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We analyze atomic photoelectron momentum distributions induced by bichromatic and monochromatic laser
fields within the strong-field approximation �SFA�, separable Coulomb-Volkov approximation �SCVA�, and ab
initio treatment. We focus on the high frequency regime—the smallest frequency used is larger than the
ionization potential of the atom. We observe a remarkable agreement between the ab initio and velocity gauge
SFA results while the velocity gauge SCVA fails to agree. Reasons of such a failure are discussed.
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I. INTRODUCTION

The simultaneous application of more than one laser field
leads to a number of novel effects. These effects include
reducing the excitation or ionization rates �1� or altering the
photoelectron angular distributions and the harmonic emis-
sion parity selection rules �2�. Furthermore, a laser field can
dress or strongly mix the field-free excited states, including
the continuum, of an atom. This produces new resonancelike
structures, which could not exist otherwise. Such an effect is
called laser-induced continuum structure �3–5�, and it has
been applied to design lasers without inversion �6�. Multi-
color lasers are also exploited for control of quantum dynam-
ics �7–9�, laser-induced electron diffraction �10�, attosecond
laser pulse synthesis �11�, and above-threshold ionization
�ATI� �12–14�. Moreover, multistep ionization, where each
step is driven by a laser at its resonant frequency, has many
useful applications: efficient atomic isotope separation �15�,
extremely sensitive detection of small numbers of atoms in a
sample �single-atom detection� �16�, and very-high-
resolution photoelectron spectroscopy �17�. Nevertheless, the
presented list of phenomena is not exhausted, and we refer
the reader to reviews �2,18,19� for further discussions.

Perelomov and Popov were the first to study theoretically
ionization of an atom by multicolor laser radiation �20�
within the imaginary-time method �21�. Afterwards, a broad
variety of perturbative �22–25� as well as nonperturbative
results �26–32� has been obtained. In addition, extensive nu-
merical investigations have also been performed �33–40�.

In the present paper, we first present a general formalism
to tackle the problem of ionization by multiple laser fields

with no restriction on the parameters of the laser fields. Two
analytical approaches are employed: the strong-field approxi-
mation �SFA� and the separable Coulomb-Volkov approxi-
mation �SCVA�. However, as it will be seen below, both the
approximations lead to quite different results for photoelec-
tron momentum distributions. Therefore, ab initio calcula-
tions have been done in order to be able to make conclusions
upon the validity of our analytical predictions.

The main result of this paper is that on the one hand, the
SCVA fails to agree with ab initio results; on the other hand,
the SFA adequately matches with ab initio calculations. We
will discuss causes of such a fact.

The SFA and SCVA are diametrical opposites in treating
the final state of a photoelectron. The former approximation
completely ignores the influence of the Coulomb field of an
ion by employing the Volkov wave function for the final state
of an electron �41–43� �atomic units are used throughout�,

��SFA�t�� = exp�−
i

2
�t

�p + A����2d�	�p� , �1�

where A�t� is the vector potential of a laser field and �p�
denotes a plane wave with momentum p. On the contrary,
the SCVA attempts to account for the Coulomb correction by
using the separable Coulomb-Volkov continuum wave func-
tion �or the Coulomb-Volkov ansatz� that is defined as

��SCV�t�� = exp�−
i

2
�t

�p + A����2d�	��p� , �2�

where ��p� denotes a stationary laser-free atomic continuum
wave function with a defined asymptotic momentum p �the
wave function ��p� satisfies the orthonormality condition

�p ��p��=��p−p���. A justification for the SCVA based on
the sudden perturbation approximation �44,45� and the se-
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quential three-stage model of laser-assisted x-ray photoion-
ization has been presented in Refs. �46,47�, where the SCVA
has been used to refine the theory of an attosecond streak
camera and spectral phase interferometry.

Recent developments and projects of generation of high-
intensity x-ray laser sources �see, e.g., Refs. �48–54� and
references therein� have stimulated interest in the theoretical
description of multiphoton ionization at high laser frequen-
cies. Thus, we illustrate our results for the case when the
smallest frequency of a laser is larger than the ionization
potential of an atom.

The rest of the paper is organized as follows. In Sec. II,
the general formalism for obtaining the velocity gauge SFA
and SCVA multicolor ionization amplitudes is developed. In
Sec. III, ionization by a bichromatic laser field is investigated
by means of both the approximations as well as ab initio
numerical solution of the Schrödinger equation. Ionization
by monochromatic laser radiation is studied in Sec. IV. Fi-
nally, conclusions are made in Sec. V.

