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Signatures of high-intensity Compton scattering
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We review known and discuss new signatures of high-intensity Compton scattering assuming a scenario
where a high-power laser is brought into collision with an electron beam. At high intensities one expects to see
a substantial redshift of the usual kinematic Compton edge of the photon spectrum caused by the large,
intensity-dependent effective mass of the electrons within the laser beam. Emission rates acquire their global
maximum at this edge while neighboring smaller peaks signal higher harmonics. In addition, we find that the
notion of the center-of-mass frame for a given harmonic becomes intensity dependent. Tuning the intensity
then effectively amounts to changing the frame of reference, going continuously from inverse to ordinary
Compton scattering with the center-of-mass kinematics defining the transition point between the two.
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I. INTRODUCTION

The technological breakthrough of laser chirped-pulse
amplification [1] has led to unprecedented laser powers and
intensities, the current records being about 1 Petawatt (PW)
and 10*2 W/cm?, respectively. Within the next few years
these are expected to be superseded by an increase of about 1
order of magnitude each, for instance at the upgraded Vulcan
laser facility [2]. Up to 3 orders of magnitude may be gained
at the planned “Extreme Light Infrastructure” (ELI) facility
[3]. This progress calls for a reassessment of intensity effects
in QED and the new prospects of measuring them (see, e.g.,
[4-6] for discussions of strong-field physics at Vulcan and
ELI). There is a plethora of strong-field QED processes,
which may be roughly categorized into two classes: loop and
tree-level processes. The former include strong-field vacuum
polarization, the real part of which describes vacuum bire-
fringence [7] (for a recent discussion, see [8]), while its
imaginary part signals Breit-Wheeler pair production [9].
Summing all orders of these one-loop diagrams (in the low-
energy limit) one obtains the Heisenberg-Euler effective La-
grangian [10] which in turn yields Schwinger’s nonperturba-
tive mechanism of spontaneous pair production from the
vacuum [11]. The optical theorem and crossing symmetry
relate these one-loop diagrams to tree-level processes such as
perturbative pair production, pair annihilation, and Compton
scattering.

It is well known that one-loop processes are of order #
and thus of a genuine quantum nature, while tree level pro-
cesses generically do have a classical limit. As a result, one
can introduce two distinct parameters which characterize the
different physics involved. The first parameter is the QED
electrical field,

*christopher.harvey @plymouth.ac.uk
"theinzl @ plymouth.ac.uk
*antoni @maths.tcd.ie

1050-2947/2009/79(6)/063407(17)

063407-1

PACS number(s): 12.20.Ds

m2C3
E =

¢ eh

=13 % 10" V/m, (1)

first introduced by Sauter [12] in his analysis of Klein’s para-
dox [13]. The presence of Planck’s constant, 7, and the speed
of light, ¢, show that E. originates from a relativistic
quantum-field theory. In an electric field of strength E. an
electron acquires an electromagnetic energy equal to its rest
mass mc? upon traversing a distance of a Compton wave-
length, X,=%/mc. Hence, E. may be viewed as the critical-
field strength above which vacuum pair production becomes
abundant. This is also borne out by Schwinger’s pair-creation
probability given by the tunneling factor p~exp(-mE,/E)
[11], where E denotes the “ambient” electric field one suc-
ceeds in achieving. Currently, this is E=10"* V/m implying
a huge exponential suppression. The perturbative variant of
the Schwinger process, i.e., the (strong-field) Breit-Wheeler
process [9,14], was observed about 1 decade ago in the Stan-
ford Linear Accelerator (SLAC) E—144 experiment [15,16].
There a Compton backscattered photon pulse of about 30
GeV was brought into collision with the 50 GeV SLAC elec-
tron beam. The huge gamma factor (y==10°) led to an effec-
tive electric field close to the critical one, E'=yE=E_, as
seen by the electron in its rest frame.

In this context a second parameter comes into play, the
“dimensionless laser amplitude,” given as the ratio of the
electromagnetic energy gained by an electron across a laser
wavelength X to its rest mass,

eEX

=—7. 2
2N me2 (2

This is a purely classical ratio which exceeds unity once the
electron’s quiver motion in the laser beam has become rela-
tivistic. It may be generalized to an explicitly Lorentz and
gauge-invariant expression [17]. For our present purposes it
is sufficient to adopt a useful rule-of-thumb formula express-
ing a, in terms of laser power [18],
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so that a is of order 10 for a laser in the Petawatt class.
SLAC E—-144, on the other hand, had g of order 1, hence by
modern standards was in the low-intensity, high-energy re-
gime. As high energy implies huge gamma factors and fields
close to E. this is also the genuine quantum regime.

In this paper we will concentrate on the segment of the
QED parameter space that has become accessible only re-
cently, characterized by large intensities, ay> 1, and com-
paratively low energies, w<<mc?, typical for experiments
with an all-optical setup. We will thus stay far below the
Breit-Wheeler pair-creation threshold and will have to con-
sider a process that is not suppressed by either unfavorable
powers or exponentials. A natural process that comes to mind
is a crossing image of the Breit-Wheeler one, namely, strong-
field Compton scattering where a high-intensity beam of la-
ser photons 7; collides with an electron beam emitting a
photon 7. In this case one has to sum over all n-photon
processes of the type

e +ny,—e +7. (4)

The study of this process(es) has a history almost as long as
that of the laser. Intensity effects were addressed as early as
1963/64 in at least three independent contributions by Ni-
kishov, Ritus, and Narozhnyi [19-22], Brown and Kibble
[23], and Goldman [24]. These works are written from a
particle physics perspective, i.e., essentially by working out
the relevant Feynman diagrams. For modern reviews of these
developments, the reader is referred to [15,18]. Nikishov and
Ritus in [22] pointed out that aj is proportional to E> and
hence the photon density 7.,. The precise relationship is

fie?

mzczw

a%z ny=47'ra1/27(3n7, (5)

where v=#w/mc? is the dimensionless laser frequency and
}(311y is the number of photons in a laser wavelength cubed.
As the probability for the process (4) is proportional to a%"
~n’), it becomes nonlinear in photon density for n>1 and
hence is called nonlinear Compton scattering [22]. Some-
what in parallel, the same process has been considered by the
laser and plasma physics communities with an emphasis,
however, on the very low-energy and hence classical aspects.
The appropriate notion is therefore nonlinear Thomson scat-
tering. These discussions were based on an analysis of the
classical Lorentz-Maxwell equation of motion, typically us-
ing a noncovariant formulation and neglecting radiation
damping. Some early references are papers by Sengupta [25],
Vachaspati [26], and Sarachik and Schappert [27]. Since then
there has been an enormously large number of papers from
this perspective, many of which are quoted in the concise
review [28].

