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Instability and control of a periodically driven Bose-Einstein condensate
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We investigate the dynamics of a Bose-Einstein condensate held in an optical lattice under the influence of
a strong periodic driving potential. Studying the mean-field version of the Bose-Hubbard model reveals that the
condensate becomes dynamically unstable when the effective intersite tunneling becomes negative. We further
show how controlling the sign of the tunneling can be used to manage the dispersion of an atomic wave packet.
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I. INTRODUCTION

The spectacular experimental progress in confining Bose-
Einstein condensates in optical lattice potentials has provided
a powerful tool for investigating many-body quantum dy-
namics. Such optical potentials are extremely clean and con-
trollable, and together with their long decoherence times, this
allows the observation of many coherent lattice phenomena
which are highly challenging to study in solid-state systems.
One such effect is “coherent destruction of tunneling” (CDT)
[1] in which a periodic driving field acts to renormalize the
tunneling between lattice sites. Although first noted as a
single-particle effect [2], CDT also occurs in interacting sys-
tems such as atomic condensates [3] and has been observed
extremely recently [4,5] in cold atom experiments. The con-
trol that CDT provides over the condensate dynamics is
achieved without altering any of the parameters of the optical
lattice and so has natural applications to quantum informa-
tion [6] since it preserves the system’s coherence. However,
it is crucial to know if the condensate remains stable during
its time evolution and in particular whether dynamical insta-
bility occurs, in which deviations from a steady state grow
exponentially with time. The case of a static potential was
analyzed in Ref. [7] and studied experimentally in Refs.
[8,9], and it was found that dynamical instability occurs
above a certain critical quasimomentum. Investigations of
uniformly accelerated lattices [10,11] also revealed the pres-
ence of dynamical instability, finding the nonintuitive result
that this was enhanced in the limit of low acceleration.

In this paper we analyze the richer and more complex
case where the condensate is periodically driven. To achieve
this we follow the strategy in Ref. [11] and carry out the
stability analysis about the Floquet states [1] of the system,
which are the appropriate generalization of energy eigen-
states to the case of a time-periodic Hamiltonian. An impor-
tant point for experiment is to minimize or avoid instabili-
ties, and so we first find the critical interaction strength at
which dynamical instability occurs. We then connect this
with the behavior of the effective tunneling parameter in the
driven system, J.¢, and show how CDT can be used to ma-
nipulate J in order to provide control over the nonlinear
matter-wave dispersion [12].

II. METHOD

Interactions between ultracold bosons are typically well
described by a very short-range pseudopotential, param-
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etrized by the s-wave scattering length. If the interaction en-
ergies in the system are smaller than the excitation energy to
the first excited Bloch band, then a system of bosons held in
an optical lattice can be described very accurately by the
Bose-Hubbard Hamiltonian [13]. For a one-dimensional sys-
tem this is written as

Hpy=-J > (ajnan +Hec)+ %]E nu(n,—1), (1)

{m.n)

where a;rn (a,,) are the boson creation (annihilation) operators
for a particle on lattice site m, nm=ajnam is the a standard
number operator, and the sites {(m,n) are nearest neighbors.
The properties of the system are then governed by the hop-
ping parameter J and the Hubbard interaction U which de-
scribes the potential energy between two bosons occupying
the same lattice site. An extremely valuable means of study-
ing and controlling such systems is to accelerate the lattice
by varying the phase difference between the two laser beams
forming the standing wave potential. In the rest frame of the
lattice this acceleration manifests itself as an inertial force
which effectively “tilts” the potential, allowing, for example,
investigation of Bloch oscillations [14]. If, however, instead
of a uniform acceleration the lattice is periodically acceler-
ated and decelerated, the potential will instead oscillate pe-
riodically in time, H;,=K cos(wt)Z,,mn,,, where K and o pa-
rametrize its amplitude and frequency, respectively.

