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We consider an atomic Fermi gas confined in a uniform optical lattice potential, where the atoms can pair
into molecules via a magnetic field controlled narrow Feshbach resonance. Thus by adjusting the magnetic
field the portion of fermionic and bosonic particles in the system can be continuously varied. We analyze the
statistical mechanics of this system and consider the interplay of the lattice physics with the atom-molecule
conversion. We study the entropic behavior of the system and characterize the temperature changes that occur
during adiabatic ramps across the Feshbach resonance. We show that an appropriate choice of filling fraction
can be used to reduce the system temperature during such ramps.
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I. INTRODUCTION

One of the most fascinating consequences of many-body
quantum theory is the striking difference in behavior be-
tween systems made from identical bosons or fermions at
low temperatures. The use of Feshbach resonances in atomic
systems is now a routine technique for pairing atoms into
diatomic molecules �1–8� and leads to the intriguing sce-
nario: the controlled conversion of an ultracold degenerate
Fermi gas into a system of bosonic dimers. Hence, in experi-
ments it is possible to control the statistics of the system by
tuning across the Feshbach resonance. In this paper we con-
sider a particular case of such a system confined in an optical
lattice, schematically shown in Fig. 1. Atom-molecule con-
version in an optical lattice has been demonstrated in several
recent experiments �9–14�. We develop a formalism to quan-
tify the effect that ramping across the Feshbach resonance
has on the temperature of the system in the adiabatic limit by
developing expressions for the entropy in the nearly degen-
erate regime.

The essence of a Feshbach resonance is that unbound
atom pairs are coupled to a discrete dimer state in a closed
scattering channel. The energy of this closed channel bound
state is detuned from the atomic threshold by an amount Eres,
which is tunable with an applied magnetic field, since the
unbound atoms and the closed channel dimer have different
magnetic moments �e.g., see �15��. If Eres�0 the closed
channel bound state corresponds to a bound molecular state
of the coupled system. When Eres�0 the discrete state is
embedded in the atomic continuum and has a finite lifetime.
Consequently, it manifests itself not as a true bound state but
as a scattering resonance. However, if the width of the Fesh-
bach resonance is sufficiently narrow, the lifetime of the
closed channel dimer state is long enough that we may con-
sider it a quasibound state of the system. Hence, character-
izing both the bound and the quasibound states of an atom
pair as molecules, the number of unbound atoms and mol-
ecules in the gas are well defined at any given instant.

The thermodynamics of such a Feshbach-resonant Fermi
gas has been studied in free space �16� as well as in a har-

monic confinement �17,18�, and in previous work we have
considered the case of a lattice potential and analyzed the
behavior of the chemical potential and the atomic and mo-
lecular populations in the degenerate regime �kBT�0.1EF�.
There has also been a great deal of work on systems with
broad Feshbach resonances, which require a full many-body
theory for resonantly interacting Fermi atoms �19–24�. For a
deep lattice this has been studied at zero temperature by Ko-
etsier et al. �25�.

We believe that the optical lattice introduces considerable
new physics �14,26–29� and our ambition here is to under-
stand the resulting changes in the thermodynamics by con-
sidering a simple model for the system: the case of ideal
particles �i.e., we neglect interactions for both the fermionic
atoms and bosonic dimers� in a translationally invariant lat-
tice potential. In this model the only effect of the Feshbach
resonance is to maintain chemical equilibrium between the
two species. This is a major simplification, but this model
captures the essential physics of atom-molecule conversions
in experiments �30,31� and can be shown to be exact in the
limit where the resonance is infinitely narrow �32�. We note
that for a �finite� narrow Feshbach resonance the inclusion of
interactions should only impact our results quantitatively.
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FIG. 1. �Color online� Schematic of the system under consider-
ation: fermionic atoms in two different spin states occupy states in
an optical lattice and are coupled by a Feshbach resonance into
bosonic dimers. Because the bosonic dimers have a larger polariz-
ability they experience a deeper lattice potential with a different
spectrum to that for the atoms.
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In this paper we look at the entropic behavior of the sys-
tem with special focus on the low-temperature regime since
isentropic surfaces characterize what will happen to a system
in an adiabatic process. Such adiabatic processes are often
used in experiments, and our particular case of interest here
is to predict how slowly ramping Eres across the Feshbach
resonance will affect the temperature and hence the degen-
eracy of the system. By looking at the temperature variation
along such curves we can identify in which regimes cooling
will occur, and surprisingly this turns out to depend on the
average number of atoms per site in the optical lattice. Lat-
tice physics plays an important role in changing the thermal
properties of the system; indeed, similar studies to what we
present here have been undertaken for pure ideal Bose and
Fermi gases in the translationally invariant lattice �33,34�
and more recently for the case with additional harmonic con-
finement �35–37�. Interactions play an important role in deep
lattices and more recent work has examined the effect these
interactions have on the thermal excitation generated during
the preparation of bosonic Mott-insulating states �38,39� and
on the feasibility of achieving the fermionic Néel state �40�.
Finite-temperature mixtures of atomic Bose and Fermi gases
�with no conversion mechanism� in lattices have been stud-
ied �41� in an attempt to explain recent experiments �42�.

