cular waveguide with the radius R=1 mm, the dimension-
less coupling constant with the default three-dimensional
scattering length of rubidium is g1D=2�	5.5	10−5. This
results in the mean-field interaction strength ��3. Although
this value is about five times larger than the effective
strength of interaction where the Gross-Pitaevskii type of
mean-field approximation is quantitatively valid, the transi-
tions between two topologically distinct states yet appear at
�cr, whose order of magnitude is determined by Eq. �56�.
The initial angular frequency of the rotating drive � is arbi-
trary. Once the value of J is fixed by stopping the rotation,
the number of � is fixed by stopping the rotation, the num-
ber of solitons j is automatically determined by Eq. �56�.

Summarizing the results of our two theoretical methods,
mean field �GPE� and first-order quantum fluctuations
�BdGE� for repulsive interactions, we have shown that the
excitations from the plane wave in the jth-excited-state re-
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gime have j thermodynamically unstable modes. However,
there is no modulational instability for repulsive interactions.
Thus both the uniform superflow and gray-soliton states are
stable in the �� ,�� plane. At the phase boundary, all energies
of the stationary solutions and the eigenvalues of the BdG
equations continuously connect to the excitations in the soli-
ton regime without any energy discontinuity. In particular,
when one of the excitation energies from a plane-wave meta-
stable state changes the sign from negative to positive, a
soliton branch with the same phase-winding number appears,
and the Nambu-Goldstone mode appears as a result.

V. CONCLUSIONS

We have studied metastable excited states of the one-
dimensional Bose gas as a function of interaction strength
and rotation, showing the stability of superflow in a rotating
ring trap. The study of such a system is part of the classic
investigation of superfluidity �47�, a study to which we have
added insight for metastable states.

In the weakly interacting regime, all stationary states and
their energy diagrams can be obtained in mean-field theory.
Although it was previously known that the one-dimensional
nonlinear Schrödinger equation has both plane-wave and
soliton-train solutions on a ring �38,40�, we have pointed out
that the energy diagram is characterized by the smooth bifur-
cation of a soliton branch from a plane-wave branch in the
rotating frame. This is the key to the continuous change in
the topology of the condensate wave function �24�, which
can be characterized as a self-induced phase slip. It is pos-
sible to adjust the phase winding and unwinding through the
phase slip via a soliton train with nodes, by rotating the ring
trap adiabatically and/or changing the interactions.

For repulsive �attractive� interaction, the soliton branch
has higher �lower� energy than the plane-wave branch with
the same phase-winding number. At the phase boundary
where bifurcations occur, we showed that the excited station-
ary states undergo a second-order quantum phase transition.

Going beyond mean-field theory, we used Bogoliubov
theory to examine the linear stability of these stationary
states, and found that both the plane-wave and soliton-train
branches are linearly stable for repulsive interactions, and
past a critical value of the interactions, linearly unstable for
the attractive case.

The continuous change between topologically distinct
states we have presented in the work can be observed in
experiments as follows. The crossover in the metastable state
can be realized starting from hot atoms confined in a fast-
rotating circular waveguide or toroidal trap. By stopping the
rotation and lowering the temperature, one can obtain a
metastable superflow of the condensate of uniform density.
One should then change the angular frequency of the trap
adiabatically. In principle, this trap must have a small defor-
mation so that the higher-energy path of the swallowtail �see
Fig. 5� is selected. But in practice, no deformation of the trap
need be forced on the system, because an infinitesimal per-
turbation, as is unavoidable in experiments, is sufficient. As
the angular frequency is increased further across the degen-
eracy point where the gray solitons develop nodes and be-

come black, the phase-winding number changes over the
self-induced phase slip, and eventually reaches again a su-
perflow of uniform density with a different phase winding
from the initial state. In this way one is able to observe the
phase winding and unwinding without any abrupt energy dis-
continuity.

We make the conjecture that the qualitative features of our
study and the connection between quantum phase transitions
and semiclassical bifurcations can be found in many quan-
tum field theories. For instance, we expect that one-
dimensional pseudospinor bosons on a ring display the same
kinds of features, with the emergence of nonlinear objects in
the form of spin textures signaling a metastable QPT in the
same way that dark solitons do in our scalar theory. Such
features may also appear in fermionic theories where the
energy-gap function takes the place of our mean field. It is an
open question as to the validity of our concept in higher
dimensions, since vortices are fundamentally quantized, un-
like solitons. However, the presence of boundaries may pro-
vide for the same kinds of features as we have described in
1D, since a vortex nucleating on such a boundary can gradu-
ally approach the symmetry axis of a system and thereby
increase the average angular momentum continuously. How-
ever, the possibility of a vortex lattice complicates the matter.
Again, in spinor theories we expect vortex textures to take
this role. Finally, we point out that in the present example
both the semiclassical mean-field and the underlying many-
body Hamiltonians were integrable. It would be intriguing to
consider an example of metastable QPTs in a system for
which one or both of these limits were nonintegrable.
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APPENDIX: STATIONARY SOLUTIONS OF THE
NONLINEAR SCHRÖDINGER EQUATION