In order to study the stability of the driven condensate we
will first pass to a mean-field description of this model,
analogous to the Gross-Pitaevskii equation, and then linear-
ize about the ground state to obtain the Bogoliubov equations
for the condensate excitations. This procedure will be valid
as long as the number of atoms excited from the condensate
is small compared to the number of condensed atoms. We
first write the Heisenberg equations of motion for the boson
operators a, and then take the classical field approximation
and treat them simply as ¢ numbers a,. It is convenient [11]
to use the scaling @, =a,/ VN, where N is the average number
of atoms per site. It is then straightforward to show that the
classical amplitudes obey the equation of motion

Jda,
1
at

== J(a'n+1 + an—l) + g|an|2an +K cos(wt)nan, (2)
where for simplicity we write the interaction as g=NU, and
the amplitudes have the normalization X a;[*=N,,,, where

Ny 1 the number of lattice sites. Note that we also take 7
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=1 and will measure all energies in units of J.

To simplify the analysis we use periodic boundary condi-
tions. In the limit of large lattice sizes, however, the choice
of boundary conditions does not affect the underlying phys-
ics, and we will later use Dirichlet boundary conditions to
simulate the time evolution of the condensate. In the absence
of interactions, the eigenstates of the system will simply be
plane waves «,=exp[inp], where p is the wave’s (quantized)
momentum. With this in mind, we take as a trial solution
a¥=expli(n¢+6)], where ¢ and 6 are functions to be deter-
mined. Substituting this solution in Eq. (2) yields the results

d(t)=p - Esin wt, (3)
®

0(t) = 2J[cos(p)S(r) — sin(p)C(1)] - gt, (4)

where the functions S(¢)/ C(¢) are defined in terms of Bessel
functions as

[

=3 %mewx 5)
s= 3 7 (Ka). (6)

Note that in Eq. (3), p is a constant of integration whose
value is set by the requirement that in the absence of driving
we recover standard plane waves as the eigenstates of the
system.

Since the Hamiltonian of the system is periodic in time,
the Floquet theorem dictates that the solutions of the time-
dependent Schrodinger equation can be written in the form
exp[—iet]y(r), where € is termed the quasienergy and ¢r) is
a T-periodic function called the Floquet state. To obtain the
quasienergies we thus simply have to extract the terms from
the solution which are not T periodic, giving the result

e(p) =-2 cos(p)J Jy(K/w) + g. (7)

In the absence of the driving, the quasienergies thus form a
normal single-particle band structure, the interaction g acting
merely to shift the entire spectrum. The driving then acts to
renormalize the width of the spectrum by the Bessel function
Jo» as was previously observed in a theoretical analysis [15]
of semiconductor superlattice systems. In Fig. 1(a) we show
numerical results for the quasienergies of an eight-site sys-
tem, obtained directly from the time evolution of the system,
which beautifully corroborate the expected behavior. In par-
ticular, when the Bessel function becomes zero, the spectrum
collapses to a point and the system will manifest CDT.

In order to analyze the dynamical stability of the ground
state (p=0), we now introduce a perturbation a,(r)
=a2(t)(1 +u(t)explign]+v*(t)exp[—ign]), where g is the mo-
mentum of the excitation relative to the condensate. We then
linearize Eq. (2) about this solution to obtain the
Bogoliubov—de Gennes equations for u(z) and v(z),
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FIG. 1. (Color online) (a) Numerical results for the quasienergy
spectrum of the driven mean-field Bose-Hubbard model for an
eight-site system with w=16. The width of the spectrum is modu-
lated by the Bessel function J5(K/w) and displaced by the interac-
tion energy g=0.5, in full agreement with the analytical solution
[Eq. (7)]. (b) Plot of the critical interaction, g., at which the system
becomes dynamically unstable when prepared in the p=0 state. The
driving frequencies are w=4 (solid black line) and w=8 (dotted-
dashed blue line). The critical interaction diverges at K/w=0 and
peaks at the Bessel function zeros (vertical dashed lines). When J g
is negative g. becomes zero, indicating that dynamical instability
occurs for any positive value of g.

d u(t))_ (u(t))
ldt(v(t) =L@y ) ®)

where the elements of the matrix £(q,?) are given by

L,,(g,t) =4J sin(g/2)sin(g/2 — K/w sin wf) + g,

‘CIZ(q’t) =8=- £2l(qst)v

L,(q,1) =—4J sin(g/2)sin(g/2 + K/ w sin wt) — g.