The main intensity effect can indeed be understood clas-
sically, the reason being the huge photon numbers involved,
Xn,=10'%, in a laser wavelength cubed. Due to the quiver
motion in a (circularly polarized) plane-wave laser field the
electron acquires a quasifour momentum given by
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q=p+ k=p+qp. (6)
Hence, the electron acquires an additional, intensity-
dependent longitudinal momentum ¢g; caused by the pres-
ence of the laser fields. It may be obtained as the proper time
average of the solution p,(7) of the classical equation of
motion with p,=p,(0) being the initial electron four-
momentum and k, = wn,, the lightlike four-vector of the wave
[29]. Historically, Eq. (6) was first found in the context of
Volkov’s solution [30] of the Dirac equation in a plane elec-
tromagnetic wave. Volkov explicitly wrote down the zero
component ¢° while the generalization (6) seems to be due to
Sengupta (note added at the end of his paper [31]; cf. also the
textbook discussion in [32]). Upon squaring ¢ one infers as
an immediate consequence the intensity dependent mass
shift,

m* —m>=m*(1 +a(2)). (7)
Although first predicted by Sengupta in 1952 [31] (see also
[23,29]), it has so far never been observed directly [33]. A
central topic of this paper will be to (re)assess the prospects
for measuring effects due to the mass shift (7).

The paper is organized as follows. We begin in Sec. II by
reviewing the coherent-state model of laser fields, which pro-
vides the link between classical laser light and light quanta
(photons) in quantum theory. We then describe scattering
amplitudes between these coherent states in QED and how
they are generated by an effective action describing interac-
tions with a classical background field. We illustrate this
theory with nonlinear Compton scattering, in Sec. III, and
give a thorough discussion of the kinematics of the colliding
particles. In Sec. IV we give a variety of predictions for both
Lorentz invariant and laboratory-frame photon emission
spectra. Our conclusions are presented in Sec. V.

II. QED WITH CLASSICAL BACKGROUND FIELDS

We first address the question which asymptotic in state we
should take to describe the laser field. In principle, we would
simply take the multiparticle state containing the appropriate
number of photons of laser frequency and momentum, en-
coded in the four-vector k=(w,k). We are immediately faced
with the problem of not knowing exactly how many photons
are in the beam. Similarly, as we do not know how many
photons will interact with, say, an electron during an experi-
ment, we do not know what to take for the outstate. To over-
come these problems we invoke the correspondence prin-
ciple: due to the huge photon number in a high-intensity
beam it should be feasible to treat the laser classically as
some fixed background field. Formally, this is achieved by
describing the laser beam, asymptotically, in terms of coher-
ent states of radiation [34-37]. The coherent states have the
usual exponential form

4k
2m)?

€ =exp \N j CHI)a!00)0), (8)

where aL is the photon creation operator, C,(k) gives the

(normalized) polarization and momentum distribution of the
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photons in the beam, and N is the expectation value of the
photon number operator (the average number of photons in
the beam). As usual, the state is an eigenvector of the posi-

tive frequency part of A , Since
a,(k)|C) = \NC,,()|C). 9)

Expanding the exponential in Eq. (8), we see that calculating
S-matrix elements between states including coherent pieces
is equivalent to a particular weighted sum over S-matrix el-
ements of photon Fock states. Working with coherent states
may also be thought of, physically, as neglecting depletion of
the laser beam, i.e., taking the number of photons in the
beam to remain constant [38,39]. There is a natural connec-
tion between classical fields and coherent states as these
states are the “most classical” available, having minimal un-
certainty. The associated classical field is essentially, as we
shall see, the Fourier transform of the distribution function
C. To see this we turn to the calculation of S-matrix elements
between coherent states.

Consider some scattering processes with an asymptotic in
state containing the coherent state C and some collections of
other particles. For reasons which will shortly become clear,
we will summarize all those particles nor in the coherent
state by “in,” so that our state is |in; C). Similarly, we take an
out state of the form {out; C| where we have, in accord with
the assumption of no beam depletion, the same coherent
state. In operator language, we are interested in calculating

matrix elements (out;C |§|1n C) of the S-matrix operator

S= Texp|:— éf dtlfll(t)} .

Here H, 4(t) is the interaction Hamiltonian (in the interaction
picture) and 7 denotes time ordering. We now write the co-
herent state (8) as a translation of the vacuum state (see, e.g.,

[40]),

(10)

|C)=1./0), (11)

where the commutator of the translation operator and the
photon annihilation operator is

[a,(k),Tc]=C, (k) T¢. (12)

Extracting the translation operator from the states,! we are
left with ordinary asymptotic Fock states but with a modified
S-matrix operator

g

(out; C|S|in; C) = (out| T'ST|in).

(13)

From the definition (10) of S, the effect of the translation

operators is to shift any photon operator A » appearing in the
interaction Hamiltonian by (the Fourier transform of) C,,(k)
which we denote by A ,(x). Hence, the fermions interact with

'Under the usual assumption of no forward scattering. For the
photons, this requires C,,(k")=0 for any scattered photons of mo-
mentum k'.
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the full quantum photon field A » and a classical background
field, A, (x).

To be precise, and switching to a more common quantum
field theory language, S-matrix elements are given by the
on-shell Fourier transform of Feynman diagrams with ampu-
tated external legs, as usual, but where the Feynman dia-
grams are generated by the action

S[A,A,z/x,(}]:Jd“ —iFWF"H Wil +iel +ieh]—m)ip.
(14)

This is almost the ordinary QED action, but the photon field
in the interaction term is shifted by A,,, explicitly given by

—ik-x

=—=C,(k) +c.c.

—_— . (15)
(2m)¥*\2lk| 2=0

A,(x) =N f &k

This potential gives the classical electromagnetic fields asso-
ciated with the momentum distributions C,(k). Note that
only the interaction terms of the action are affected by the
presence of the background field, following Eq. (13). We
therefore have a natural and quite elegant way to
calculate—we do not need to directly add up the individual
contributions of the infinite series of terms generated by ex-
panding the asymptotic coherent state. Instead, we simply
include a classical background in the action which contains
all the information about the chosen asymptotic photon dis-
tributions. Following [29,41] these results can be summa-
rized by

g S[Alliny, (16)
where, on the right-hand side, the asymptotic states are ordi-
nary particle number states, with no coherent pieces, and the
photon fields in the S-matrix operator are translated by A,,.

Briefly, the same result can be recovered entirely in the
path integral, or functional, language, following, e.g., [42].
The construction of S-matrix elements between coherent
states proceeds just as for elements between Fock states, but
the asymptotic vacuum wave functional must be replaced by
coherent-state wave functionals. Ordinarily it is the vacuum
which is responsible for introducing the ie prescription into
the action and from there into the field propagators. A coher-
ent state does this and more—it translates the photon field in
the interaction terms by the classical field (15), recovering
Eq. (16).

Note that the modified action (14) remains quadratic in
the fermion field. All effects of the background are therefore
contained in a modification of the electron propagator. The
result is that, in Feynman diagrams, the propagator becomes
“dressed” by the background field A, which surrounds the
electrons. The propagator will be represented by a heavy line
as in Fig. 1 and has a perturbative expansion in terms of a
free-electron propagator interacting an infinite number of
times with A, as represented by the dashed line.