II. MATHEMATICAL BACKGROUND

Before presenting our general scheme, we clarify the
main peculiarity of our formalism. The saddle point approxi-
mation was applied to calculate photoionization amplitudes
in the majority of previously published approaches. Rigor-
ously speaking, the use of the saddle point approximation
inevitably poses some restrictions on the parameters of laser
fields. To avoid any restrictions, we generalize the ideology
of the Keldysh-Faisal-Reiss theory �41–43� �and its recent
applications to ionization in bichromatic laser radiation
�31,32�� and expand the time-dependent part of the Volkov
wave function �see Eq. �6�� into a multiple Fourier series.
Such an expansion allows us to obtain readily close analyti-
cal expressions for the SFA and SCVA ionization amplitudes
in the velocity gauge.

The velocity gauge SCVA and SFA photoionization am-
plitudes are defined as

MSCV = − i�
−�

�


�SCV�t��p̂ · A�t��g�eiIptdt , �3�

MSFA = − i�
−�

�


�SFA�t��p̂ · A�t� +
1

2
A2�t��g�eiIptdt . �4�

Here Ip is the ionization potential, �g� is the initial atomic
state, and the vector potential reads A�t�=�n=1

N An�t�, with

An�t� = −
E1

�n�

�n
sin��nt + �n� −

E2
�n�

�n
cos��nt + �n� , �5�

where E1
�n� and E2

�n� are mutually orthogonal electrical fields,
�n is the frequency ��n�0�, and �n is the absolute phase.
Equation �5� can be alternatively written as

An�t� = A0
�n��e1

�n� sin��nt + �n�sin �n

+ e2
�n� cos��nt + �n�cos �n� ,

where A0
�n�=−En /�n, En=��E1

�n��2+ �E2
�n��2, �n is the elliptic-

ity parameter �sin �n=E1
�n� /En , cos �n=E2

�n� /En�, and e1,2
�n� are

the polarization vectors along the vectors E1,2
�n�, respectively.

The time-dependent part of the Volkov wave function,

	V�t� = exp�−
i

2
�t p + �

n=1

N

An����2

d�	 , �6�

can be factorized in the following way:

	V�t� = �
n=1

N 	n
�1��t� �

m=n+1

N

	n,m
�2� �t�� , �7�

where

	n
�1��t� = exp�i

N − 1

2N
p2t −

i

2
�t

�p + An����2d�	 ,

	n,m
�2� �t� = exp�− i�t

An��� · Am���d�	 . �8�

The interpretation of factorization �7� is quite obvious: the
term 	n

�1��t� represents the contribution from propagation
solely in the field An�t� and the term 	n,m

�2� �t�—a coupling
between propagations in the fields An�t� and Am�t�. Carrying
out tedious but straight forward calculations, we obtain the
Fourier expansion of the components 	�1� and 	�2�,

	n
�1��t� = �

k=−�

�

ik exp�ik��n − �0
�n���Jk�− Nn,− M2

�n�;2�0
�n��


 exp�− i� p2

2N
+ �2M1

�n� − k��n�t	 , �9�

	n,m
�2� �t� = �

k,l=−�

�

Jk�Kn,m�Jl�Ln,m�ei�l+k��n+i�l−k��m−ik�n,m−il�n,m


 exp�i�l + k��nt + i�l − k��mt� , �10�

where

M1,2
�n� =

1

�2�n�3 ��E1
�n��2  �E2

�n��2� ,

Nn = ��N1
�n��2 + �N2

�n��2, N1,2
�n� =

p · E1,2
�n�

�n
2 ,

Kn,m = − �1
�n,m�/�2�n�m��n − �m�� ,

Ln,m = − �2
�n,m�/�2�n�m��n + �m�� ,

�1,2
�n,m� = ��E1

�n� · E2
�m� � E2

�n� · E1
�m��2

+ �E2
�n� · E2

�m�  E1
�n� · E1

�m��2�1/2.

The angle �0
�n� is defined by the equations cos �0

�n�

=N1
�n� /Nn and sin �0

�n�=−N2
�n� /Nn; the angles �n,m and �n,m

are given as solutions of the following equations:

cos �n,m = �E1
�n� · E1

�m� + E2
�n� · E2

�m��/�1
�n,m�,
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sin �n,m = �E1
�n� · E2

�m� − E2
�n� · E1

�m��/�1
�n,m�,

cos �n,m = �E2
�n� · E2

�m� − E1
�n� · E1

�m��/�2
�n,m�,

sin �n,m = �E1
�n� · E2

�m� + E2
�n� · E1

�m��/�2
�n,m�.

