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Lattice thermodynamics for ultracold atoms
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We measure the temperature of ultracold 87Rb gases transferred into an optical lattice and compare to
noninteracting thermodynamics for a combined lattice-parabolic potential. Absolute temperature is determined
at low temperature by fitting quasimomentum distributions obtained using band mapping, i.e., turning off the
lattice potential slowly compared with the band gap. We show that distributions obtained at high temperature
employing this technique are not quasimomentum distributions through numerical simulations. To overcome
this limitation, we extract temperature using the in-trap size of the gas.
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I. INTRODUCTION

Ultracold atoms confined in optical lattices are a promis-
ing system for studying models of strongly correlated sys-
tems relevant to condensed-matter physics. Experiments
have been able to observe a quantum phase transition from a
superfluid to Mott-insulating state for bosons [1-3], the
superfluid-to-insulator transition for bosons [4], superex-
change [5], the crossover between quantum tunneling and
thermal activation of phase slips [6], reversible depletion of
condensate fraction induced by fine-grained disorder [7], and
evidence for a Mott insulator of fermions [8,9]. Straightfor-
ward interpretation of these results in certain cases has been
complicated by difficulties in measuring temperature related
to strong interactions and the lattice potential [10].

Temperature has been measured for both bosonic [11] and
fermionic [12] atom gases confined in harmonic traps by
fitting the momentum distribution, obtained after ballistic ex-
pansion, to analytic expressions obtained using the semiclas-
sical approximation [13,14]. Unfortunately, this approxima-
tion fails in an optical lattice because of the rapid spatial
variations in the potential [14,15]. Despite this limitation,
progress has been made on measuring temperature in an op-
tical lattice using alternative techniques. One method in-
volves site occupancy statistics [16], which can be straight-
forwardly related to temperature in the atomic (i.e., tunneling
energy much less than interaction energy) limit [ 17]. Another
technique is to determine temperature using the visibility of
the momentum distribution [18]. This method, however, has
generated some controversy [10,19-22], cannot be used at
high temperature, loses sensitivity at very low temperature,
and does not work for fermions. Finally, advances have been
made employing quasimomentum distributions to measure
temperature. By fitting to quasimomentum distributions de-
termined from a restricted region of a momentum profile, the
condensate fraction and temperature have been measured for
a lattice in the limit described by the two-dimensional (2D)
Bose-Hubbard model [3,23]. These experiments, however,
were carried out at a fixed temperature below the critical
temperature 7. for Bose condensation [24]. In this work, we
extend this technique over a wide range of temperatures to an
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ultracold gas of noncondensed ®’Rb atoms confined in a
three-dimensional (3D) optical lattice.

In contrast to [3,23], we obtain quasimomentum distribu-
tions [25-27] through band mapping [28,29], a procedure in
which the lattice potential is turned off slowly compared
with the band gap before time-of-flight (TOF) imaging. We
fit these distributions to a semiclassical analysis to determine
temperature. To explore a range of temperatures in the lat-
tice, we vary the temperature of the atoms before transfer
into the lattice, when they are confined in a purely harmonic
potential. The temperature determined using this method is
compared with thermodynamic predictions for noninteract-
ing particles, assuming adiabatic transfer from the parabolic
potential. We show that this procedure is successful at low
temperatures, but fails at sufficiently high temperature such
that states with high quasimomentum and localized states are
occupied. Through numerical simulation, we show that this
failure is related to a breakdown of band mapping in this
regime. At high temperature we demonstrate that tempera-
ture can alternatively be extracted using the in-trap density
distribution.

The paper is organized as follows. Section II reviews so-
lutions to the Schrédinger equation for a combined lattice-
harmonic potential. The single-particle eigenstates are ap-
plied to calculate the lattice thermodynamics and thereby
predict temperature after adiabatic transfer from a purely har-
monic potential. In Sec. III we discuss the quasimomentum
distribution of a thermal gas and imaging of that distribution
using our apparatus. In Sec. IV we show measurements of
temperature for a thermal gas obtained using quasimomen-
tum distributions. In Sec. V we present a numerical simula-
tion of band mapping to explain the breakdown of this
method at high temperatures. In Sec. VI we discuss deter-
mining temperature using in-trap size and present experi-
mental results.