The Feynman rules of the theory are otherwise unchanged
from QED—there is a single three-field vertex which joins
the photon propagator and two of the dressed fermion propa-
gators. This background-field approach is equivalent to

(out; C|S|in; C) = <Out|TAE1§7A"C|in> = (out
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FIG. 1. Perturbative expansion of the electron propagator in a
background field.

adopting a Furry picture [43], in which the “interaction”
Hamiltonian describes the quantum interactions while the in-
teraction with the background A, is treated as part of the
“free” Hamiltonian.

In general, the fermion propagator will have no closed
form expression. Since an intense background will be char-
acterized by numbers larger than 1 (such as the intensity
parameter a), a perturbative expansion in the background is
not suitable. We can of course use a coupling expansion, but
this leaves us with an infinite number of Feynman diagrams
to calculate for any process, even at tree level. Fortunately,
for the backgrounds considered in this paper and discussed
below, the electron propagator is known exactly, allowing us
to treat the background field exactly. We will now illustrate
these ideas by applying them to the process of interest in this
paper: nonlinear Compton scattering.

III. NONLINEAR COMPTON SCATTERING

In this process an electron, incident upon a laser, scatters
a photon out of the beam. Using the background-field ap-
proach described above, we use the action (14), which con-
tains the effects of the laser, and take the asymptotic in—and
out—states to be, respectively,

P’ N), @' .\k' €. (17)

The pair (p,\) gives the momentum and spin state of the
incoming electron, similarly (p’,\’) describe the outgoing
electron, and (k', €) are the momentum and polarization ten-
sor of the scattered photon. Only one Feynman diagram con-
tributes to this process at tree level, shown in Fig. 2. Note
that the analogous scattering amplitude with “naked” elec-
trons, corresponding to spontaneous photon emission in
vacuum, vanishes due to momentum conservation.

Calculating the corresponding S-matrix element amounts
to amputating the external legs and integrating over the
single vertex position. Amputating and Fourier transforming
the electron propagator in a background field give us the
solutions of the Dirac equation in that background
[19,23,24,29]. We will write these electron wave functions as
W,\(x). The S-matrix element of the process in Fig. 2 there-
fore reduces to

!/
er

€r, v

FIG. 2. Nonlinear Compton scattering Feynman diagram using
dressed electrons (subscript L).
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ik’ x

SLATpN) = — ie J d4x‘f'pr)\r(x)ﬁé‘1’p)\(x).
\/!

(18)

'\ k' €

To proceed we need to pick a background field so that we
can explicitly calculate the wave functions W, (x) and there-
fore the S-matrix element (18). This is the focus of the next
section.

A. Plane waves and Volkov electrons

We will model the laser by a plane wave, A, =.A,(kx),
with k a lightlike four-vector characterizing the laser beam
direction. The electron wave functions in such a background,
or “Volkov electrons [30],” are known exactly. The propaga-
tor is also known and may be derived either in field theory or
using a first quantized (proper time) method [11]. For a text-
book discussion, see [32]. The Volkov electron is

) 1
W (x) = ™" eXp{ %d&epfl(f) - 62«42(6)}
X[l+ikAi|up, (19)

where p?>=m? and u, is the usual electron spinor.
To better understand this wave function we specialize
from here on to the case of A, being a circularly polarized

plane wave of amplitude a,
A* = all cos(kx) + af sin(kx), (20)

where a;k=0 and ajak=—a25jk. The electron wave function
becomes

W\ (x) =exp| —igx — ieMSin(kx) + ie%cos(kx) e
kp kp
(21)

We have not given the explicit form of the spinor part; it is
easily written down and not needed for the discussion in this
section. The important effect is that the electron acquires the
quasi-four momentum ¢ defined in Eq. (6) from the laser
field with the intensity parameter a, given by

e’a’

ag=—. (22)

Technically, the origin of the quasimomentum lies in a sepa-
ration of the exponent in Eq. (19) into a Fourier zero mode
and oscillatory pieces, with the zero mode causing the mo-
mentum shift, p— ¢. Inserting the wave functions (21) into
Eq. (18) and omitting the details of the calculation [21], we
find that the scattering amplitude is a periodic function with
Fourier series
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v(k,,)

iy

e’(q)

e*(q) h

FIG. 3. The effective Feynman diagram describing the nth har-
monic process; an electron of mass m..€ absorbs n laser photons of
momentum k, and emits a photon of momentum k/'L.

S[Alp.\)

1
= / 172
Qlk'[2E,2E,)"

@' Nk €

E M(n)5(4)(q+nk—q' -k').

n=1
(23)

A discussion of the amplitudes M(n) may be found in [32].
We will give below the explicit form of the squared ampli-
tudes summed over spins A\, \’, and polarizations €. We do
not consider polarized scattering and angular distributions in
this paper, though these topics are interesting in themselves
and are discussed in, for instance, [44—46].

The sum in Eq. (23) is not a coupling expansion, nor does
it appear directly from an expansion of the coherent state
into Fock states. Instead, the momentum-conserving delta
function in the nth term implies that M(n) can be identified
with the amplitude for an electron of momentum ¢ and mass
m,, absorbing n photons of momentum k, and emitting one
scattered photon of momentum k',

e.(q) + ny(k) — e.(q') + y(k'), (24)

as illustrated in Fig. 3. As pointed out in Sec. I, these multi-
photon processes are the origin of the name ‘“nonlinear”
Compton scattering. It is simplest to use the language of
quasimomenta to formulate the kinematics of Eq. (23) as Eq.
(24) is a process involving effective particles. The
asymptotic particle kinematics may be reconstructed from
the relation (6) between p and g. The processes with n>1
correspond to higher harmonics. Note that the n=1 process is
analogous to ordinary, “linear” Compton scattering. It is pos-
sible to normalize such that one does indeed recover the
Compton cross section at ay=0. We will use this below as a
reference cross section for experimental signals.

B. Kinematics—forward and backscattering

We will now study the kinematics implied by the momen-
tum conservation in Eq. (23), finding an expression for the
emitted photon frequency in terms of incoming particle data
which generalizes the standard Compton formula for the
photon frequency shift. This will later be used when we pre-
dict the emitted photon spectrum.

PHYSICAL REVIEW A 79, 063407 (2009)

S, 8, §3 84
A ]

u=0 s=0 ,

su=m}

FIG. 4. (Color online) Mandelstam plot for nonlinear Compton
scattering. Solid segments of dashed lines correspond to allowed u,,
and 1, regions for each depicted value of s,,.

The delta function in Eq. (23) implies the momentum con-
servation equation

g+nk=q' +k', (25)

where ¢ is given by Eq. (6) and ¢’ being defined analogously
with p replaced by p’. As k is lightlike we have

gk=pk, q'k=p'k. (26)

It is useful to first discuss the kinematics in terms of the
Mandelstam invariants

s, =(q+nk)>=m>+2nkp = m?, (27)
t,=(nk—k')?=-2nkk' <0, (28)
u,=(nk—q')=m?>-2nkp'. (29)

Recall that these are not independent as s,,+1,+u,=2m>. As
each of them depends on the photon number n they will be
different for each of the subprocesses (24). The physically
allowed parameter ranges are displayed in the Mandelstam
plot of Fig. 4. For the n-photon subprocess, if s=s, is held
fixed, the allowed 7 and u ranges (highlighted in red/full
segments of dashed lines) are

tin = 2m? - Sp— mf:/sn Upax = mi/sn backscattering
Uppin = 2m? - s, forward scattering.

