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We consider a charged particle moving parallel to the surface of a metal film covering on the semi-infinite
dielectric substrate with constant speed. By means of the linearized quantum hydrodynamic theory, the induced
electron gas density and the stopping power are studied, taking into account the quantum statistical and
quantum diffraction effects. The calculation results show that an oscillatory wake field appears apparently
behind the particle at both of the surfaces of the metal film and the effect of the film thickness on the electron
gas density cannot be neglected when film is thinner. Besides, the dependence of the stopping power on the
film thickness, particle position, and the density parameter are analyzed. Finally, the stopping power of our
results is compared with those based on the local frequency-dependent dielectric approach.
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I. INTRODUCTION

Electronic excitation, both at the surface and in the bulk
of the material, is one of the elementary processes that are
well concerned in the field of condensed-matter and surface
physics. As is well known, when a charged particle moves
near a solid-vacuum interface, an induced potential will be
present due to the excitation and polarization of the electrons
at the solid surface. The gradient of the induced potential
will then give rise to a force that acts back on the moving
particle and makes it lose its kinetic energy. Researches on
the interaction between charged particles and solid surfaces
are not only for electron excitation investigations, but also an
effective tool of surface modification or exploration �1,2�.

Following the pioneering work of Ritchie �3�, there have
been many theoretical and experimental methods carried out
to study the electron-energy-loss spectroscopy and the wake
effects of the interaction between the moving charged par-
ticle and solid surface. In particular, Horing �4� investigated
the energy loss of a fast particle motion parallel to the two-
dimensional �2D� plasma sheet with a fixed distance in the
framework of the random-phase approximation �RPA� de-
scription within linear-response theory. Apart from RPA
theory �5�, Wang and Ma �6,7� investigated the wake poten-
tial and the energy loss of ions in 2D electron gas by using
the local field correction and the quantum scattering theory
�8�. Besides, many investigations �9,10� on the energy loss of
a charged particle interacting with 2D or three-dimensional
electron gas are also carried out by using different methods.

Recently, renewed interest in surface or interface plasmon
has attracted more attention in the investigation of the nano-
structured materials or electronics at the nanoscale �11�. Es-
pecially for the case of thin metal films with certain thick-
nesses on dielectric substrate, the electric fields of both
surfaces interact and make the electron oscillations different
from the normal surface plasmon. Researches on thin metal
films also show us the strong correlation between the film
thickness and film excitation features, such as the dielectric

function and the optical constants �12,13�, and indicate that
selecting the appropriate thickness of a metal film is very
important in some film techniques �14�. As we have noticed
for the case of the interaction of charged particles and thin
films, however, the influence of the film thickness is a ques-
tion that has not so far received enough theoretical treatment,
although it could yield meaningful results for studying more
complex systems.

Moreover, the electron gas in ordinary metals is an ex-
ample of a true quantum plasma that has been studied exten-
sively due to its applications in ultrasmall electronic devices
�15�, dense astrophysical environments �16�, and laser plas-
mas �17�. The quantum effects become important in plasmas
when de Broglie wavelength associated with the particles is
comparable to dimension of the system. Among the prevalent
models concerning quantum effects in plasma, the quantum
hydrodynamic �QHD� �18,19� model has become popular for
its extension of the usual fluid model to one incorporating
the quantum effects. More recently, this model has been used
to investigate dust acoustic solitary waves in quantum plas-
mas �20� and even the problems in magnetized plasmas �21�.
Also based on this model, both the quantum statistical and
quantum diffraction effects have been proved to be important
in investigating the interactions of charged particles with the
quantum electron gas in our previous works �22,23�.

In this paper, we employ the linearized QHD theory to
study the interaction of the charged particle with a thin metal
film located on dielectric substrate. Both the quantum statis-
tical and the quantum diffraction effects are included here,
while immobile ions are assumed to form the neutralizing
background. The outline of the paper is as follows. In Sec. II,
the theoretical model is formulated in terms of QHD equa-
tions, cooperated with the Poisson’s equation in the appro-
priate boundary condition, and the analytical expressions of
the induced electron gas density and the stopping power are
derived. In Sec. III, numerical results are presented and dis-
cussed for different parameters, while a comparison of the
stopping powers in the QHD model and local frequency-
dependent �LFD� dielectric model is provided in Sec. IV.
Finally, a short summary is given in Sec. V. Gauss units will
be adopted throughout the paper.*ynwang@dlut.edu.cn