II. THERMODYNAMICS OF THE COMBINED
LATTICE-PARABOLIC POTENTIAL

In most optical lattice experiments to date, an ultracold
gas of atoms is first created in a parabolic potential, followed
by a slow turn-on of the periodic lattice potential. The tem-
perature in the final combined lattice-parabolic potential can
be predicted by measuring the temperature in the harmonic
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potential, calculating the corresponding entropy, and assum-
ing that the turn-on is isentropic. For this procedure, the
entropy in the lattice-parabolic potential must be calculated,
which has been done for noninteracting particles [17,30-33],
in the mean-field approximation [34], and for the strongly
interacting limit [35-38]. In the general case, a quantum
Monte Carlo calculation is necessary [20].

We employ a simple but exact noninteracting theory to
predict temperature in the lattice-parabolic potential. In this
section, we review the eigenstates for this potential, which
were reported in Ref. [39]. We briefly discuss how these
states are used to calculate the entropy in the lattice, and
thereby to predict the temperature and condensate fraction
after loading from a purely harmonic trap.

The single-particle Hamiltonian describing this system is

2
. SE ; 1
H= > {p—’+u{l—cos<ﬂ)]+5mw?xf}, (1)

= lem 2 d

where sEj is the lattice depth [Eg=(hm/d)*/2m is the recoil
energy of the atom], m is the mass of the atom, d is the
lattice spacing, and w is the external harmonic confinement
frequency. Some intuitions about the nature of the single-
particle eigenstates can be gained by considering the case
when the harmonic potential is absent. When w=0, the solu-
tions to this Hamiltonian are Bloch wave functions,

(I)q,l(f) = eiq‘f/ﬁuq’l(f) 5 (2)

where ¢ is the quasimomentum of the state, [ specifies the
band index, and u (X) is a function with the same periodic-
ity as the lattice. An appropriate sum over Bloch wave func-
tions defines the Wannier function centered at site j [40],

w; (%) = f g TP ((5). (3)

Experiments with ultracold atoms are typically confined
to the lowest band, so we drop the band index in the discus-
sion that follows and let /=0. The Hamiltonian can also be
conveniently expressed in second-quantized notation, in
which the operator &j creates a particle with wave function
w;(¥X). In the tight-binding approximation (accurate for s =4),

Eq. (1) becomes

. 1
H=-J2 ala;+ —ma*X ri;, 4)
(i) 2
where [41]
h? E 3
J= f d3xw;‘(f){— %VZ + STR[ 1- cos(%xﬂwm(f)}
(5)

(J= %ERSW“(&‘Z\* in the limit V,>E, [42]) is the nearest-
neighbor tunneling matrix element, i and j are index lattice
sites, () represents a sum over nearest neighbors, and #;
:dfdi is the number of atoms at site i. For w=0, the energy
spectrum is given by the usual tight-binding dispersion rela-
tion,
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E=(D |H|®)=2J 2 [1 —cos(qzq,)], (6)
B

i=x,y,2

where ¢ is the quasimomentum, and |¢| <gz=hm/d (qz is
the Brillouin-zone momentum). The dispersion relation is
characterized by an energy gap at gz between the lowest-
energy band and the first excited band.

The parabolic potential present in ultracold atom lattice
experiments breaks the periodic symmetry of the lattice po-
tential and therefore changes the single-particle eigenstates
[43,44]. Recently, an analytic solution was derived for the
eigenstates and eigenenergies for the combined parabolic-
lattice potential [39], which enables straightforward calcula-
tion of noninteracting thermodynamics. From these solu-
tions, the energy of a state with quantum numbers n,, n,, and
n, for the Hamiltonian in Eq. (1) is E, non=Ey +E, +E,
[45], with N

Za,,(a), n even
E, = 7
=g )
anﬂ(a), n odd,

where n=0,1,2,3,... is an integer, Q=mw’d*/2, a=4J/Q,
and a,(a) and b, (@) are the Mathieu characteristic values.