(30)

Imax =0

Obviously, the allowed ¢ range increases with photon number
n.

In order to find the generalization of Compton’s formula
for the scattered photon frequency (thus abandoning manifest
covariance) we square Eq. (25) so that we may remove ¢’
from the game via

nkg=k'q' =gk’ + nkk', (31)

where the second equality follows directly from Eq. (25).
Using definitions (6) and (26), we trade ¢ for p, arriving at
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an equation in terms of the asymptotic, on-shell momenta
2
’ 2 M ’
nkp:kp+<n+a0—)kk , (32)
2kp

where k'?>=0 and p>=m?. We will assume, in what follows,
that the electron and laser meet in a head-on collision. That
18, incident momenta are

k'u=w(1’n)’ pM=(Ep’_|.p|n)’

Primed (outgoing) quantities are defined analogously. For a
head-on collision the only angle in play is the standard scat-
tering angle @ of the photon, determined via n-n’'=cos 6.
The remaining scalar products become

, n'-p=-|p|cos 6. (34)

n|=1.  (33)

n-p=-1p

From now on we measure all energies in units of the (bare)
electron mass, m. This introduces the dimensionless param-
eters

E
v=" y=L=cosh{, By= b =sinh £, (35)
m m m
where { is the rapidity such that
_ M _ —
= =1 -1/9=tanh {. (36)

P

Of course, 8 and 7 are the usual Lorentz factors character-
izing the frame of reference from the electron’s point of
view. B=0, for instance, corresponds to the (asymptotic)
electron rest frame. Using these definitions, Eq. (32) may be
rearranged to express the intensity-dependent scattered pho-
ton frequency as

ny
1+ k,(ag)e (1 —cos 6)

vy (6) = (37)

Here, ¢~¢ is the (inverse) Doppler shift factor for a head-on

collision,
_ 1-B
{_ —_A)= -
e—ﬂlﬁﬁxh+ﬂ (38)

Going back to Eq. (37) we see that all the intensity depen-
dence resides in the coefficient

K,(ag) =nv— By+ ag'y(l —B)/2=nv—sinh {+ aée‘g/Z.
(39)

Standard (“linear””) Compton scattering is reobtained by set-
ting n=1 and a;=0 (no intensity effects). In this case Egs.
(37) and (39) give back the ordinary Compton formula,

v
1+ (= Y1 - B)(1 - cos 0)
B v

" 1+ (v—sinh O)e™¥(1 —cos 6)°

!
]

(40)

So, technically speaking, the two intensity effects on the
scattered frequency are the replacements (i) v—nv in the
numerator and (ii) x;(0)— k,(ap) in the denominator. Ex-
plicitly, the latter is

PHYSICAL REVIEW A 79, 063407 (2009)

v—By—nv-By+ a%'y(l -B)/2, or

v—sinh { — nv—sinh { + aje™%/2. (41)

The possibility of the incoming electron absorbing n>1 la-
ser photons may be interpreted, in a classical picture, as the
generation of the nth harmonic, modulated by both relativis-
tic and intensity effects. Using a linearly polarized beam the
first few harmonics have indeed been observed experimen-
tally by analyzing the photon distribution as a function of
azimuthal angle, ¢. The second and third harmonics have
clearly been identified from their quadrupole and sextupole
radiation patterns [47].

For each harmonic number n, the allowed range of scat-
tered photon frequencies v, is finite. The boundary values of
this interval (which is the ¢ interval in the Mandelstam plot
Fig. 4) correspond to forward and backscattering at =0 and
, respectively,

nv

'(0)=nv, e —
70 =nv 1 +2k,(ap)e™®

v,(m) = (42)

The assignment of minimum and maximum depends on the
sign of «,,

Kk, > 0= v (m) < v (0 <nv

redshift *“ Compton,”

K, <0=nv<v (6 < v (m

blueshift  “inverse Compton.” (43)

So, if k,>0, the allowed scattered photon energies v, are
redshifted relative to nv, the energy of the n absorbed laser
photons. This clearly includes the cases ay=0, y=1, and n
=1 which describe Compton’s original scattering experiment
in the electron rest frame. In accelerator language, this case
sees the laser fired onto a fixed electron target; the laser
photon transfers energy to the target, so that the scattered
photon is redshifted (v' <nw).

On the other hand, if «,, <0, the scattered photon’s energy
is blueshifted from nv. The situation when the photon gains
energy from the electrons is often referred to as inverse
Compton scattering. This is of relevance in astrophysics, for
instance, in the Sunyaev-Zeldovich effect [48—50]. A particu-
larly simple and important scenario is provided by the back-
scattering of the laser pulses, #=r, in the high-energy limit
(inverse Compton regime). We take y> 1 so that e=27 and
we assume k, <0, whereupon the scattered frequency be-
comes, from Eq. (37),

2L 4
m =AYy
1 +ay+2nve 1+ay+4ynv

where the approximation is valid for high energy. In this
regime one may distinguish between two different limits,

v (m) =4ynviay if 4mv<l<daf, (45)
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vi(m=y if 1+aj<4ynv. (46)

It is the former subcase which is typically realized” for opti-
cal photons (ry==107°) and moderate values of harmonic
number n. Thus, as long as ay=<2v, the back scattered fre-
quency (45) is (i) blueshifted with respect to the incoming
nth harmonic frequency nv and (ii) for n=1, redshifted com-
pared to the linear “kinematic edge” (the maximal, backscat-
tered frequency, v/ ) as emphasized already by McDonald

max

[18]. Explicitly, this redshift is
4y’ — 4y a(z),

From the definition of «, given in Eq. (39) it is clear that,
given any fixed experimental setup (i.e., incoming electron
energy and intensity parameters { and a;), «, will eventually
become positive and remain so for all higher harmonics with

sinh ¢ — age™/2

14

y>1, 4mv<l<aj. (47)

n> = ny, (48)

where |b] denotes the nearest integer less than or equal to b.
Thus, for a given experimental setup, scattered photons cor-
responding to harmonic generation with n>n, can only have
energies redshifted relative to the energy nv absorbed by the
electron. Alternatively, we can fix n and so define a critical
intensity, from the vanishing of «,, which allows us to tailor
the emission spectrum. The critical intensity parameter is

a3 oi(n) = 29(1 + B)(By —nv)

!
=2¢(sinh { — nv) = e* = 2nvet —1=0. (49)

For ag=ag .(ng) all harmonics with n>nq (n<ng) will be
redshifted (blueshifted). For the extreme choice of ny=1, all
scattered frequencies will be redshifted for intensities above
ap (1), as in, for example, fixed-target mode (y=1). We
are, however, more interested in the colliding mode (high
energy). Then, for y> 1, we can approximate aéycm from Eq.
(49) as

agycmz 49 —dynv. (50)

When 4ynv<<1 as above, a; becomes effectively n inde-
pendent

Ao crit = e{ = 27- (5 1)

As a numerical example, consider the facility at the Fors-
chungszentrum Dresden-Rossendorf (FZD) with a 100 TW
laser and a 40 MeV linac [51]. This implies y=380, v=2
X 107°, and ay =20, so that all harmonics are relatively blue-
shifted up to n=3.9 X 10’—as we will see, emission rates at
this n are basically zero. In this case, the critical value of a,
above which all harmonics (n=1) are relatively redshifted
compared to nv, is ay=2y=160, 1 order of magnitude above
the expected available intensity. One may verify, for ex-
ample, that for aq=200, «,>0 for all n.