We can note that, similarly to the Hamiltonian, the operator
L(g,t) is T periodic. Consequently we can also apply the
Floquet theorem to describe the time evolution of the quasi-
particle excitation (u,v). To find the corresponding Floquet
states, we numerically evolve Eq. (8) over one period of
driving, using the 2 X2 identity matrix as the initial state.
The result of this procedure is the single-period propagator
U. The eigenstates of U are then the excitation Floquet
states, while its eigenvalues are related to the excitation
quasienergies via \;=exp[—iT¢;].

The condition of dynamical stability can now be recast
[16] in terms of the eigenvalues of L(g,?), in analogy with
the use of Lyapunov exponents in classical mechanics. Insta-
bility is signaled by the quasienergies acquiring an imaginary
component, corresponding to the exponential growth or de-
cay of excitations. This in turn is revealed by the behavior of
[\,|; if this is equal to 1 then the solution is stable, but if it
exceeds 1 then instability occurs. The symmetries of U, com-
bined with the normalization condition obeyed by the quasi-
particle excitation, |u|>*-[v[*=1, allow the characteristic
equation to be written in the particularly simple form [11]
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Ao =Re[Uy;] = VRe[U I - 1. 9)

From this expression it is clear that the stability of the
excitation can be established by simply evaluating Re[ U, ].
If this quantity is less than 1, then [\..|=1 and the solution is
stable. Conversely, finding Re[U;;]>1 indicates instability.
This suggests a simple scheme to map out the stability zones
of the driven system. For a given choice of K and w we
select a value of g and scan over the range of ¢q. If
Re[U,;]=1 for all values of ¢ we can declare that the system
is stable for these parameters and that to induce instability
we need to increase g to a higher value. In this way a stan-
dard bisection scheme can be used to locate the instability
boundary, g..

III. RESULTS

We show the results of this procedure for two driving
frequencies in Fig. 1(b). We can first observe that for K/w
=0 it is possible to directly diagonalize L£(g) to obtain the
result €. == 242sin(q/2)V277 sin’(g/2)+Jg. As expected,
this duplicates the familiar result for the Bogoliubov excita-
tions of an undriven stationary condensate [17]. It is also
clear from this expression that dynamical instability will not
occur if the interaction is repulsive since the eigenfrequen-
cies will not become complex unless the product (Jg)<O0.
Accordingly, as K/ w— 0 we can see from Fig. 1(b) that the
value of g, diverges. On increasing K/ w, the value of g. then
rapidly drops, passing through a broad local minimum before
again peaking as K/w approaches 2.4048—the first zero of
Jo- This corresponds to the onset of CDT; as the effective
tunneling is reduced, the dynamics of the condensate is sup-
pressed, and stability is regained.

Passing through the zero of [, we can see that dynamical
stability is then abruptly lost. In this region the condensate
becomes dynamically unstable for any positive value of the
interaction. We can obtain some insight into this effect from
Eq. (7) by defining the effective tunneling, J.4=J7)(K/ w).
When K/w is increased from 2.4048, the Bessel function
changes sign and J.; becomes negative. Accordingly, if we
view the driving field as acting simply to renormalize the
tunneling, the product (J.;g) now becomes negative and dy-
namical instability can indeed occur. A similar effect would
occur in an undriven system if ¢ were made negative (for
example, by using a Feshbach resonance), for which the con-
densate would become attractive and thus unstable toward
collapse. When J.; becomes zero at K/ w=5.52 we can see
that g. again peaks due to CDT. The same pattern of behav-
ior then repeats. Figure 1(b) also shows that g, scales quite
accurately as g~ w’. Surprisingly, the zone of stability thus
becomes wider at high driving frequencies although the ac-
celeration of the lattice is much larger. A similar feature was
seen in the analysis of an accelerated condensate [11], which
found an increasing propensity to dynamical instability in the
limit of low acceleration.