II. FORMALISM

We consider a dilute system of Fermi atoms of mass ma in
a simple cubic optical lattice potential with M3 sites and
subject to periodic boundary conditions. The total number of
atoms, Ntot, are divided equally into two different internal
states which we denote as �↑ � and �↓ �, with populations N↑

and N↓, respectively. We define the filling fraction � to be the
average number of each type of atom on each site,

� �
N↑

M3 =
N↓

M3 =
Ntot

2M3 . �1�

By applying a tunable magnetic field we can make the two
atomic species interact with a Feshbach resonance and con-
trol whether these particles exist as individual �unbound� at-
oms or participate in bosonic dimers with mass mm=2ma. We
assume that the atoms and diatomic molecules are in thermal
and chemical equilibrium and we define the mean number of
atoms �Na� and molecular dimers �Nm� with the number con-
servation condition,

Ntot = Na + 2Nm. �2�

A. Thermodynamics

The thermal equilibrium condition for our system ensures
that the atoms and the molecules share the temperature T and
that the chemical potentials of the atoms and molecules are
related as �m=�a

↑+�a
↓. Since we are considering an equal

spin mixture, this simplifies to

�m = 2� , �3�

where ���a
↑=�a

↓ is the common atomic chemical potential
and �m is the molecular chemical potential. As the atoms

only interact through the Feshbach resonance, we can de-
scribe the system by the single-particle energy levels, and the
occupation of these is given by the Fermi-Dirac and the
Bose-Einstein distributions for the atoms and the molecules,
respectively. Taking into account that we can effectively shift
the molecular energy spectrum by an amount Eres relative to
the atomic spectrum via the Feshbach resonance, the relevant
distributions are

fa
r �

1

e�Ea
r−��/kBT + 1

, �4a�

fm
r �

1

e�Em
r +Eres−2��/kBT − 1

. �4b�

The quantities Ea
r and Em

r denote the single-particle energy
levels in the lattice for the atoms and molecules, respectively,
where r is an appropriate quantum number �r=0,1 ,2 , . . .�.
Since the molecules are governed by the Bose-Einstein sta-
tistics we have the usual constraint that the �molecular�
chemical potential must lie below the lowest molecular
single-particle state, i.e., �m�Em

0 +Eres. For each choice of
the resonance energy, filling fraction, temperature, and lattice
depth, the chemical potential � is then determined from the
conservation of the total particle number �2� where

Na = 2�
r=0

�

fa
r , �5a�

Nm = �
r=0

�

fm
r . �5b�

Once the relation between �, T, and the externally adjustable
parameters has been established, it is straightforward to cal-
culate any thermodynamic quantity such as the entropy �43�

Stot = Sa + Sm, �6a�

Sa = − 2�
r=0

�

�fa
r ln fa

r + �1 − fa
r�ln�1 − fa

r��kB, �6b�

Sm = − �
r=0

�

�fm
r ln fm

r − �1 + fm
r �ln�1 + fm

r ��kB, �6c�

where Stot is the total system entropy, which is additively
formed from the atomic �Sa� and molecular �Sm� subsystem
entropies.