The eigenstates are W(x)=Y, (x)¥, (y)¥, (z), where the
sum ‘Ifnx(x) =3 }f}”w ;(x) runs over one direction of the lattice.
The site-dependent weights are [39]

1 2
—f dx ce,(x,— a)cos(2jx), n even
m™Jo
j;? = 1 2w (8)
—f dx se, . (x,— a)sin(2jx), n odd,
TJo

where ce and se are the even and odd periodic 7 solutions of
the Mathieu equations with parameter «. The probability dis-
tributions along one lattice direction for several energy levels
are plotted in Fig. 1. The low-energy states are similar to
discretized harmonic energy eigenstqtes with an oscillator
frequency of w\m/m*, where m*=£] [42] is the effective
mass resulting from the lattice dispersion relation [Eq. (6)].
As the energies exceed the bandwidth 4J of the uniform
lattice potential, the states become localized to a few lattice
sites. The localized states are found farther from the center of
the harmonic trap as n increases. The localized states were
observed to affect transport [46,47] and were detected di-
rectly in Ref. [46]. The energies of these states are inside the
uniform lattice band gap, reminiscent of surface states in
solids.

To calculate thermodynamic quantities using these states,
we directly calculated the grand canonical potential for
bosons by summing over all states in three dimensions [48],

Q=-4" 2 In(l-efbrnn37t) ©)

where B=1/kyzT and 3=eP* is the fugacity (u is the chemi-
cal potential and kg is Boltzmann’s constant). The number of
particles,
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FIG. 1. Spatial (left column) and quasimomentum (right col-
umn) probability distributions for a one-dimensional (ID) com-
bined lattice-parabolic potential (light gray curve in top left image)
for different quantum numbers n and a=352.175. For low n, the
states are similar to discretized harmonic-oscillator wave functions,
but for higher energies the states become localized away from the
center of the parabolic potential.

1

N= Y o
nynyn, e'BE”x*”y»”;S 1_ 1
and energy,
En n.n
. SIS 11
2 ePEnnn 37— 1 (11)
were used to calculate entropy,
=TT (12)
T T T

We also used Egs. (9)—(11) to calculate the thermodynamics
for the harmonic trap by using the harmonic trap eigenener-
gies Enx,,,v,n"=hw(nx+ny+nz) [49].

To calculate the final temperature and condensate fraction
in the lattice based on adiabatically loading atoms from the
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harmonic trap (at a given initial temperature and number of
atoms), we first calculated the entropy and fugacity of the
atoms in the harmonic trap. Then we varied temperature and
fugacity so that the final entropy and number were identical
in the combined parabolic-lattice potential.

III. QUASIMOMENTUM DISTRIBUTION

In this section, we determine the quasimomentum distri-
bution for noninteracting particles in the joint parabolic-
lattice potential. For particles in a periodic potential, the qua-
simomentum operator plays the role of the momentum
operator for free particles. The Hamiltonian from Eq. (4) for
atoms in a lattice-parabolic potential written in terms of the
quasimomentum and position operators is

H=2J] >, [1—cos<‘—lq,ﬂ+%mw2 > &2 (13)

i=x,,2 h i=x,y,2

To calculate the quasimomentum distribution, the single-
particle eigenstates must be transformed into functions of

quasimomentum [39): W, , , (§)=1, (4.)f (4,)f(q) (see
the Appendix), where )

o ofies).]
———ce,| —|1-—|,af, n even
V/7_T L2 9B

(_ 1)(1_n'¥)/2 ™ qx
—/—5€nX+1 5 l—q_ ,a |, n odd.
N B

(14)

fnx(qx) =

Analogous equations apply for fny(qy) and f, (¢,). For the
finite-temperature statistical distribution of the Hamiltonian
in Eq. (13), we add a Bose-Einstein factor,

- ~ . 1
P(CI)= E |\I,nx,ny,nzq(Q)|zeﬁE

-, 15

Ny, n"n»"’nza_l -1 ( )
where the sum is over all eigenstates. Fitting images of the
quasimomentum distribution to p(g) calculated using Eq.
(15) is infeasible given modest computational resources. For-
tunately, by writing the Hamiltonian in terms of quasimo-
mentum, we are justified in using the semiclassical distribu-
tion, since the rapid spatial variations in the potential and
wave function have disappeared [21,50]. The semiclassical
approximation is appropriate in this system because the qua-
simomentum and position operators are conjugate [51],