The discussion above will be illustrated in the next sec-
tion when we discuss the photon spectra as a function of

2SLAC E-144 had yr=0(1) so all terms in the denominator of
Eq. (44) were of comparable magnitude.
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scattered frequency, v'. In particular, we will see that, even if
backscattering does not necessarily maximize the scattered
photon frequency, it nevertheless gives us the strongest sig-
nal for which to search experimentally, namely, the redshift
of the Compton edge (parameters permitting).

To better understand the different behaviors of the har-
monics, it is useful to write «, in terms of laboratory-frame
variables. For a head-on collision (which we assume), say
along the z axis, all momenta involved are longitudinal. The
total three-momentum, call it P, is then given by

P=nk+q=nk+p+q;

=m(nv—sinh { + aée_£/2)f =mr,Z. (52)
The lab-frame physics involved in a head-on collision
(p=—(By/v)k) depends crucially on the relative magnitude
of the three terms contained in «,,

nlk|/m=nv, (53)
|p|/m = sinh ¢, (54)
g, |/m= a%e_g/Z. (55)

Consider again Compton’s original experiment with an elec-
tron at rest and ay=0. This corresponds to q;=p=0, so the
only three-momentum is that of the single incoming photon
which delivers part of its energy to the electron and hence is
redshifted. If we now increase the electron energy in the
laboratory (using a standard or wake field acceleration
scheme) this redshift turns into a blueshift (v’ > v) as soon as
|p| > |k|=mv. This happens exactly where the total momen-
tum, P=k+p, changes direction from pointing in direction k
to —k. Hence, at this particular point P passes through zero,
which, of course, defines the center-of-mass (c.m.) frame
where there is no frequency shift at all, v'=v.

If we now turn on intensity (a,>0) the total momentum
acquires an additional, laser-induced contribution ¢; along k.
So, in fixed-target mode large intensity will result in a sig-
nificant enhancement of the Compton redshift. If, on the
other hand, we assume colliding mode with a blueshift at
ay=0, then the g; contribution in P works against the “influ-
ence” of p. As a result, the blueshift v’ > v at zero intensity is
reduced, resulting in a redshift of the kinematical Compton
edge (v,,.)- If ay is large enough this latter redshift may
completely cancel the inverse Compton blueshift. Again, this
happens when the total momentum P=k+p+q; vanishes
(k;=0), i.e., in the “c.m. frame” which is now an intensity-
dependent notion as ¢; depends on ay.

If we finally allow for higher harmonics n> 1, with the
total momentum becoming P=nk+p+q;, we can balance p
by increasing a, n, or both. The transition point, «,=0, de-
fines a c.m. frame for the nth process. At this point, the range
of the nth allowed harmonic collapses to a point, v, (6)=nv,
as the 6 dependence in Eq. (37) drops out. Strictly speaking,
this can only occur for at most one value of n, but neighbor-
ing n’s will still have rather small spectral ranges (see Fig.
9).
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IV. PHOTON EMISSION RATES
A. Lorentz invariant characterization

The S-matrix element represented by the Feynman dia-
gram of Fig. 2 and given implicitly in Eq. (23) may readily
be translated into an emission rate [19,32]. The nontrivial
contribution to the differential rate for emitting a photon of
frequency w’=mv’ per unit volume per unit time, in the nth
harmonic process, i.e., the process (24), comes from the dif-
ferential probability® [32]

dw, 1
RN , =1, 56
dx (1 +x)2l}n(Z(X)) . (56)
where x is the dimensionless Lorentz invariant
kk' t,
X=-—= 7 =0. (57)
kp"  u,—m;

The kinematically allowed range for nth harmonic generation
is given by the interval

0=x=y,, (58)
2nk Sy
Yn= 2p=_2_1205 (59)
m;  m

which corresponds to the ¢ range given in Eq. (30) high-
lighted in Fig. 4. The end points x=y, are located on the
hyperbola su=m?. For x outside of this range the nth partial
rate vanishes.

The function J,, is

X

)[J,%_m ()= 2]

(60)

~ 4 2 2
@) ===+ 2+
a, 1+x

where J, being Bessel functions of the first kind. Their argu-
ment is another Lorentz invariant

() = 200\ [H0a= D) (61)
i 1+(10

Both upper and lower limits of x correspond to z=0 and
hence zeros of J,(z) for all n> 1. The first few partial emis-
sion rates for Ep=50 MeV, w=1 eV (hence y=102, v=2
X 107%), and a,=20 are plotted in Fig. 5. Linear Compton
(ap=0 and n=1) data are presented for comparison.

The figure clearly shows the appearance of higher har-
monics (n>1) with, however, a reduced signal strength as
compared to the fundamental frequency. Writing the Comp-
ton edge (59) as

n
Y =Yalag) =y:1(0)7—. (62)
I +ag
where y,(0) corresponds to linear Compton scattering, we
see that the edge x=y,(a,) of the first harmonic will always

3We normalize such that we recover the Klein-Nishina cross sec-
tion for linear Compton scattering for n=1 as ag—0 (see, e.g.,

[32)).
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(arb. units)

dW_ /dx
n

107 10°° 107° 107 107°

FIG. 5. (Color online) Partial emission rates (n=1...4) for non-
linear Compton scattering as a function of the Lorentz invariant x at
intensity ay=20 compared to linear Compton scattering (ag=0
curve). Horizontal log scale.

be shifted to the left by a factor 1/(1+aZ). The same is true
for the higher harmonics until n>1+a;. For ay>1 these
large harmonics will, however, be invisible due to their very
small signal strength.

To obtain the total rate, one just sums over photon num-
bers n, i.e., over all harmonics,

AW < dw,
— =2, (63)
dx 2 dx
where it is understood that the nth term is supported on O
=x=y,, with x given in Eq. (57). The partial sums up to n
=30, 60, and 100 are shown in Fig. 6, along with the linear
Compton spectrum. Again we note the significant shift of the
fundamental Compton edge at x=y,(ay) together with side
maxima due to the higher harmonics. Interestingly, the fun-
damental (n=1) signal gets amplified due to superposition of
the higher harmonic rates from Fig. 5. This suggests that, for
ag>1, the signal-to-noise ratio may become larger than for
the linear case, while the full width at half maximum may
become smaller. By tuning a, to an optimal value one may
thus design x rays of a given frequency and width.