B. Energy levels in the lattice

The lasers which create the optical lattice have the wave-
length �L=2	 /kL and the resulting potential is V
�x�
=V0,
L�x� with 
=a ,m for atoms and molecules, respec-
tively, and where

L�x� = sin2�kLx� + sin2�kLy� + sin2�kLz�

is the dimensionless shape of the lattice. The potential depth
V0,
 for the two different species is not the same since a
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molecule consists of two atoms and therefore experiences
twice the Stark shift of an individual atom: V0,m=2V0,a
�2V0.

To find the possible energy levels we solve the stationary
Schrödinger equation, which for our simple cubic lattice
separates into three one-dimensional �1D� Bloch equations.
To find the three-dimensional �3D� energies it is therefore
sufficient to calculate the 1D energy levels and make all
possible triplets thereof. It is convenient to rescale the sta-
tionary Schrödinger equation for the species 
 by the corre-
sponding recoil energy ER,
��2kL

2 /2m
 as follows:

	−
�2

kL
2 + V̄0,
L�x�
�


r �x� = Ē

r �


r �x� , �7�

where the barred quantities are energies in units of ER,
. The
operator on the left-hand side only depends on 
 through the
species-dependent lattice potential V0,
 and therefore the

spectrum can be written as Ē

r = Ēr�V̄0,
� for some species-

independent functions Ēr. Furthermore, since the molecules
are twice as heavy as the atoms and feel twice as deep a

potential, we have the relation V̄0,m=4V̄0,a, which means that

the energy spectra for V̄0,m and 4V̄0,a have precisely the same
shape but with different scalings on the energy axis.

Energy scales

The fact that the atoms and molecules experience differ-
ent lattice potentials thus leads to a qualitative difference
between the two spectra including a relative shift of the low-
est energy bands with respect to each other, in addition to the
magnetic field adjustable Feshbach detuning Eres. Conse-
quently, the position and width of the Feshbach resonance, as
indicated by the interconversion of atoms and molecules, de-
pend on the depth of the optical lattice potential in a non-
trivial way �44�.

In Fig. 2 we illustrate the energy spectrum in the 3D lat-
tice by plotting the density of states as a function of the

lattice depth. The energy levels are distributed in a band
structure, where the bandwidths and the band gaps are
strongly dependent on the depth of the lattice. The width of
the energy bands decreases as the lattice becomes deeper and
for very deep lattice potentials the lowest-energy band ap-
proximately reduces to a single energy level with a degen-
eracy that scales with the size of the system. On the other
hand, the gaps between energy bands increase as the poten-
tial depth increases.

Because of the different potentials experienced by the at-
oms and molecules, there is an energy splitting between the
lowest atomic and molecular levels in the optical lattice. Us-
ing a tight-binding analysis, appropriate to the regime V0
4ER,a, we find that this splitting is given by

Em
0 − Ea

0 �
3

8�1 +
3

8

1
V0,a/ER,a

�ER,a, �8�

as derived in Ref. �44�.
In a 1D periodic potential a band gap opens at the edges

of the first Brillouin zone for an arbitrarily small lattice
depth. On the contrary, in a 3D system the continuum is only
broken up into separated bands if the lattice potential is suf-
ficiently deep, as is clear from Fig. 2. In general it is of
interest to know the width of the ground energy band ��
�
and the gap between the ground and first excited energy
bands ��
� in the lattice. We find that

�
 � �2V0,


ER,

− 1 −

23

24

1
V0,
/ER,


�ER,
, �9�

�
 �
48
	

�V0,


ER,

�3/4

exp�− 2V0,


ER,

�ER,
, �10�

where both results are valid in the tight-binding regime with
the first result derived in Appendix A and the second result is
obtained from the harmonic-oscillator approximation for the
tunneling matrix element. We remark that �
 /kB sets the
temperature scale for the excited bands to be relevant for the
thermodynamics of 
 particles in the system when the filling
fraction is sufficiently low for only the lowest band to be
occupied at zero temperature.