[6.5]=— if. (16)

In the semiclassical distribution, the operators in the
Hamiltonian are replaced with classical variables, and each
particle occupies the minimum uncertainty volume in phase
space consistent with the commutation relation. Using this
approximation, the three-dimensional finite-temperature qua-
simomentum distribution for bosons in a lattice-parabolic
trap is (where fik=q)
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plky, ko, k3)

1
sl [ s
1

X .
exp{ZJB > [1-cos(kd)] + %ﬁmwzrz}B_l -1

i=x,y,2
(17)

After integrating over the spatial degrees of freedom,

—
Var ( Bm w2)3/2
ki,krk3) = ——| ——

plky,ky 3) 8772( 2

i=x,y,z

XLi3/2{3 exp(— 208 2 [1- cos(k,-d)])},
(18)

where Li,(u)=3;_,u*/k" is the polylogarithmic function.
This equation reveals that in the thermal limit (3<<1), the
quasimomentum distribution is solely determined by the di-
mensionless parameter 1/JB=kgT/J, which characterizes the
ratio of the temperature to the bandwidth. In the quantum
degenerate regime (3~ 1), the fugacity and the parameter
kgT/J both control the shape of the quasimomentum distri-
bution.

To image the quasimomentum distribution, we employ
“band mapping” followed by standard TOF absorption imag-
ing. Band mapping involves turning off the lattice potential
slowly with respect to the band gap, but quickly with respect
to the slowly varying harmonic trapping potential. This pro-
cedure maps a state of quasimomentum ¢ to a state of mo-
mentum ¢. This technique has been demonstrated by several
groups [27-29], but we will show in Sec. V that it has limits
of validity not previously discussed in the literature.

Each pixel in the two-dimensional absorption image is a
column integral of the quasimomentum distribution along the
imaging axis. We use an atypical imaging geometry in our
experiment: the imaging axis makes 90° and *45° angles
with the lattice directions, which define the quasimomentum
axes in space after TOF. For our experiment, the coordinates
a; and a, define the imaging plane; the integration direction
is along coordinate as; and k;, k,, and k3 are coordinates
along the lattice axes given by

1 1
kj=TFa - F=ay, (19)
1 \E 1 " 2
r 1 1 1 (20)
= — + — + —= .
2 2“1 20¢2 V,,2a3
1 1 1
k3=5a1+5a2—v—5a3. (21)

The two-dimensional distribution integrated along the di-
rection of the probe beam is
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play,ay) = f dasp(ky,ky.k3), (22)

which can be expressed as a doubly infinite sum,

* e—2njﬁ[3—cos(b)]3n

plag,a) =A% ——5——) 27— a)lglcos(@)2n/f]
n=1
+3 Ij[cos(a)2nJﬁ:|4Sin[j(];a)] , (23)
j=1

where A is_a proportionality constant, a=|a;+a,|/1\2, b
=|a;—ay|/\2, and I;(x) is the modified Bessel function of
the first kind.

Examples of predicted images for 3=0.5 and for different
values of kzT/J are shown in Fig. 2. A characteristic feature
of these distributions is the sharp edge at the Brillouin-zone
momentum for high kz7/J along direction (a). Along direc-
tion (b) the distribution decreases linearly toward the edge
(for the filled band) since the Brillouin zone is rotated with
respect to the imaging axis. We have verified that distribu-
tions calculated using a direct sum over eigenstates [Eq.
(15)] agree with the semiclassical result for the range of
kgT/J used in this paper.

IV. MEASURING TEMPERATURE USING
QUASIMOMENTUM DISTRIBUTIONS

Images of the quasimomentum distribution obtained for a
range of temperatures and lattice depths are fitted to the
semiclassical result [Eq. (23)]. In this section, we discuss
how the fit is used to determine kz7/J, which is compared
with thermodynamic predictions for noninteracting particles.
All data in this section and Sec. VI are taken above the
critical temperature for Bose-Einstein condensation.