It is interesting to compare these results with recent ex-
periments [4], which saw no evidence for dynamical insta-
bility. To do this it is first necessary to estimate the interac-
tion parameter g. The experiment was performed in the
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FIG. 2. (Color online) Critical interaction, g., for a system
driven at frequencies of w=4 (solid black line) and w=35 (dotted-
dashed blue line). The Bessel function zeros are marked by the
vertical dashed (red) lines. The labels p=0 and p=1r indicate the
momentum of the Floquet state about which the instability analysis
is made; when J is positive we use p=0, but when the effective
tunneling is negative the analysis is done for p= (see text). For the
higher driving frequency instability does not occur for g=1, in
agreement with experimental results [4].

mean-field regime and involved rather low values of interac-
tions (with estimated Bose-Hubbard parameters of U/J
=(.1). The comparison is further complicated by the nonho-
mogeneous particle density produced by the trap potential.
To proceed we first calculate the chemical potential for the
system in the absence of the optical lattice by means of the
Thomas-Fermi approximation, which will work well when
the number of trapped atoms is large. For a sample of ~10%
atoms of S’Rb, this yields a value of u=300 Hz for the
experimental trap parameters. The interaction energy can
then be estimated [18] as g=2u/7, giving the result g
=90 Hz. The experiment employed a number of different
optical lattice depths, giving undriven tunneling rates rang-
ing from J=350 Hz down to /=90 Hz for the deepest lat-
tices. Consequently, as an order of magnitude estimate, we
are most interested in interaction strengths within the range
0.1<g/J<1.

We show the stability boundaries obtained for two driving
frequencies in Fig. 2. Let us first concentrate on the region
0= w<<2.4048 where J is positive. We can see that for the
lower driving frequency, w=4, dynamical instability can oc-
cur even for very weak interactions (g=0.15) if the driving
strength is tuned to a value of K/ w=0.40. However, merely
increasing the driving frequency to w=35 raises the value of
the critical interaction strength to g.=1.2, clearly demon-
strating how higher driving frequencies render the system
more robust against instability. This exceeds the maximum
interaction strength present in the experiment and so indi-
cates that for frequencies of @w=35 no dynamical instability
effects should arise. As the experiment typically used driving
frequencies on the order of a few kilohertz, corresponding to
w~ 10/, our analysis corroborates the experimental finding
of the absence of dynamical instability.

When K/ w is increased beyond the first zero of the Bessel
function (K/w=2.4048), J.; becomes negative. Experimen-
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FIG. 3. (Color online) Dynamics of a condensate in a parabolic trap. Time is measured in units of the inverse tunneling J~'. At =0 the
trap is shifted by 25 lattice spacings to induce the condensate into motion. System parameters are g=0.1 and w=4. (a) In the absence of
driving, the condensate sloshes periodically from side to side of the trap with a well-defined frequency. (b) For K/ w=2, J. is reduced in
amplitude, and so the frequency of the oscillation is correspondingly reduced. (c) For K/w=2.40, the tunneling is completely suppressed
since J;=0, and the time evolution of the condensate is thus frozen. (d) For K/ w=3, J.; becomes negative. The trap potential thus appears

inverted to the condensate, which is rapidly expelled from the center.

tally it is seen that this causes the momentum distribution
function to undergo a discrete shift, with the peaks now ap-
pearing at p= = 7 instead of at p=0. This occurs [19] be-
cause the tunneling, as well as being renormalized in ampli-
tude, acquires a phase factor of exp[i7]. Consequently, as the
initial state of the system is no longer of zero momentum, it
is necessary to repeat the dynamical instability analysis
around the Floquet state with p=1r to analyze the experimen-
tal results in this regime. This can be straightforwardly
achieved by making the substitution J— —J in Eq. (8). From
Fig. 2 we can clearly see that after peaking at K/ w=2.4048,
the value of g. then rapidly drops again, passing through a
local minimum, before again peaking at the next zero of the
Bessel function at K/w=5.52. This pattern of behavior then
repeats, with sharp spikes in stability centered on the zeros of
Jo where J g vanishes, corresponding to CDT quenching the
dynamics of the system.