A convenient energy scale is the Fermi energy EF�� ,V0�,
which is taken to be the highest occupied energy level, when
all the atoms are unbound. We note that for our choice of
energy origin the relevant Fermi temperature for characteriz-
ing degeneracy is given by TF= �EF−Ea

0� /kB, with Ea
0 as the

atomic ground-state energy. If ��1 the Fermi energy lies in
the ground band and the degeneracy condition is kBT��a.

III. ENTROPY

To characterize the state properties of our system we nu-
merically calculate the chemical potential for various points
in the phase space �V0 ,� ,Eres ,T�, as discussed in Sec. II. Of
most interest to us here is the behavior of the system entropy
�6� as Eres and T vary, for which a typical example is shown
in Fig. 3. We make the following general observations on
this dependence:
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FIG. 2. �Color online� The density of states for a 31�31�31
optical lattice as a function of the potential depth for the particle
type 
. The density of states is found by binning the energy levels
in intervals of width 0.04ER,
.
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Atomic regime: Well above the resonance, i.e., for Eres
2EF, the entropy is independent of Eres. In this regime the
lowest molecular energy levels are at a much higher energy
than the atomic levels and are inaccessible. This result is
only valid in the low temperature regime where thermal ac-
tivation of the molecular states can be neglected.

Molecular regime: Well below the resonance, i.e., for
Eres�−2EF, the opposite regime is entered in which only the
molecular states are accessible at low temperatures. Hence,
in the lower left-hand corner of the phase diagram the en-
tropy is almost independent of Eres. At higher temperatures
the resonance energy plays a larger role since the molecules
start dissociating at a temperature on the order of �Eres� /kB.

Entropy peak: A notable feature of the entropy phase dia-
gram is the behavior at Eres�EF where the entropy as a
function of the resonance energy has a maximum along each
isotherm—a feature most noticeable at low temperatures. We
investigate this feature further below, but note that it arises
where the system is an equal mixture of atoms and molecules
and thus able to obtain maximum disorder for a given tem-
perature.

A. Entropy peak

To analyze this last effect in more detail we look at the
contributions to the entropy from both the atoms and the
molecules along lines of constant temperature for kBT
�0.1EF. We will show that when approaching the transition
zone, where the conversion between atoms and molecules
takes place, the entropy increases from either side.

To clarify the underlying physics we develop a simple
analytical model that should provide a good description in
the deep lattice limit where the lowest-energy bands are flat,
provided the temperature is small compared to the first band
gap but large compared to the ground bandwidth, i.e.,

�
 � kBT � �
. �11�

We also require that ��1, so that higher bands are not popu-
lated by atoms due to the Pauli exclusion principle, and fur-

thermore that a condensate does not occur in the molecular
system, which would require a unique ground state. We note
that these conditions are broadly consistent with the typical
regime that experiments operate in. In this case we can ap-
proximate the relevant part of the density of states for the
atoms and molecules as

�a�E� � 2M3��E − Ea
0� , �12a�

�m�E� � M3��E − Em
0 − Eres� , �12b�

where, in the validity regime of this model, we can use Eq.
�8� to relate the difference between Ea

0 and Em
0 to the lattice

depth.
In this approximation the level occupations �of the ground

band� are independent of the particular level under consider-
ation and depend only on whether the particle is an atom or
a molecule, for which we denote the mean level occupations
as fa

0 and fm
0 , respectively. The corresponding entropy contri-

butions will be

Sa � − 2M3�fa
0 ln fa

0 + �1 − fa
0�ln�1 − fa

0��kB, �13a�

Sm � − M3�fm
0 ln fm

0 − �1 + fm
0 �ln�1 + fm

0 ��kB. �13b�

We prove in Appendix B that at fixed temperature the total
entropy Stot=Sa+Sm, combining results �13a� and �13b�, is
maximized when the resonance energy takes the value
Eres

Smax=2Ea
0−Em

0 , and in the deep lattice limit this may be
approximated by

Eres
Smax � EF − �3

8
−

3

16

1
V0,a/ER,a

�ER,a �14�

using Eq. �8� and setting Ea
0�EF. This coincides with the

resonance energy at which the system obtains a 50% mol-
ecule fraction at zero temperature �44�.