The procedure by which we prepare ultracold gases of
8Rb atoms confined in a lattice-parabolic potential has
changed somewhat compared with Refs. [6,7]. 5’Rb atoms in
the F=1, mp=—1 state are evaporatively cooled in a two-
stage process. The atom gas is first cooled using forced
radio-frequency evaporation in a magnetic quadrupole trap
with a 300 G/cm gradient along the symmetry axis. Before
atom loss induced by Marojana transitions becomes signifi-
cant, the atom gas is transferred into a hybrid magnetic-
optical trap by slowly turning on a 7 W, 1064 nm Gaussian
laser beam focused to a 90 um waist. The magnetic field
gradient is simultaneously reduced to produce a force on the
atoms equal to gravity. The second stage of evaporative cool-
ing progresses by increasing the quadrupole gradient and re-
ducing the optical power [52]. Finally, the magnetic gradient
is again relaxed to balance gravity and the dipole beam
power is reduced to 0.4 W, which creates a harmonic trap
with oscillator frequencies of 56.4*0.7, 29.2*1.5, and
39.1+0.2 Hz. The temperature 7}, of the atom gas in this
trap is controlled by altering the evaporative cooling se-
quence, by changing both the final radio frequency applied
during cooling in the quadrupole trap and the minimum op-
tical power used during cooling in the hybrid trap.

After the dipole beam power is decreased to 0.4 W, the
optical lattice beams (A=812 nm) are superimposed on the
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FIG. 2. Examples of predicted images from Eq. (26) for
kgT/J=0.5, kgT/J=2, and kgT/J=15 (in the thermal limit). Cross
sections through the distribution are also shown. Along cross sec-
tion (a), the distribution has a sharp edge at the Brillouin-zone
momentum at high kg7/J. For low values of kzT/J, this edge van-
ishes and the distribution is similar to a momentum distribution for
atoms confined in a harmonic trap. The direction of gravitational
acceleration g relative to the imaging plane for our experiment is
labeled by an arrow.

hybrid trap (see Ref. [6] for more information on the lattice
geometry). Band mapping is implemented by turning off the
optical lattice beams in 750 us using a linear ramp of the
optical lattice power. Following band mapping, the 1064 nm
beam and the quadrupole magnetic trap are turned off and an
absorption image is taken after 820 ms of TOF.

Figure 3 shows the measured temperature 7 in the lattice
as the temperature in the harmonic trap is varied. Images
taken after band mapping and time-of-flight expansion are fit
to Eq. (23) using a nonlinear least-squares solver, with A,
kgT/J, and fugacity as free parameters. Data are shown for
s=2 and 6. While Egs. (4) and (13) require corrections for
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FIG. 3. Measured temperatures 7 in the lattice obtained by fit-
ting the quasimomentum distributions for s=2 (top panel) and s
=6 (bottom panel) as the temperature 7}, in the harmonic trap is
varied. The vertical error bars are determined by the standard de-
viation in several measurements that are averaged for each point
and a 10% uncertainty in the Brillouin-zone width after time of
flight. The error bars in 7}, represent statistical uncertainty. There is
also a 5% systematic uncertainty in the TOF, which is not included
in the error bars. The curve is the thermodynamic prediction for
isentropic transfer into the lattice and noninteracting particles. The
width of the theory curve reflects errors in N and w.

next-nearest-neighbor tunneling at s=2, the next-nearest-
neighbor tunneling energy is 14% of J, which results only in
a small deviation from the tight-binding dispersion relation.
The fitted value of kgz7T/J is converted into temperature 7 in
the lattice using a truncated Fourier-series band calculation
for J, based on a calibration of s within 5% using Raman-
Nath diffraction [53]. The number of atoms N ranged from
3X10% to 1.4X 10° and the fitted fugacity from 0.35 to 0.74
for the data shown in Fig. 3.