We have so far considered an ideal flat optical lattice po-
tential. In experiment, however, an additional harmonic trap
potential is usually present which can substantially modify
the dynamics of the system. To investigate this, we now ap-
ply an additional quadratic potential V= kriz, where r; is mea-
sured from the center of the system. We initialize the system
in the ground state of the mean-field Hamiltonian (2) in the
presence of the trap and then displace the trapping potential
by a distance of 25 lattice spacings, thereby exciting the
condensate into motion.

In Fig. 3(a), we show the evolution of the condensate, in
the absence of the periodic driving, in a shallow trap with a
curvature of k=0.000 O1. The condensate makes a periodic

oscillation of constant amplitude, very similar to the center
of mass motion [8] observed in experiment. The period of
oscillation is governed by the intersite tunneling or, equiva-
lently, by the condensate’s effective mass (m*OCJ“eflf). In Fig.
3(b) the system is subjected to a driving with K/w=2.
Clearly the oscillation period has increased, corresponding to
the expected reduction in the tunneling by J,, which can
alternatively be interpreted as an enhancement of the effec-
tive mass. Increasing K/w further to the first zero of J,
produces CDT, and so the system remains frozen in its initial
state [Fig. 3(c)]. In this case the effective mass has become
infinite.

A further increase in K/w means that the Bessel function
changes sign, and thus J . becomes negative. We have seen
already that this sign change has a significant effect on the
dynamical stability of the ground state, and as we show in
Fig. 3(d) it has an equally dramatic effect on the dynamics of
the condensate. Instead of oscillating, the condensate now
rapidly accelerates away from the center of the trap. The
reason for this becomes evident when we examine the terms
of the Hamiltonian. Making J.; negative is clearly equivalent
to time-reversed evolution with a positive tunneling, but with
reversed signs for the trapping potential and nonlinearity g.
Thus when J; changes sign, the condensate behaves as an
attractive condensate in an inverted potential and so is
quickly expelled from the center of the trap. It is interesting
to note that the presence of the optical lattice imposes a
fundamental spatial discretization on the system, and thus the
wave packet’s motion will in fact consist of a Bloch-type
oscillation. As a consequence the wave packet will eventu-
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ally return to the center of the trap after being reflected from
the band edge, which is a lattice-based effect not present in
truly continuous systems.

IV. CONCLUSIONS

In summary, we have analyzed how an oscillating driving
potential can renormalize the effective tunneling, J.¢, of a
Bose-Einstein condensate and have derived the Bogoliubov
equations for this system. The stability of the condensate is
sharply enhanced where J. vanishes and, conversely, is least
stable for driving parameters approximately midway be-
tween these points. The stability also depends strongly on the
driving frequency, with high frequencies acting to suppress
the onset of dynamical instability. This is particularly encour-
aging for the design of experiments since in the high-
frequency regime dynamical instability can be completely
avoided unless the interaction strength is extremely high. We
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have also shown how manipulating J.¢ in this way may also
be used as a novel tool to control the dynamics of a conden-
sate in a trap potential by tuning its effective mass to be
positive, negative, or infinite. As this is achieved by control-
ling the amplitude of the tunneling, it is thus complementary
to the well-known method of using Feshbach resonances to
control the interaction. These both extend the possibility of
manipulating the condensate to systems which do not pos-
sess convenient resonances and provide a means to investi-
gate the interplay between nonlinearity and dispersion. A par-
ticularly exciting application of this technique would be to
produce bright solitons in repulsive condensates [20], with-
out using phase-imprinting techniques, by using a negative
value of J to balance the interparticle repulsion.
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