In Fig. 4 we present two examples from the numerical
analysis of the behavior of the system entropy along an iso-
therm and the portion of the system entropy arising from the
atomic and molecular subsystems. In both cases it is clear
that the system entropy is maximized in the transition region
at a value of the resonance energy that is in good agreement
with our analytical expression for Eres

Smax. The first case of �
=0.5 shown in Fig. 4 reveals that the maximum in entropy
arises from the rapid growth of degrees of freedom as popu-
lation is coupled into the new subsystem �i.e., the growth of
the atomic �molecular� entropy as we approach the transition
from the left �right�� exceeding the reduction in entropy from
the subsystem loosing population.

In the second case of �=0.9 shown in Fig. 4, we see a
behavior not fitting the previous description: not only the
molecular but also the atomic subsystem entropy increases as
the transition is approached from the right. The key feature
leading to this is the nonmonotonic dependence of the atomic
subsystem entropy on Eres, which occurs when the filling
satisfies ��

1
2 . We note from Eq. �13� that Sa vanishes for

fa
0=0 and fa

0=1 and is maximal for fa
0= 1

2 . Thus for high
filling ���

1
2 � as the resonance energy is lowered and the

transition region is approached �from above� fa
0 decreases,

initially leading to an increase in Sa, until fa
0 decreases below
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FIG. 3. �Color online� The system entropy Stot in the �Eres ,T�
plane for V0=10ER,a and �=0.8.
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1
2 , at which point Sa begins to decrease. In contrast, due to
their bosonic statistics the molecules give a contribution to
the total entropy, which increases monotonically with in-
creasing fm

0 .
This peak in the atomic entropy can also be understood

from Eq. �B4a�, which states that the sign of �Sa /�Eres is
determined by the sign of Ea

0−�, and this can be negative if
the chemical potential lies higher than the ground atomic
energy level. In the deep lattice limit on the atomic side of
the resonance the occupancy of all the states in the lowest
energy band is the same and equal to fa

0��. Inserting this in
�4a� we get �=Ea

0−kBT ln� 1−�
� � and thus only for 1

2 ���1
we have Ea

0−��0. Note that there is no analog effect for the
molecules since we always have Em+Eres�2� in Eq. �B4b�
due to the Bose-Einstein statistics.

B. Entropy plateaus

On the atomic side of the transition zone �Eres2EF� and
for the range of T where Eq. �11� is valid, fa is constant at the
value of �. The associated entropy is entirely due to the
atomic subsystem and is constant at the plateau value

Sa
p = − 2M3�� ln � + �1 − ��ln�1 − ���kB. �15a�

Also, in a similar temperature regime on the molecular side
of the transition zone �Eres�−2EF�, we have a constant mo-
lecular occupation fm=� and hence an associated entropy
plateau of

Sm
p = − M3�� ln � − �1 + ��ln�1 + ���kB. �15b�
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FIG. 5. �Color online� Entropic behavior for V0=10ER,a. Left: the total entropy at Eres=−4EF �red curve� and Eres=+4EF �blue curve�,
corresponding to a pure Bose and Fermi gas, respectively. The curves have plateaus, which are marked by the two dashed horizontal lines.
Right: the height of the plateaus is read off manually ��red� � for the molecular and �blue� � for the atomic entropy plateau�. These are well
approximated by Eqs. �15a� and �15b� �dashed curves� and intersect at the filling fraction �c=0.726.
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molecular entropy plateaus, Eqs. �15a� and �15b�, respectively, and the vertical dashed lines indicate the resonance energy maximizing the
entropy as approximated by Eq. �14�.
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These plateaus are indicated in Fig. 4 and clearly provide
a good description of the total system entropy on either side
of the transition region. In Fig. 5 on the left we show the
total entropy for the system as a function of temperature for
Eres=+4EF �in the atomic regime� and Eres=−4EF �in the
molecular regime�, respectively. These results clearly show
the importance of the energy scales �
 and �
: for �


�kBT��
 the plateau is observed in good agreement with
the analytical prediction. For lower temperatures, kBT��
,
the ground band is not uniformly occupied leading to a sharp
suppression of entropy near T=0. At higher temperatures,
�
�kBT, excited bands become thermally accessible and
contribute additional entropy.