The measured temperature in the lattice agrees with the
prediction for isentropic transfer—shown by the curve in
Fig. 3—when T}, leads to a thermodynamically predicted
kgT/J=<2.5. The theoretical prediction is calculated using
the measured 7), and N, as discussed in Sec. II. We also
include the change in the parabolic confinement induced by
the Gaussian profile of the lattice laser beams. We assume
that the overall confinement is spherically symmetric, with a
harmonic-oscillator frequency

w= wg + % , (24)
wm

where wy=40 Hz is the geometric mean of the oscillator
frequencies for the hybrid trap, and w=120* 10 um is the

waist of the optical lattice beams.
For higher T}, the measured temperature in the lattice is
systematically lower than the thermodynamic prediction. Ef-
fects due to interactions can be straightforwardly ruled out as
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the source of this discrepancy as the ratio of mean energy to
estimated interaction energy per particle is greater than 30
for the data in Fig. 3. Also, a failure of adiabaticity can be
ruled out as the measured temperature is less than the ther-
modynamic expectation. Furthermore, the temperature in the
lattice measured using an alternate technique agrees with the
thermodynamic prediction, as demonstrated in Sec. VI. In
Sec. V, we show that the deviation is consistent with a failure
of band mapping for states of high quasimomentum, which
are populated at high kgT/J.

V. SIMULATION OF BAND MAPPING
IN ONE DIMENSION

To investigate the validity of band mapping as a technique
for measuring the quasimomentum distribution, we numeri-
cally simulate the process using a Crank-Nicolson solver
[54]. We calculated the time evolution of the single-particle
eigenstates of the Hamiltonian in Eq. (1) in one dimension,
with the lattice depth s given by

6, 1<0
)=
s(1) 6<1_

and the corresponding harmonic-oscillator frequency deter-
mined by Eq. (24). The Wannier function at each lattice site
was approximated by the ground-state wave function of a
harmonic oscillator with angular frequency of 2Eg\s/% [42].
A total of 240 lattice sites were included in the simulation up
to t=750 us, when the band-mapping process is completed
(i.e., s=0). The wave functions were then propagated for 20
ms of free evolution using the kernel

m . 72
’ _ im(x — x")°12ht
’ 7t - s 26
Wnt) =\ e (26)

which was convolved with the wave function obtained from
the solver. The wave functions W/ (x') obtained via this pro-
cedure are the single-particle states when an image is taken.

Figure 4 shows the result of this simulation for the n=0
eigenstate. The effect of band mapping is to change the spa-
tial wave function so that the momentum distribution after
band mapping is the quasimomentum distribution before
band mapping. Since the quasimomentum wave function is
given by the Fourier series of the coefficients of the Wannier
functions [see Eq. (A4) in the Appendix], and the momentum
is the Fourier transform of the wave function, band mapping
is equivalent to removing the modulation of the wave func-
tion at the lattice spacing. Standard TOF imaging, after suf-
ficient expansion time, therefore reveals the quasimomentum
distribution.

To compare with the results of Sec. IV, we use the results
of this calculation to create simulated images in the thermal
limit for a range of kgT/J. We restrict the calculation to one
dimension and simulate the time evolution of the 150 lowest-
energy eigenstates. The predicted image is calculated by
summing the eigenstate probability distributions after band
mapping and time of flight, weighted by appropriate Boltz-
mann factors (3<<1):

(25)

),7ﬂ)ﬂszt20,
750 us
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FIG. 4. Numerical simulation of band mapping for the n=0
state. The single-particle eigenstate is shown at the top left. The
wave function after 20 ms of TOF, revealing the corresponding
momentum distribution, is displayed at the bottom left. The wave
function after band mapping is displayed at the top right, with the
wave function after 20 ms TOF shown at the bottom right.

o) = 23 PP 27)

Predicted images simulated using this scheme are shown as
solid black lines in Fig. 5 for kzT/J=2.88 and 2. The coor-
dinate x’ after TOF is converted to quasimomentum in the
lattice using g=mx'/ 7, where 7 is the free evolution time.
The predicted images are compared with the exact 1D qua-

simomentum distribution p(g)=2%,e 5[, (g)|* calculated
in the thermal limit [red (dark gray) line].