B. Laboratory kinematics: Energy dependence

Any actual Compton scattering experiment will be per-
formed in a laboratory (frame) with the electrons either at
rest (fixed target mode) or in motion. In what follows, we
will assume the latter together with a head-on collision be-
tween laser pulse and electron beam (collider mode) as dis-
cussed in the previous section. In this case the kinematic
invariants x and y, from Egs. (57) and (59) become functions
of the scattered frequency »' and the scattering angle 6,

(1 =cos 0)v'

= 64
* et — (1 -cos O)v' (64)

063407-8



SIGNATURES OF HIGH-INTENSITY COMPTON SCATTERING

25F a0=20 b

-y
a1
T

dW /dx (arb. units)

—
T

FIG. 6. (Color online) Sum of partial emission rates from n
=1...30 (dashed, lower curve), 60 (dotted, middle curve), and 100
(solid (black), top curve) for nonlinear Compton scattering (head-on
collision) at intensity ay=20. The curves are indistinguishable for

x=107. Linear Compton data (blue, n=1, a,=0) added for
comparison.
2nvet
Yn= R (65)
1 +a

Either the scattering angle 6 or the frequency v, may be
eliminated via Eq. (37), allowing us to plot the emission rate
as a function of v’ or 6, respectively.4 In this section we
focus on the v’ dependence of the partial and total emission
rates which are depicted in Figs. 7 and 8, respectively. Simi-
lar plots (for aq of order 1) have been obtained before in
[16,18,44,46].
Analytically the partial rates are

= —— = (66)

dv dx dv K,
The allowed range for v’ is given in Egs. (42) and (43). The
argument z defined in Eq. (61) becomes a function of v’ via

its dependence on

nv—1v'

x=x,v)= (67)

K,—nv+v
upon eliminating 6 from Eq. (64) via Eq. (37).
For the parameters chosen (y=10% v=2X107%, and q,
=20) Figs. 7 and 8 are fairly similar to their invariant pen-
dants, Figs. 5 and 6. In particular, the previous shift in x now
corresponds to a redshift of the linear Compton edge by a
factor of 1+a3 =400 from about 40 to 0.1 keV, i.e., from the
hard to the soft x-ray regime. Note that the frequency range
is still blueshifted relative to the incoming frequency v (cor-
responding to the left-hand edge in Figs. 7 and 8 given by

*The relationship between angle and frequency spectrum (37) is
invertible provided «,#0. For k,=0 the nth harmonic spectral
range shrinks to a point (see below).
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0.02

0.015

’ (arb. units)

0.01f

dW /dv
n

0.005 J

FIG. 7. (Color online) Individual harmonic spectra (n=1...4)
for nonlinear Compton scattering at intensity ay=20 compared to
linear Compton scattering (n=1, ay=0) as a function of »’.

vr=2X107%). Again, there is a noticeable enhancement of the
total emission rate at v/ (m) =4y*v/ ag [cf. Eq. (45)] due to
the generation of peaks corresponding to higher harmonics,
n>1, with the peak values decreasing rapidly with n. We
note that the edge values of the higher harmonics which are
clearly visible in Fig. 7 get washed out by the superposition
of more and more partial rates dW,, in Fig. 8. This will re-
duce the visibility of the associated maxima, as will, of
course, all sorts of background effects which have not been
included in the theoretical analysis above.

The properties of the photon spectrum depend crucially
on electron parameters (B3, 7y, or {) characterizing the labo-
ratory frame and, in particular, the intensity parameter a,. To
illustrate this dependence along with the discussion of Sec.
IIT B, we have calculated the photon spectra as a function of
ag, ranging from ay=20 up to 300. The outcome is depicted
in the movielike sequence of plots of Fig. 9. As y=100 the

0.025 b
a0:20

0.02

0.0151

0.01F

dW/dv’ (arb. units)

0.005 1

FIG. 8. (Color online) Theoretical photon spectrum (sum of first
50 harmonics) for nonlinear Compton scattering at intensity aj
=20 compared to linear Compton scattering (n=1, ay=0) as a
function of v'.
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a, =20 a, =50
0.03
0.03
002 )
R $ 0.02
= =
© ©
0.01 0.01
0 0
0 1 2 0 1 2 3 4 5
v x 107 v x 107
a, =150 a, =201
0.05 1
0.04 0.8 FIG. 9. (Color online) Theo-
retical photon spectra for nonlin-
3 0.03 3 0.6 ear Compton scattering for differ-
% 0.02 % 04 ent Va.llues of ay (y=100) aricg
incoming frequency v=2X10
0.01 /\\ 0.2 (arb. units). Vertical (red) lines
/\ I correspond to frequencies nv.
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
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0.03 0.015
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S 0.02 S 001
© ©
0.01 0.005
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0 0.2 0.4

0.6 0.8 1 0 0.2
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critical a, from Eq. (49) defining the c.m. frame of the first
harmonic i8 dgg(1) =200 corresponding to the fourth plot in
Fig. 9. There, the lower harmonic spectrum collapses to lines
located at the individual harmonics with frequencies v, =nv
(marked by red vertical lines throughout).

If we go through the whole sequence the following pic-
ture emerges. For small ay<ag.;(n), all harmonic ranges
with counting label less than n are blueshifted. Plots 1 and 2
show the harmonic range for n=1 (and part of n=2), both to
the right of their red end edges (v and 2v, respectively). The
right-hand, blue end, maximum of the fundamental range is
enhanced due to contributions of higher harmonics. For a
approaching its critical value the harmonic ranges shrink and
a gap between the first and second appears (plot 3) so that the
fundamental maxima become of equal height. At q
=aei(1) =200 the first harmonic range shrinks (almost) to a
point, with the neighboring ranges also becoming very nar-
row (plot 4). Once ay(1) becomes supercritical, all harmonic
ranges are redshifted [i.e., located to the left of the vertical
(red) lines, v; <nv], with the ranges increasing again and
gaps closing (plots 5 and 6). In plot 6, the first and second
harmonics overlap again, leading to maxima of different
height with the one at v|=v being the larger. Thus, by tuning

0.4 0.6 0.8 1
v x107°

ay we effectively change frames of references with agg; (1)
representing the border between inverse Compton scattering
(blueshift) and Compton scattering (redshift).

C. Laboratory kinematics: Angular dependence

As mentioned earlier, the emission rates may be consid-
ered as functions of either scattered frequency v, or scatter-
ing angle 6—the two being related via Eq. (37). In terms of
the scattering angle 6 the rates become

aw,  dw, dx et x2

n

dQ ~ dx dQ  nv(1-cos 6)*(1+x,)

53n(2)»

0< <, (68)

where x,=x (for the nth harmonic) and z,, are to be viewed
as functions of @ (see below). Our angular measure is d()
=d6 sin 6, which is the solid angle measure up to a factor of
217, as the azimuthal angle ¢ does not contribute due to axial
symmetry. Note that this is different for linear polarization
or, more generally, if there is another preferred direction
which, for instance, could be induced by noncommutative
geometry [52].
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dW /dQ (arb. units)

0 0.5 1 1.5 2 25 3
6 (radians)

dW /dQ (arb. units)

0 === ’ . . .
2.7 2.75 2.8 2.85 29 2.95 3 3.05
6 (radians)

FIG. 10. Theoretical photon spectrum for the first five individual
harmonics as a function of scattering angle 6. Parameters: y=100,
ay=20. Left: vertical scale logarithmic; Right: vertical scale linear,
zoomed into range 2.7 < <.