As is clear from the results in Fig. 5 in the temperature
range �
�kBT��
 the entropy on the plateaus can be quite
accurately determined from the full numerical calculations.
We compare the results of such values against the analytical
expressions �15� for a range of filling fractions in Fig. 5 on
the right. The curves for the atomic and the molecular en-
tropy plateaus intersect at the filling fraction �c,

�c = 0.726, �16�

as is seen by equating Eqs. �15a� and �15b�.

IV. ADIABATIC SWEEP OF Eres

Because ultracold atom systems are effectively isolated,
i.e., not thermally connected to a reservoir, the various ma-
nipulations that can be made to the system will usually result
in a change in its equilibrium temperature. Such changes in
temperature that occur during loading into optical lattices
can be appreciable and have been of considerable recent in-
terest �33–41�. Here we investigate the temperature changes
arising in the Feshbach coupled Fermi gas in an optical lat-
tice. To do this we consider our initial system in the atomic
regime with temperature Ti and entropy Si�Ti� and then de-
termine the final temperature after an adiabatic sweep of Eres
into the molecular regime by equating the entropy functions,
Sf�Tf�=Si�Ti�, where Sf is the system entropy at the final Eres
value. We sweep the resonance energy from +4EF to −4EF.
Figure 6 shows our results for the relationship between Ti
and Tf for various filling fractions. For moderate fillings, �
=0.4,0.6,0.7, we observe that the sweep leads to a final
temperature much greater than the initial temperature. This
can be qualitatively understood because there are half as
many molecules as atoms and their temperature needs to be
higher to carry the same amount of disorder as the unbound
atoms. Of course this argument is not general. As discussed
earlier, in the atomic regime in conditions where only the
ground band is accessible, as the filling fraction increases
past �=0.5, the entropy of the fermionic atoms decreases �at
fixed T�—on the other hand, the bosonic entropy only in-
creases with increasing �. Our results show that for the pa-
rameters under consideration in Fig. 6 that for �0.8, there
is a wide region of initial temperatures for which the Fesh-
bach sweep leads to a much colder molecular gas.

This behavior is quantitatively explained in Fig. 7 where
the entropy curves in the atomic and molecular regimes are
shown for two different cases: �1� if the atomic entropy pla-

teau lies above the molecular one ����c� and we start with
an initial temperature Ti corresponding to an atomic entropy
on the plateau, then Tf will be independent of and lie above
Ti and �2� if on the other hand the atomic entropy plateau lies
below the molecular one ��c���1�, the final temperature
will be much lower, i.e., it lies in the regime where kBT is
comparable to �m. A detailed prediction for the final tempera-
ture requires a theory for the molecular entropy dependence
on temperature outside the plateau region. There is no gen-
eral closed-form expression for this in the lattice potential;
however, in the regime where significant temperature reduc-
tion is predicted the uniform Bose gas expression should be
applicable with the replacement of mm with an effective mass
including the influence of the lattice �it should be noted that
in the molecular regime for kBT��m condensation is likely
and will need to be included to make a quantitative predic-
tion�.

The above results only apply when the initial state lies on
the entropy plateaus �i.e., Eres2EF and �a�kBT��a�. The
upper temperature limit �a increases with increasing V0 and
the lower limit �a decreases with increasing V0, so that the
region of applicability of this simple analysis improves with
increasing lattice depth. However, this is also the regime in
which interaction effects become more important requiring a
description beyond that presented here if quantitative predic-
tions are to be obtained.

V. ROLE OF INTERACTIONS

We have thus far neglected interactions in our analysis to
elucidate the aspects of the thermodynamics arising from the
band structure in the lattice potential. We now briefly discuss
how interactions will modify our conclusions. Our analysis
of isentropic sweeps of the resonance energy relied on the
existence of plateaus of constant entropy on both sides of the
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FIG. 6. �Color online� The dependence of the final temperature
on the initial temperature in adiabatic Eres sweeps from the atomic
to the molecular regime for different filling fractions and for a lat-
tice depth V0=20ER,a. For ���c the temperature increases while it
decreases �for sufficiently low Ti� for ���c.
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Feshbach resonance. We therefore concentrate on how inter-
actions impact the entropy in the molecular and the atomic
limits.