Apparent in Fig. 5 is the failure of band mapping at high
quasimomentum. During band mapping, the band gap at the
Brillouin-zone edge shrinks, and the adiabatic time scale for
changes in the lattice depth at high ¢ is extended. Atoms with
high quasimomentum therefore make diabatic transitions out
of the Brillouin zone during band mapping, leading to sig-
nificant smoothing of the sharp edge in the image at g
=m/d for high kzT/J. Because of this effect, images taken
after band mapping and time of flight at high kz7"/J are not
images of the quasimomentum distribution. We find that in
this simulation that we are not very sensitive to the choice of
band-mapping time. Indeed, in the literature, band-mapping
times of 20 us [29], 200 ws [6-8], 1 ms [27], and 2 ms [28]
have been employed.

To understand the impact of this problem on the method
employed in Sec. IV, simulated images for kz7/J=1-23 are
fitted to the 1D semiclassical Boltzmann quasimomentum
distribution

p(q) — Ae—ZB’J[l—cos(wqd)]’ (28)

where A and B’ are free parameters. This distribution is in-
dependent of the trapping potential since the full distribution
is separable [p(q,x)=p,(q)p,(x)] and we integrate over all
spatial degrees of freedom. The top panel of Fig. 5 shows the
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FIG. 5. (Color online) Failure of band mapping for high kgT/J.
In the top two panels, the black line is a finite-temperature band-
mapped distribution, the red (dark gray) line is a finite-temperature
quasimomentum distribution, and the cyan (light gray) line is a
semiclassical fit to the band-mapped distribution. The bottom panel
shows the temperature 7" obtained using a semiclassical fit to a 1D
simulation of imaging at temperature 7 after band mapping and
TOF. The red (dark gray) line has a slope of 1 and is present to
guide the eye.

fitted kgT'/J as kgT/J (used to create the distribution) is
varied. The fit systematically underestimates the temperature
for kpT/J=3, implying that the failure of band mapping is
responsible for the discrepancy at high kz7/J evident in Fig.
3 between the thermodynamic prediction and the fitted tem-
perature. We are unable to make direct quantitative compari-
sons between simulations and our data because of the com-
putational complexity of calculating a 3D density
distribution after band mapping, TOF, and projection onto
the imaging plane.

VI. MEASURING TEMPERATURE USING IN-TRAP SIZE

Because band mapping fails to produce quasimomentum
distributions at high temperature, we have explored another
method for thermometry. We determine temperature using
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FIG. 6. Temperature measured using the in-trap size for s=6.
The curve is the theoretical prediction assuming adiabatic transfer
into the lattice. The width of this curve is determined by uncertainty
in N and w. The error bars in 7 reflect the uncertainty in the ex-
trapolation to the in-trap size. The error bars in 7}, represent the
uncertainty in using standard TOF expansion to measure the tem-
perature of the gas before loading into the lattice. Inset (a) shows
the exact calculation of the width in one dimension (black line)
from Eq. (29) versus the semiclassical value of VkT/mw? (dashed
gray line). The agreement is exact except at very low temperatures.
Inset (b) shows a sample set of expansion data used to determine
the in-trap size. The line is a fit to the data of the form o
=\ ot +A%?, where A and oy are fit parameters.

0

the measured size of the gas while it is confined in the
parabolic-lattice potential. This technique not only over-
comes the limitations of band mapping, but also has sensi-
tivity superior to fitting the quasimomentum distribution at
high kgT/J. The quasimomentum distribution is largely in-
sensitive to temperature once states at the edge of the Bril-
louin zone are significantly populated. In contrast, the den-
sity profile always depends strongly on temperature, since
the localized  states—while nearly  uniform in
quasimomentum—extend to larger radii in the parabolic po-
tential as their energy increases.

The relation between in-trap size and temperature is given
by the exact expression for the mean-square width of the
cloud in the lattice along a direction 7,

<|f~f|2)=1% > f R R N PN G| RN )

Ny,

However, we can use the semiclassical expression [Eq. (17)]
for the width (3<1),

f d3x|f . f|26—mw2x2/2kBT
(IF- 5% = , (30)
f dfe—mw2x2/2k3T

which gives the familiar expression ({|7-%*)=kpT/ma>.
Comparing Eq. (30) to the width numerically calculated from
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Eq. (29) [Fig. 6(a)], the agreement is excellent as long as the
temperature is greater than the spacing between the first two
eigenstates given by Eq. (7).