Jn�u ,v ;�� denotes a two-variable–one-parameter Bessel
function �55�

Jn�u,v;�� =
1

2�
�

−�

+�

ei�u sin t+v sin�2t+��−nt�dt

= �
k=−�

�

Jn−2k�u�Jk�v�eik�, �11�

where Jn�x� is the well-known ordinary Bessel function.
It is convenient to write down separately the result for the

case of multicolor linearly polarized fields �E2
�n�=0�,

Nn = N1
�n�, M1

�n� = M2
�n� = Up

�n�/2�n,

�0
�n� = 0, �n = �/2, �n,m = �n,m = 0,

Kn,m = 2�Up
�n�Up

�m�cos �n,m/��m − �n� ,

Ln,m = 2�Up
�n�Up

�m�cos �n,m/��m + �n� , �12�

where Up
�n�= �E1

�n� /2�n�2 are the pondermotive potentials and
�n,m are angles between the fields E1

�n� and E1
�m�, i.e.,

cos �n,m=e1
�n� ·e1

�m�.
Equations �7�, �9�, and �10� form our general formalism.

We point out that this formalism is not valid if one of the
fields is a dc field �the generalization of the scheme to such a
case will be published elsewhere�. Having reached Eqs. �7�,
�9�, and �10�, the general form of multicolor ionization am-
plitudes for an arbitrary N can be obtained within the SCVA
as well as the SFA. In Sec. III A, we shall study ionization by
a two-color laser field �N=2�, which is a most interesting
case from the point of view of applications.

III. IONIZATION BY A BICHROMATIC LASER FIELD

A. Two elliptically polarized fields

The velocity gauge photoionization amplitudes in the case
of a two-color laser field within the SFA and SCVA are given
by

MSFA,SCV�p� = − �i �
n,m=−�

�

�− i�n+me−in�1−im�2MSFA,SCV
�n,m�


��p2

2
+ Ip + �2M1

�1� − n��1

+ �2M1
�2� − m��2� , �13�

where

MSFA
�n,m� = 2
p�g���2M1

�1� − n��1 + �2M1
�2� − m��2�Sn,m,

�14�

MSCV
�n,m� = A0

�1��Mph
�1��� − �1�Sn+1,m + Mph

�1���1�Sn−1,m� + A0
�2�


�Mph
�2��� − �2�Sn,m+1 + Mph

�2���2�Sn,m−1� , �15�

Mph
�n���� = 
�p��ie1

�n� sin � + e2
�n� cos �� · ��g� , �16�

Sn,m = �
k,l=−�

�

�− 1�lJk�K1,2�Jl�L1,2�


Jn−l−k�− N1,− M2
�1�;− 2�0

�1��


Jm−l+k�− N2,− M2
�2�;− 2�0

�2��exp�i��n − l − k��0
�1�

+ �m − l + k��0
�2� + k�1,2 + l�1,2�� . �17�

Here 
p �g� is the wave function of the initial state in the
momentum representation. Note that neither MSFA

�n,m� nor
MSCV

�n,m� depends on the absolute phases �1 and �2 of the laser
fields.

Hereafter, we shall assume that �2��1 without lost of
generality. Calculating the probability of ionization from Eq.
�13�, we discern that the result is determined whether �1 is
commensurate with �2:

�i� When �1 and �2 are noncommensurate, the differen-
tial photoionization rate, which is the transition probability
per unit time, reads

WSFA,SCV
�i� �p� = �

n,m=−�

�
�

2
��p2

2
+ Ip + �2M1

�1� − n��1

+ �2M1
�2� − m��2��MSFA,SCV

�n,m� �2. �18�

From Eq. �18� one notices that the rate does not depend on
the absolute phases of the laser fields.

�ii� When �1 and �2 are commensurate, we shall intro-
duce the following notations �2 /�1�K2 /K1 and �
=�1 /K1��2 /K2, where K1 and K2 are coprime �their great-
est common divisor equals 1�. The choice of � is unique, and
we will discus its physical interpretation later.