On the molecular side of the resonance we have a purely
bosonic system with weakly repulsive residual interactions.
As the lattice depth is increased correlation effects get stron-
ger in the system. For the translationally invariant lattice in
the special case where the number of bosons is commensu-
rate with the number of lattice sites the system can undergo a
quantum phase transition to the Mott-insulating phase. In the
Mott-insulating phase a gap, given by the on-site interaction
strength �Um�, emerges in the excitation spectrum. For tem-
peratures larger than Um /kB �but much smaller than the gap
to the first excited lattice band� the molecular entropy will
still exhibit a plateau �40,45,46�. As in the ideal case the
existence of an entropy plateau is a consequence of the uni-
form distribution of the particles over all the states in the
lowest band. Hence the value of the molecular entropy on the
plateau is determined mostly from combinatorial arguments.
At lower temperatures the excitation gap exponentially sup-
presses the entropy of the molecules.

It is worth noting that the main results of this work have
been in the regime ��1, for which the boson number is
incommensurate with the number of lattice sites and the
Mott-insulator transition cannot occur �47�. For this case our
ideal calculations should have a wider regime of validity.

On the other side of the resonance the interaction between
the free atoms is attractive and the ground state is a paired
BCS superfluid, characterized by a pairing gap �pair. The size
of the pairing gap depends on the strength of the attractive
interaction Ua compared with the bandwidth �a. In the weak-
coupling limit �pair is exponentially small and proportional
to �a, while for stronger interactions the size of �pair is set by
�Ua� �48�. As was the case for the molecules the atomic en-
tropy is reduced by an exponential factor for kBT smaller
than �pair, while it reaches a constant plateau in the interme-
diate temperature regime �pair�kBT��a. Hence correlated
states introduce a new low-energy scale �U
�, which replaces
the bandwidth �
 as the relevant energy scale for the exis-
tence of an entropy plateau, and our conclusions remain
qualitatively correct when interactions are included, provided
�Ua���a and Um��m in the deep lattice limit. Whether this
inequality can be satisfied will depend on the details of the
interactions.

Finally, we remark that while the Feshbach molecules are
produced in the least bound rovibrational state they are re-
markably robust against collisional de-excitation, which
could lead to losses when a molecule shares a lattice site
with another molecule or a free atom. This stability arises
from Pauli blocking of the constituent fermionic atoms �49�.
Again we note that since our primary interest here is in sys-
tems with filling fractions less than unity, the effect of colli-
sional losses will be smaller.

When an external harmonic trapping potential is present
the qualitative similarity of the physics of the ideal and
strongly correlated regimes is not clear. For instance, in this
case the gas will in general contain several distinct spatial
regions exhibiting either superfluid or insulating behavior
�50�. Hence this situation will require future work.

VI. CONCLUSIONS

In this paper we have considered the Feshbach-resonance-
based association of a Fermi gas of atoms confined in a uni-
form optical lattice potential. Our analysis of the statistical
mechanics of this system has revealed a rich range of behav-
ior in this system arising from the strikingly different degen-
erate properties of the atom and molecular degrees of free-
dom and the well-isolated ground band that forms in
moderately deep lattice potentials. We have considered the
effect of an adiabatic ramp of the Feshbach resonance from
the atomic to molecular regimes and shown that a colder
molecular gas can be produced for a wide parameter regime
if the filling fraction lies in the range 0.726���1.