We cannot directly measure the in-trap density distribu-
tion using our apparatus. Therefore, we measure the density
profile after snapping off the lattice and relatively short (i.e.,
less than 10 ms) TOF. The size of the gas in the trap is
inferred from extrapolation. We determine the rms size of the
gas by fitting images taken after expansion time ¢ to a Gauss-
ian profile. We then extrapolate to the rms size in the trap by
assuming for short expansion times that the gas expands with
a momentum distribution similar to that of a gas confined in
a harmonic potential. We therefore fit the rms size after ex-
pansion time 7 to o(t)=\og+Ar, leaving o, and A as free
parameters [55]. The temperature of the gas is inferred from
the fitted value of o, and the measured value of w [Fig.
6(b)].

Figure 6 shows the measured temperature in the lattice for
s=6 as the temperature in the harmonic trap is varied. The
agreement with the thermodynamic prediction (gray curve) is
excellent, implying that the disagreement with this prediction
evident in Fig. 3(b) is due to the failure of band mapping at
high quasimomentum.

VII. CONCLUSIONS

In conclusion, we have determined the absolute tempera-
ture of atoms confined in a lattice in the thermal limit by
employing two methods: fitting quasimomentum distribu-
tions obtained via band mapping and measuring the in-trap
size of the gas. These methods may be useful for verifying
other methods of thermometry and can be applied to fermi-
onic gases. Furthermore, determining temperature in the
thermal limit will prove useful for future studies of unex-
plained transport phenomena in optical lattices at relatively
high temperature [6,56]. Through numerical simulation, we
have also demonstrated that band mapping fails to produce
accurate quasimomentum distributions at high temperature
(or when high quasimomentum states are occupied). We ex-
pect this result to have an important impact on this
technique, which has been applied in many optical lattice
experiments [6-8,27-29].

We acknowledge funding from the National Science
Foundation (Award No. 0448354), the Army Research Office
(Grant No. W911NF-08-1-0021), the DARPA OLE program,
and the Sloan Foundation. D.M. acknowledges support from
NSERC. D.M. thanks the Thywissen group at the University
of Toronto for hospitality during the preparation of this

paper.
APPENDIX: QUASIMOMENTUM TRANSFORMATIONS

The quasimomentum basis states q)q»(f) are a complete
set, so any wave function can be written in the form (con-
sidering only a single band)

PHYSICAL REVIEW A 79, 063605 (2009)

qB
W(x) = f f f Lqf(§) b4(%).
—qp

The function f(§) is the quasimomentum-space wave func-
tion. The transformation from spatial to quasimomentum
wave function is

(A1)

fq)= f PxdyD V(D). (A2)

In particular, if we have a wave function defined in terms of
the Wannier functions,

mewm (A3)
where j labels lattice sites, then
f@ﬁjQ%@mg%ww
- f d3x¢;;(f)2 a; f &g e R ()
—E Jd% e R”‘f XGH(F) i ()
=ZaJQP’WRm$m—5)
: (A4)

— 2 a 'el(ij/ﬁ.
-
J

Therefore, the quasimomentum-space wave function is
given by the Fourier series of the Wannier function coeffi-
cients. Finally, the transformation between the quasimomen-
tum wave function and momentum [taking the Fourier trans-
form of Eq. (Al)] is

(p) = f f f Paf(PPyp). (A5)
-4z
The momentum-space Bloch wave functions are
b4(p)=W(P) 2 85 -G~ P). (A6)

J

where w(p) is the Fourier transform of the Wannier function
at site R=0 and P; is a reciprocal-lattice vector. Therefore,

W@)fff fwgwwﬁf -P)). (A7)

For || < g the only way for the integrand to be nonzero

is if ﬁj:O, since all other reciprocal-lattice vectors lie out-
side the Brillouin zone, so

V(p) = f(B)Wo(p). (A8)
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