As an intermediate step in the derivation, we need to
solve the following equation:

n = K1Q�n� + K2P�n� , �19�

where n is a given integer and Q�n� and P�n� are unknown
integers. Such an equation is called Bézout’s identity �56�,
which is a linear Diophantine equation �57�. Primarily, we
summarize necessary evidences from the theory of Eq. �19�.
Since K1 and K2 are coprime, a solution �Q�n� , P�n�� of this
equation always exists and can be found by, e.g., the ex-
tended Euclid algorithm. Moreover, Eq. �19� has infinity
many solutions because if a pair �Q�n� , P�n�� is a solution of
Eq. �19�, then pairs �Q�n�−mK2 , P�n�+mK1�, where m being
an arbitrary integer, are also solutions.

It is noteworthy to clarify the physical origin of Eq. �19�.
This equation follows from the law of conservation of en-
ergy, where n is a number of quanta �the energy of each
quantum equals �� absorbed by the electron and Q�n� and
P�n� are numbers of quanta gained from the first and second
laser fields, correspondingly.
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Finally, we obtain the following expression for the differ-
ential photoionization rate:

WSFA,SCV
�ii� �p�

= �
n=N0���

�
�

2
��p2

2
+ Ip + 2��K1M1

�1� + K2M1
�2�� − n��


 � �
m=−�

�

im�K2−K1�eim�K2�1−K1�2�MSFA,SCV
�Q�n�−K2m,P�n�+K1m��2

,

�20�

where N0��� is the minimal number of photons of the fre-
quency � absorbed. For the sake of convenience, we provide
the differential photoionization rate for the special case of
Eq. �20� when the ratio �2 /�1�K is an integer:

WSFA,SCV
�iii� �p� = �

n=N0��1�

�
�

2
��p2

2
+ Ip + 2�1�M1

�1� + KM1
�2��

− n�1�� �
m=−�

�

im�K−1�eim�K�1−�2�MSFA,SCV
�n−Km,m��2

,

�21�

where N0��1� is the minimal number of photons of the fre-
quency �1 absorbed.

Let us now interpret the parameter �. From the math-
ematical point of view, the set of arguments of the delta
functions in Eq. �13� must coincide with the corresponding
set of arguments in Eq. �20�. From the physical point of
view, since stimulated processes of absorption of n photons
of the frequency �2 and subsequent emission of m photons
of �1 are possible in the presence of the two laser fields, then
� is the energy spacing between two neighboring ATI peaks.

If K is large, then the sum over m in Eq. �21� reduces to
the term with m=0 �because MSFA,SCV

�n,m� decreases exponen-
tially when either of its indices is large�, and therefore rate
�21� will not depend on the absolute phases. Similarly, rate
�20� eludes the dependence on the absolute phases in two
cases: either K1 or K2 is large; K1 and K2 are simultaneously
large. The physical origin of these statements is as follows:
the effect of the absolute phases is to be manifested in ATI
peaks that are induced by both the lasers simultaneously.
Since �2K1=�1K2, such a nearest peak corresponds to ab-
sorption of K1 quanta of �2 and K2 quanta of �1. Therefore,
the effect of the absolute phases is of max�K1 ,K2� order.

B. Two linearly polarized fields: Special cases

In this section, we consider ionization by a bichromatic
linearly polarized field.

Computation of Sn,m in Eq. �17� is itself a nontrivial prob-
lem. Nevertheless, Eq. �17� can be significantly reduced in
the case when the coupling between two linearly polarized
laser fields is small �this coupling is governed by 	1,2

�2��t� in
Eqs. �7� and �8��. Introducing two dimensionless parameters

�1,2 = �Up
�1�Up

�2�/��2  �1� , �22�

we define the small coupling limit by means of the following
inequalities:

�1 � 1, �2 � 1. �23�

Expanding the ordinary Bessel functions in Eq. �17� into a
Taylor series with respect to small parameters K1,2 and L1,2,
we obtain Sn,m

L —an asymptotic expansion of Sn,m in the small
coupling limit,

Sn,m
L = Jn�− N1,−

Up
�1�

2�1
�Jm�− N2,−

Up
�2�

2�2
� + J1�J2

T cos �

+ O��1
2� + O��1�2� + O��2

2� , �24�

where Jn�u ,v�=Jn�u ,v ;0� is the two-dimensional Bessel
function �see, e.g., Refs. �43,55,58,59��, ���1,2 is the angle
between the laser fields, and the matrix � and the vectors
J1,2 are defined as

� = ��2 − �1

�1 − �2
� , �25�

J1 = �Jn−1�− N1,− Up
�1�/2�1�, Jn+1�− N1,− Up

�1�/2�1�� ,

�26�

J2 = �Jm+1�− N2,− Up
�2�/2�2�, Jm−1�− N2,− Up

�2�/2�2�� .