In terms of their angular dependence the various invari-
ants may all be expressed, using Egs. (37) and (57), in terms
of the variable x, defined by

2nv(1 — cos 6)
e“(1+cos 6) + e (1 + a(z))(l —cos 6)’

x,(6) = nx, () =

(69)
with x; between x;(0)=0 and x,(7)=y, as in Eq. (59), where
yi= lzfe:%. (70)
The argument of J, in Eq. (68) becomes
0(0) = nz () =20 \r(1=1),  (71)
V1 +ag

where we have introduced the rescaled variable

PHYSICAL REVIEW A 79, 063407 (2009)

e i1+ a(z))(l —cos 6)
e%(1 +cos 6) + e (1 +a(2))(1 —cos )’

r=xly =

O0=r=1.

(72)

As a result, z; becomes maximal for r=1/2 and so z; is less
than unity,

)

= <1, (73)

]

V1 +ag

which will be important later when we discuss the conver-
gence of the emission rate sum. Solving r(6,)=1/2 we find
that z; is maximized at the angle

1+ag—e2§

6, = arccos (74)

+ag+ e

We will now relate these results to the emission spectra as
functions of . In Fig. 10 we show the angular distribution of
the photon yield, as determined by Eq. (68), for the lowest
individual harmonics, n=1,...,5. For the parameters chosen
(y=10%, v=2X107°, and a,=20) the largest signal is due to
the fundamental harmonic, n=1. This is also the only one
contributing on axis, i.e., in the forward and backward direc-
tions, #=0 and m, respectively. For the classical intensity
distribution this was also found by Sarachik and Schappert
[27]. Thus, in particular, real backscattering at 6= only
occurs for n=1, while for the higher harmonics one has
“dead cones” with an opening angle of about 0.1 rad, slightly
increasing with harmonic number n, as seen from the mag-
nified plot in Fig. 10 (right panel).

The dead cones are controlled by the angle 6, from Eq.
(74): their opening angles are bounded by 6= 6,— . For
1 <ag< 7 the former are quite narrow such that most of the
radiation (in particular the location of the maxima at 6,) is
near backward.’ Quantitatively one finds that the dead cone
opening angles are less than

0h=ag/y<1, (75)
which, for the parameters of Fig. 10, corresponds to 6,
=(0.2 rad. (For the intensity distribution of classical radia-
tion the relation (75) was found in [45].)

To determine the total emission rate we have to sum Eq.
(68) over all harmonic numbers, n. It is not entirely obvious
that the ensuing series converges. To prove this we employ
the Bessel function identity [53],

hﬂ@=§mo:4@, (76)

where the prime denoting the derivative with respect to the
argument z in order to rewrite J in terms of J2 and J/?,

>We mention in passing that the situation for linear polarization is
different. As pointed out by Esarey et al. [45] for Thomson scatter-
ing with linearly polarized photons, odd harmonics do get backscat-
tered (no dead cones).
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FIG. 11. Theoretical photon spectrum. Parameters: y=100, aq=20. Left: vertical scale linear, harmonics summed up to n=5000 (full line)
and n=10 000 (dashed line). Right: vertical scale logarithmic, harmonics summed up to n=5000.

2 22\ (1
S(Zn):ZJi(nzl){——2+(2+ A )( —1)}
ay 1+ nx, zl

2.2
g ) 77)

1+ nx,

+ ZJéz(nzl)(Z +

According to Eq. (68), in the rates this is multiplied with an
n-dependent factor n/(1+nx;)>. Thus, upon summation, we
encounter series of the form

—J (nz ) and E —J,',z(nz ),
w0 (1+n 1)M : w0 (1+n 1)M !

(78)

where N e{1,3} and M €{2,3}. We can easily bind these
series from above, for example,

>

~ (1+n (nz])< E njz(nzl)_Sl’ (79)

2
l) " n>0

2 o) < 2 n i) =S5, (80)
n>0 n>0

(and likewise for J/?). The series S, and S5 on the right-hand
side are examples of Kapteyn series [54] which are known to
converge. Remarkably, some also have analytic expressions
for the sum. These results do not seem particularly common,
so we collect them in the Appendix. Although we have not
yet been able to explicitly perform our sums (which have a
more complicated n dependence than the Kapteyn series) we
can now be confident that they converge. This is an ex-
tremely satisfying result confirming the validity of the back-
ground field picture we have employed and our analysis
based around the summation of individual harmonics.
Lerche and Tautz [55] stated that a summation of the first
1000 terms in Kapteyn series such as Eq. (79) or (80) yields
errors below 107 for z; =0.95. We need to include z, values
closer to one where the convergence rate is at its lowest. This

occurs near the angle 6, defined in Eq. (74). Increasing the
maximum harmonic number from 5000 to 10 000 yields ba-
sically identical plots except that the height of the narrow
peak at 6, increases as shown in Fig. 11 (left panel). The
maximum is indeed located at 6=6,=2.94 (or 6,=ay/y
=(.2) as given in Egs. (74) and (75). The shoulder near 6
= (0'=0) is entirely due to the fundamental harmonic (n
=1).

Finally, we again vary a, and plot a movie of the angular
distribution for fixed y=100 in Fig. 12. The main features
are (i) a propagation of the main peak from near-backward
direction (when ay<<2vy) to near-forward direction (when
ay>2v) consistent with the formula (74) for 6, and (ii) the
appearance of a double peak which (iii) becomes symmetric
for ay=2vy at an angle §,=m/2. The latter situation corre-
sponds to cos 6,=0, hence,

ag=e*—1=e*=4y (1<aj<v). (81)

This latter value (approximately) coincides with the critical
ay of Eq. (51). The locations of the two peaks in the spec-
trum are plotted in Fig. 13, along with the angle 6, given in
Eq. (74) as a function of ay. It is clear from this plot that the
maximum value of z; corresponds to the local minimum be-
tween the two peaks.

D. Thomson limit: Emission rate and intensity

At this point one should mention that thorough discus-
sions of the intensity distributions employing classical radia-
tion theory have appeared before [27,45]. It is useful to
check that our quantum calculations based on the Feynman
diagrams of Fig. 3 describing nonlinear Compton scattering
reproduce the results for nonlinear Thomson scattering in the
classical limit. According to Nikishov and Ritus [19] the
classical limit is given by
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FIG. 12. Theoretical photon spectrum as a function of 6, harmonics summed up to n=5000 for different values of a, (y=100); vertical

scale linear (arb. units).