PHYSICAL REVIEW A 79, 062903 �2009�

1050-2947/2009/79�6�/062903�6� ©2009 The American Physical Society062903-1

http://dx.doi.org/10.1103/PhysRevA.79.062903


II. THEORETICAL MODEL

We consider a projectile of charge Z1e flying with con-
stant speed v above a metal film of thickness 2a, which is
covering on the semi-infinite dielectric substrate of relative
permittivity �1. The schematic diagram is shown in Fig. 1.
The metal film lies in the region �z��a, with the dielectric
substrate located in z�−a, and the vacuum in z�a, in a
Cartesian coordinate system with R= �r ,z�. Here, we treat
the valence electrons in the metal film as free electron gas
immersed in a uniform background of positive charges with
the density per unit volume n0. As the charged particle
moves parallel to the metal film along the x axis with a fixed
distance b, the homogeneous electron gas will be perturbed
by the charged particle �ext=Z1e��r−vt���z− �a+b�� and can
be regarded as a charged fluid with three-dimensional scalar
density field ne�R , t�=n0+ne1�R , t� and a vector velocity
field ue�R , t�=ue1�R , t�, where ne1�R , t� and ue1�R , t� repre-
sent the first-order perturbed values of the electron gas den-
sity and velocity. Based on the linearized QHD theory
�18,19�, the electronic excitations in the metal film �z��a can
be described by the continuity equation

�ne1�R,t�
�t

+ n0 � · ue1�R,t� = 0, �1�

the momentum-balance equation

me
�ue1�R,t�

�t
= e � �ind

�M��R,t� −
me�

2

n0
� ne1�R,t�

+
me	

2

n0
� ��2ne1�R,t�� − 
meue1�R,t� ,

�2�

and Poisson’s equation

�2�ind
�M��R,t� = 4�ene1�R,t� , �3�

where me is the electron mass, e is the elementary charge,
and �ind

�M� is the induced potential in the metal film that re-
sults from the perturbations of the electron densities. The
first term in the right-hand side of Eq. �2� is the force on
electron in the metal film due to the electric field. The second
term is regarded as the quantum statistical effect caused by
the internal interactions in the electrons species. This effect
tends to flatten the electron gas density until it reaches the

equilibrium state. The third term regarded as quantum dif-
fraction effect comes from the quantum pressure. This effect
is the embodiment of wavelike nature of the charge carriers
and exists even in a pure quantum-mechanical state, while
the last term, 
meue1�R , t�, is the frictional force due to the
positive charge background, with 
 being the frictional coef-
ficient. In particular, �=�3 /5vF, 	=aBvB /2, with the Fermi
speed vF=��3�2n0�1/3 /me, the Bohr radius aB=�2 /e2me, and
the Bohr speed vB=e2 /�, respectively. By eliminating the
velocity field ue1�r , t� in Eqs. �1� and �2�, one can obtain

	
 �

�t
+ 
� �

�t
�ne1�R,t� = − p

2ne1�R,t� + �2�2ne1�R,t�

− 	2�4ne1�R,t� , �4�

where p= �4�e2n0 /me�1/2 is the classical plasma frequency
in homogeneous electron gas. Then, taking the time-space
Fourier transform

f�R,t� =  dkd

�2��3 F�k,z,�ei�k·r−t�, �5�

here, k=kxêx+kyêy is the wave vector in the xoy plane. We
expand the perturbed density ne1�R , t� into n�k ,z ,� accord-
ing to Eq. �5� and obtain the following expression of Eq. �4�:

� + i
�n�k,z,� = p
2n�k,z,� − �2
− k2 +

d2

dz2�n�k,z,�

+ 	2
− k2 +
d2

dz2�2

n�k,z,� . �6�

We assume that the expression of n�k ,z ,� complies with
the following form:

n�k,z,� = B+ch�qz� + B−sh�qz� , �7�

where sh and ch are the hyperbolic functions and q can be
solved from the following equation:

� + i
� − p
2 + �2�q2 − k2� − 	2�q2 − k2�2 = 0. �8�

The explicit solution of q will be presented in the Appendix
of this paper. Similarly, also by using the Fourier transform
in Eq. �5�, we expand the induced potential in the metal film
�ind

�M��R , t� into �ind
�M��k ,z ,� which has been set as the ex-

pression

�ind
�M��k,z,� = C+ch�kz� + C−sh�kz� + D+ch�qz� + D−sh�qz� .

�9�

Combining Eqs. �3� and �7� with Eq. �9�, we can easily ob-
tain B+= �q2−k2�D+ /4�e and B−= �q2−k2�D− /4�e.