�27�

Note that in the case when linearly polarized lasers are
perpendicular ��=� /2�, the full expression for Sn,m �Eq.
�17�� reduces immediately to

Sn,m = Jn�− N1,−
Up

�1�

2�1
�Jm�− N2,−

Up
�2�

2�2
� . �28�

Equation �28� coincides with the leading term in Eq. �24�.
Hence, the small coupling limit is an advantageous approxi-
mation only for nonperpendicular field configurations, i.e.,
��� /2.

C. Analytical results vs ab initio calculations

We shall consider the case of small couplings �see Eq.
�23�� between two laser fields, and the ground state of a
hydrogen atom shall be selected as the initial state. Accord-
ing to the delta function in Eq. �13�, a photoelectron spec-
trum is confined to spheres. Therefore, to be able to com-
pletely analyze the momentum distribution of
photoelectrons, we are to consider unfoldments of these ATI
spheres. ATI spheres within the SFA, SCVA �Eq. �21��, and
ab initio calculations are presented in Figs. 1 and 2 �66�.

The ab initio calculations were performed in spherical
polar coordinates with the wave function expanded in spheri-
cal harmonics Yl

m���,

��r,�,t� = �
l,m

Rlm�r,t�Yl
m��� . �29�

The resulting set of coupled one-dimensional radial
Schrödinger equations including two laser fields,
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i
�

�t
Rlm�r,t� = −

1

2
�2 +

l�l + 1�
2r2 + V�r��Rlm�r,t�

− �
l�,m�


Yl
m�E1

�1��t� · r�Yl�
m��Rl�m��r,t�

− �
l�,m�


Yl
m�E1

�2��t� · r�Yl�
m��Rl�m��r,t� ,

is solved using finite-difference methods. The angular laser
coupling matrix elements are evaluated using 3j symbols.
The pulse shape was f�t�=exp�−4 ln 2�t /30�2�, where
E1

�n��t�= f�t�E1
�n� sin��nt�, and the system was initially in the

ground state.
The SFA within the velocity gauge agrees remarkably

well with the results of numerical calculations; nevertheless,
the velocity gauge SCVA fails to agree. From ab initio as
well as the SFA data, we readily notice that SCVA ATI

spheres 3 and 6 are quite different from the corresponding
SFA and numerical spheres. Indeed, ATI sphere 3 should
deviates substantially from ATI spheres 1 and 2 because it is
the first sphere accessible to the �2=3 field, and further there
may be imprinted a strong interference between one-photon
ionization by the field with �2=3 and three-photon ioniza-
tion by the field with �1=1. Similar arguments holds for ATI
sphere 6.

Despite the similarities between the SFA and numerical
results, small deviations remain. The numerical results ex-
hibit a stronger left/right ��=� /2 and �=3� /2� symmetry
breaking than seen in the SFA results, although the SFA does
show some symmetry breaking, most notably in spheres 2
and 5. Part of the symmetry breaking is captured by the SFA.
The presence of stronger symmetry breaking in the numeri-
cal results may be related to Coulomb asymmetry effects
previously seen in single-color elliptical strong-field ioniza-
tion �60�. In the present scenario, two fields of different fre-
quencies polarized at a relative angle generate ellipticity
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FIG. 1. Normalized ATI spheres �within the SFA, ab initio, and SCVA results� for the ground state of a hydrogen atom with field
parameters given by E1

�1�= �0,0 ,0.1� �a.u.�, E2
�1�=0, �1=1 �a.u.�, �1=0 and E1

�2�= �0,0.1,0� �a.u.�, E2
�2�=0, �2=3 �a.u.�, �2=0; � and � are

spherical angles �zenith and azimuth�. Linear color scale goes from zero �black� to maximum �white�.
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which could modify symmetries in the ATI spectra following
Ref. �60�.

IV. IONIZATION BY A MONOCHROMATIC FIELD

In Sec. III C, it is seen that the SCVA inadequately de-
scribes ionization by a bichromatic laser field; moreover, the
SFA has turned out to be a quite reliable approximation for
the problem at hand. We now consider the single-color sce-
nario to see previous unnoticed deficiencies of the SCVA
appear in this case �46,47�.