In this appendix we provide a detailed derivation of
soliton-train solutions of the GP equation for both repulsive
and attractive interactions. Substituting the general form of
the solution ����=�����ei���� into the GP equation, and
equating the real and imaginary parts, we get

−
�����
��

+ ��2 − 2��� + �2 + 2��� = � , �A1�

�� + 2��
�����
��

− 2�
����
��

= 0. �A2�

By integrating Eq. �A1� we have

���3 + V� − ���

2
�2

− W2 = ��2. �A3�

The solution of this equation is given by

KANAMOTO, CARR, AND UEDA PHYSICAL REVIEW A 79, 063616 �2009�

063616-10



����� = �N����1 + � dn2� jK�� − �0�
�

,k� , � � 0

N����dn2� jK�� − �0�
�

,k� − � k�2, � � 0,�
�A4�

where k2+k�2=1. The normalization constant N is deter-
mined from �0

2�d�����=1 as

N��� = ��K/�2��K + �E��−1, � � 0

�K/�2��E − �k�2K�� , � � 0.
� �A5�

The depth � of the density notches is obtained from substi-
tution of Eq. �A4� into Eq. �A1�:

� = �− 2�jK�2/g � �− 1,0� , � � 0

g/�2�jk�K�2� � �0,1� , � � 0.
� �A6�

The integral constant W from Eq. �A3� is given by

W �
S

2�4
�

� fgh

2
, �A7�

where we defined functions f , g, h, and S for notational
simplicity as

f � � ��2� − 2�jK�2 + 2j2KE� , �A8�

g � �2� + 2j2KE , �A9�

h � � ��2� − 2�jK�2 + 2j2KE + 2�jkK�2� , �A10�

where the � sign is for repulsive/attractive interactions, and

S � sgn�� − J� = �+ 1, � � J

− 1, � � J .
� �A11�

From Eq. �A1� we obtain the chemical potential

� =
3

2
� + � j

�
�2

�3KE − �2 − k2�K2� . �A12�

Note that there is no notational difference between the repul-
sive and attractive cases in Eq. �A12�. By calculating the
interaction energy per particle,

Eint = ���
0

2�

d�������2 =
�

2
−

2K2

3�
� j

�
�4

�3E2 − 2�2 − k2�KE

+ K2�1 − k2�� , �A13�

one finds the expression for the energy per particle,

EJ,j
�ST� = � + � j

�
�2

�3KE − �2 − k2�K2� +
2K2

3�
� j

�
�4

�3E2 − 2�2

− k2�KE + K2�1 − k2�� , �A14�

which is applicable to both repulsive and attractive cases.
We next study Eq. �A2� to obtain the phase prefactor ����

and rewrite the phase-boundary condition ���+2��=����
+2�J. Equation �A2� can be readily integrated, giving

����� = � +
W

�
. �A15�

By integrating this equation one more time, the phase part is
obtained as

��ST� = �� +
S
jK
�gh

2f
���;

jK�� − �0�
�

,k� , �A16�

where we used the definition of the elliptic integral of the
third kind,

���;u,k� =� du�1 − � sn2 u�−1. �A17�

Note that the parameter

� � �
2�jkK�2

f
�A18�

is always positive �negative� for the repulsive �attractive�
case. This difference in the sign is important to rewrite the
phase-boundary condition.

Since the elliptic integral of the third kind becomes com-
plete at �=2� as ��� ;u ,k�=2j��� \�� �48�, the phase-
boundary condition ���+2��=����+2�J is simplified for
the repulsive and attractive cases as

2��� − J�S

= �2�jk�K�2�2f/gh + �2fh/g + j��1 − �0�� \ ���
�2gh/f + j��1 − �0�� \ ��� ,

�
respectively, where

� ��arcsin�f/h , � � 0

arcsin�h/�k�2f� , � � 0,
� �A19�

and � is given in terms of the elliptic modulus by �
�arcsin�k� �49�. The function �0 is called Heuman’s lambda
function and defined as

�0��,k� =
2

�
�KE��,k�2� − �K − E�F��,k�2�� , �A20�

where F�u ,k� and E�u ,k� are incomplete elliptic integrals of
the first and second kinds, respectively.
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