2npk
Yn= P

*

<1, (82)

which is just the statement that m, is the dominant energy
scale. Note that this can be achieved by having large a, and
may be counterbalanced by large n. Hence, harmonics with
sufficiently large harmonic number n will behave nonclassi-
cally (if they are observable at all despite their suppression).
As y, is the upper bound for x,, Eq. (82) may equivalently be
formulated as

x, <1, (83)

such that we may neglect x,=nx; on the left-hand sides of
Egs. (79) and (80) which hence coincide with S, and S5 in
the classical limit. Even if Egs. (83) no longer holds (i.e., for
large n), contributions to the sum are still suppressed by Jﬁ.
Comparing the quantum and classical (Compton vs Thom-
son) rates by evaluating all sums numerically, the graphs are
indistinguishable. Plotting the relative difference for our pa-
rameter values one finds a small discrepancy near 6= 6, of
the order of 1% (see Fig. 14). Note that the classical series S,
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FIG. 13. The angular position of the maximum emission rates as a function of intensity, ap=1 (dashed/upper and lower curves), and the
angle 6, which defines the maximum value of z; (solid gray/middle curve). Harmonics summed up to n=5000, y=100.

and S have a slightly slower rate of convergence (in particu-
lar near z;=1, i.e., 6#=6,), where the suppression is mainly
provided by Ji(nzl), hence least efficient at z;=1. We have
found, for instance, that the peak in Fig. 14 increases from
0.4% to 0.7% when we increase the maximum »n from 5000
to 10 000. Nevertheless, Fig. 14 provides a nice confirmation
that for high-intensity optical lasers the background can in-
deed be treated as classical to a very good approximation.
We are left with relating photon production probabilities
dW, to intensities dI,,. This problem has also been addressed
by Nikishov and Ritus [19] who stated that the intensity is
given by the zero component of the radiation four-vector,

P,=2>

n>0

We thus have dI,=mv'dW, or

AW, k.. (84)

dl, 2o n?
— = me———=% 3u(nzy). 85
a0~ " sin Oap (1 + nx1)3‘j"(nzl) 85)

Compared to Eq. (68) we thus have an additional factor
n/(1+nx;). In the classical limit, nx; <1, this is just n so that
Eq. (85) is bounded not by the Kapteyn series S; and S, but
by the analytically known series S, and S, as given in the
Appendix.

V. CONCLUSIONS

In this paper we have (re)assessed the prospects for ob-
serving intensity effects in Compton scattering. The physical

scenario assumed is the collision of a high-intensity laser
beam with an electron beam of sufficiently high energy (y
=107%) produced in a conventional accelerator or by a suit-
able laser plasma acceleration mechanism. In technical terms
we were interested in the features present in cross sections or
photon emission rates which are enhanced with increasing
dimensionless laser amplitude, ay=ea/m, where a is the
magnitude of the laser vector potential. The possible effects
are of a mostly classical nature, being fundamentally due to
the mass shift, m?> — m?=m>(1+aj), caused by the relativistic
quiver motion of an electron in a laser field. Ranked in order
of their relevance the main intensity effects are (i) a redshift
of the kinematic Compton edge for the fundamental har-
monic o' =4y’w— 4y’ w/ a% for the parameters we have
used, (ii) the appearance of higher harmonic peaks (n>1) in
the photon spectra, and (iii) a possible transition from in-
verse Compton scattering (o’ >w) to Compton scattering
(0" < w) upon tuning a,. The redshift (i) may be explained in
terms of the larger effective electron mass, m.>m, the gen-
eration of which costs energy that is missing when it comes
to “boosting” the photons to higher frequencies. This has, for
instance, an impact on x-ray generation via Compton back-
scattering. To avoid significant energy losses (reducing the
x-ray frequency) the amplitude a, should probably not ex-
ceed unity significantly. However, one is certainly dealing
with a fine-tuning problem here, as item (ii), the generation
of higher harmonics, improves the x-ray beam energy distri-
bution. For ay> 1 there is a larger photon yield due to super-
position of the harmonics and the full width at half maxi-
mum goes down. As a result, the x rays tend to become more
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FIG. 14. (Color online) Relative difference of photon emission rates [Compton—Thomson|/Compton as a function of scattering angle .

Harmonics summed up to n=10 000, y=100, ay=20.

monochromatic once higher harmonics become involved.
Item (iii), the transition from inverse to ordinary Compton
scattering, once a, increases beyond 2y illustrates the energy
“loss” just mentioned. When ag==2+y the laboratory frame
can be interpreted as an intensity-dependent center-of-mass
frame for which w,=nw, at least for low harmonics. Thus
there is no longer an energy gain of the emitted photons: the
laser beam has become so “stiff” that, in this frame, electrons
begin to bounce back from it (gaining energy) rather than
vice versa.

The next step is to actually perform the experiments re-
quired for measuring the effects listed above. We emphasize
that nonlinear Compton scattering provides a unique testing
ground for strong-field QED as the process is not suppressed
in terms of « or E/E,. by powers or exponentially. Hence, the
experiments at Daresbury (y=350, ay=2) [56] and the FZD
(y=280, ay=20) planned for the near future should indeed
be able to see the effects analyzed in this paper. This will
provide crucial evidence for the validity of the approach to
strong-field QED adopted here, based on the electron mass
shift, the Volkov solution, and the Furry picture.
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APPENDIX: KAPTEYN SERIES

The Kapteyn series [54] (see also [57]) of the second kind
involve squares of Bessel functions or their derivatives. We
use the notation

Sy= 2 n"Jinz)), (A1)
n>0
Sy = E nNJ,'IZ(nzl), (A2)

n>0

where 0 <z; <1 in keeping with our earlier discussion. The
sums with a closed-form expression are

2
Soo= 3 w2 nzy) = 2, (A3)
n>0 4
5 1 1
So= 2 Janz) = ——= -7, (A4)
n>0 2Vl -z 2
2 2
4+
Sy= S w2 Pnzy) = A+ (AS5)

16(1-2)7%

n>0
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2 2 4 6
27(64 + 59227 + 472z + 27z]
S, = n*P(nz) ==

4 n2>0 a(nz1) 256(1—zf)13/2

(A6)

The first is a result of Nielsen [58] according to Schott who
derived the second and third results [59], while the fourth
can be found in [60] [note that our notation differs from that
paper, which also contains a typographical error in their Eq.
(24) for S,]. The sums involving J), are

44372
Sy = 2 n’ (nzy) = '

— s, (A7)
= 16(1 - z3)°?

PHYSICAL REVIEW A 79, 063407 (2009)

64 + 6247% + 63271 + 457°
Sy= > n*J2nz)) = e AL ON )

o 256(1 — ;)"

given in [27,60], respectively. The latter paper also gave a
double integral representation for the series S_; (there de-
noted F,). Referring to a theorem by Watson [61] the authors
of [55] derive an iterative scheme for higher-order Kapteyn
series, giving, for example,

5= ( J )25 (A9)
= =< Z h— 1>
-2\ Mgy ) T

(A10)
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