By focusing on the ideal gas case we have been able to
clarify the effect of the translationally invariant lattice poten-
tial on the atom-molecule equilibrium. Building on this
study, future work will be to include interactions and the
additional confinement present in experiments due to the in-
homogeneous harmonic trap potential.
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APPENDIX A: ANALYTICAL EXPRESSIONS FOR THE
FIRST BAND GAP

In the deep lattice limit we can make a tight-binding ap-
proximation and regard the potential as a collection of M3
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S
aS

a
SmSm

FIG. 7. �Color online� Sche-
matic illustration of the adiabatic
cooling. If the atomic entropy pla-
teau lies above the molecular one
����c� the final temperature in
an adiabatic Eres sweep will be
higher than the initial temperature
as shown to the left. However, if
the molecular entropy plateau lies
above the atomic one ��c��
�1� the final temperature will be
comparable to the bandwidth of
the molecular spectrum, �m, as
shown to the right.
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independent wells. The central band energy is then given by
the discrete energy levels E


n in each well which to lowest
order are harmonic oscillators, but anharmonic corrections
can be calculated using perturbation theory �see Appendix A
of Ref. �44��. Coupling between wells induces a finite band-
width that we neglect in the deep lattice �flat-band� limit.
Because the lattice potential is separable the energies are of
the form

E

n = E


nx + E

ny + E


nz, �A1�

where we refer to E

nj as the 1D energies along the xj direc-

tion and �n�↔ �nx ,ny ,nz� are the quantum numbers describ-
ing the single-well state. The lowest two 1D energy levels
are given by �44�

E

0 � �V0,


ER,

−

1

4
−

3

48

1
V0,
/ER,


�ER,
, �A2a�

E

1 � �3V0,


ER,

−

5

4
−

49

48

1
V0,
/ER,


�ER,
. �A2b�

From Eq. �A1� we see that the lowest 3D energy band lies at
E


0 =3E

0 while the next 3D energy band lies at E


1 =2E

0 +E


1

yielding a band gap of

�
 = E

1 − E


0 = E

1 − E


0 . �A3�

Approximating the two lowest 1D energy levels by Eq. �A2�
we have

�
 � �2V0,


ER,

− 1 −

23

24

1
V0,
/ER,


�ER,
. �A4�

APPENDIX B: MAXIMIZING ENTROPY IN THE
FLAT-BAND LIMIT

We are interested in how the total entropy Stot=Sa+Sm
changes if we change the resonance energy but keep the
temperature constant, i.e.,

� dStot

dEres
�

T
=

�Sa

� fa
0� dfa

0

dEres
�

T
+

�Sm

� fm
0 � dfm

0

dEres
�

T
. �B1�

The number of unbound atoms is Na=2M3fa
0 and the number

of molecules is Nm=M3fm
0 , so by combining Eq. �1� with the

condition of particle conservation �2� we get

fa
0 + fm

0 = � . �B2�

We may thus rewrite Eq. �B1� as

� dStot

dEres
�

T

= 	 �Sa

� fa
0 −

�Sm

� fm
0 
� dfa

0

dEres
�

T

. �B3�

From Eq. �13� the partial derivatives of Sa and Sm with re-
spect to the occupation numbers fa

0 and fm
0 can be found,

leading to

�Sa

� fa
0 =

2M3�Ea
0 − ��

T
, �B4a�

�Sm

� fm
0 =

M3�Em
0 + Eres − 2��

T
, �B4b�

which we can insert in Eq. �B3�, yielding

� dStot

dEres
�

T
=

M3�2Ea
0 − Em

0 − Eres�
T

� dfa
0

dEres
�

T
. �B5�

The dependence of fa
0 on Eres is via the chemical potential,

so the derivative is

� dfa
0

dEres
�

T
=

1

kBT

e�Ea
0−��/kBT

�e�Ea
0−��/kBT + 1�2

��

�Eres
, �B6�

which is positive since �� /�Eres�0 in this regime �44�. Thus
we see from Eq. �B5� that the sign of the derivative of Stot
with respect to Eres is the same as the sign of the quantity
2Ea

0−Em
0 −Eres. We conclude that the entropy is maximal

when the resonance energy equals

Eres
Smax � 2Ea

0 − Em
0 = Ea

0 − �Em
0 − Ea

0� �B7�

and in this deep lattice limit we can approximate Em
0 −Ea

0 by
Eq. �8� and set Ea

0 equal to the Fermi energy, such that we get

Eres
Smax � EF − �3

8
−

3

16

1
V0,a/ER,a

�ER,a. �B8�
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