The differential rate of photoionization by a linearly po-
larized monochromatic laser field,

A�t� = − E sin��t�/� ,

within the velocity gauge SCVA reads

WSCV
�L� �p� = �

n=−�

�

��p2

2
+ Ip + Up − n��2�Up�Mph��/2��2


 �Jn+1�u0,v0� + Jn−1�u0,v0��2, �30�

where Up= �E /2��2 is the pondermotive potential,
u0=−p ·E /�2, and v0=−Up /2�. For the sake of complete-
ness, we quote the SFA differential photoionization rate for
the linearly polarized laser field �the Keldysh-Faisal-Reiss
theory �41–43�, see also Ref. �61�� written in a suitable lan-
guage for our discussion,

WSFA
�L� �p� = �

n=−�

�

��p2

2
+ Ip + Up − n��


 2��Up − n��2�
p�g�Jn�u0,v0��2. �31�

These equations are known in the literature and can be de-
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rived using the same formalism present above by starting
with a single-color form for the field.

Let us illustrate and test the analytical formulas. In the
case of the monochromatic field, ATI spheres are cylindri-
cally symmetric for the ground state of a hydrogen atom,
viz., momentum distributions do not depend on the azi-
muthal angle �; thus, we present cuts along the zenith angle
�. Such cuts are presented in Fig. 3 �66�. From the figure,
one concludes that the SFA and SCVA are not so radically
different as in the bichromatic case. Note that the normalized
first ATI peaks within the SCVA, SFA, and ab initio treat-
ment are the same �top panel of Fig. 3�. However, for the
second ATI peak, the velocity gauge SFA slightly better re-
produces the results of numerical simulations in the vicinity
�=� /2 than the velocity gauge SCVA. The SCVA momen-
tum distributions, given by Eq. �30�, always equal to zero at
�=� /2 because of the presence of the one-photon ionization
amplitude Mph whereas the ab initio and SFA both give non-
zero yield at �=� /2. Such nonzero yield at �=� /2 appears
for all even order peak in monochromatic ionization �not

shown�, and in each case SCVA fails to capture this yield
while SFA at least gives a nonzero yield.

V. CONCLUSIONS AND DISCUSSIONS

The general analytical formalism for calculating SFA and
SCVA multicolor ionization amplitudes is presented. Analyz-
ing photoelectron spectra induced by a bichromatic laser
field in the regime when smallest frequency of the laser field
is larger than the ionization potential of the atom, we con-
clude that the velocity gauge SFA is more adequate than the
velocity gauge SCVA. Note that the length gauge SFA better
describes photoelectron momentum distributions than the ve-
locity gauge SFA in the case of ionization by a low fre-
quency field �see, e.g., Ref. �62��. As the next step, one may
try to compare the length gauge SCVA and SFA; there is no
simple analytical approach to the problem within the length
gauge. However, we suppose that the length gauge might not
lead to qualitatively different results since the canonical mo-
mentum p approaches the kinetic momentum k=p+A�t� in
the high frequency limit.

The origin of the observed qualitative difference between
the velocity gauge SFA and SCVA is related to the term
A2�t� /2 in the definition of the velocity gauge SFA ionization
amplitude �Eq. �4��. If we had ignored that term in Eq. �4�,
we would have obtained qualitatively the same results as by
the SCVA. Ostensibly, the minor difference between the SFA
and SCVA for the case of ionization by monochromatic ra-
diation �Sec. IV� is enhanced through interference between
different one-photon ionization channels in the presence of a
bichromatic laser field �Sec. III C�.

Finally, we point out that the formalism developed in Sec.
II may have two further applications in addition to its origi-
nal purpose.

The first one is two-electron strong-field phenomena in
the presence of a multicolor laser field. As it has been shown
in Refs. �63,64�, there exists the exact solution of the
Schrödinger equation for two interacting electrons in a laser
field. Moreover, this solution is a product of “Volkov-type”
phase �6� and a time-independent coordinate part. �Regard-
ing some applications of the exact solution �64� to two-
electron phenomena induced by a single-color laser field see
review �61�.�

The second application is to study analytically the effects
of a pulse envelope, which are of ongoing interest. In par-
ticularly, the effect of a carrier-envelope phase on ionized
electron momentum can be investigated �see, e.g., Ref. �65��:
the vector potential used in Eqs. �5� and �6� in Ref. �65� is
equivalent to a three-color case. In this formulation, the
carrier-envelope phase effects will be the effects of the ab-
solute phases.
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