For the region z�a, however, the total electric potential is
from the external charged particle and the perturbation of the
electron fluid density in the metal film, which can be ex-
pressed as ��R , t�=�ext�R , t�+�ind

�V��R , t�. The induced po-
tential satisfies the Laplace equation, while the external po-
tential obeys the Poisson’s equation

b

x
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a

�
�

o

z

vacuum

metal film
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vZ1e

FIG. 1. A charged particle moving with speed v near and paral-
lel to the metal film of thickness 2a, which covering on the semi-
infinite dielectric substrate of relative permittivity �1, along the x
direction with the height b, the origin of the coordinates is taken at
the point of the projection of the moving particle in the z=0 plane.
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�2�ext�R,t� = − 4�Z1e��r − vt���z − �a + b��, �z � a� .

�10�

So, we expand the external potential �ext�R , t� into
�ext�k ,z ,� complying with the Fourier expression in Eq.
�5�, but express the induced potential as

�ind
�V��R,t� =  dkd

�2��3 A�k,�ei�k·r−t�−kz. �11�

For the region z�−a, the induced potential can be similarly
expanded as

�ind
�D��R,t� =  dkd

�2��3 D�k,�ei�k·r−t�+kz. �12�

The coefficients A�k ,�, D�k ,�, C+, C−, D+, and D− in the
above equations are to be determined from the matching
boundary conditions of the fields at z= �a.

As the electron gas is confined in the metal film, the com-
ponent of ue1�R , t� normal to the surfaces is zero, i.e.,
ue1�k ,z ,� �z=�a=0; here, the detailed expression of
ue1�k ,z ,� can be obtained from Eqs. �2� and �5�. Further-
more, we adopt the boundary conditions of the potential and
the normal component of electronic displacement at z= �a,
as

��ext�k,z,� + A�k,�e−kz��z=a = �ind
�M��k,z,��z=a,

D�k,�ekz�z=−a = �ind
�M��k,z,��z=−a, �13�

and

�

�z
��ext�k,z,� + A�k,�e−kz��z=a =

�

�z
�ind

�M��k,z,��z=a,

�1
�

�z
D�k,�ekz�z=−a =

�

�z
�ind

�M��k,z,��z=−a. �14�

We can obtain the expressions of the coefficients

A�k,� = eka	PC+ + QC−

q� + i
�
− �ext�k,a�� , �15�

D�k,� = eka	PC+ − QC−

q� + i
� � , �16�

C+ = 2q� + i
�
�1Q + qT

�P + qS���1Q + qT� + �Q + qT���1P + qS�

��ext�k,a� , �17�

C− = 2q� + i
�
�1P + qS

�P + qS���1Q + qT� + �Q + qT���1P + qS�

��ext�k,a� , �18�

D+ = −
p

2

� + i
�
k

q

sh�ka�
sh�qa�

, �19�

and

D− = −
p

2

� + i
�
k

q

ch�ka�
ch�qa�

, �20�

where P=q�+ i
�ch�ka�−kp
2sh�ka�cth�qa�,

Q=q�+ i
�sh�ka�−kp
2ch�ka�th�qa�, S= ��+ i
�

−p
2�sh�ka�, T= ��+ i
�−p

2�ch�ka�, and �ext�k ,a�
=

8�2Z1e

k e−kb��−k ·v�. So we can calculate the spatial distri-
bution of the induced electron gas density in the metal film
from Eq. �7� by using the inverse Fourier transform and the
above expressions of the coefficients.

Furthermore, we study here the stopping powers that rep-
resent the main effects of the induced electric field on a
charged particle moving above the metal film. Using the ex-
pression for the induced potential given in Eq. �11� and com-
bining it with Eq. �15�, the stopping power can be described
as follows:

S = Z1e�v · ��ind
�V�

v
�

r=vt,z=�a+b�

=
Z1e

v
  dkd

�2��3 ik · vA�k,�ei�k·r−t�−k�a+b�. �21�

In this paper, we take k ·v=kxv= due to the assumption
of the charged particle moving along the x axis. Moreover, it
is convenient for calculation to introduce the dimensionless
variables v /vB→v,  /p→, l /�F→ l, 
 /p→
, and
k /kF→k, where l stands for any quantity of length. Besides,
kF= �3�2n0�1/3 is the Fermi wave number, �F=1 /kF is the
Fermi wavelength, and rs= �3 /4�aB

3n0�1/3 is a dimensionless
parameter that has been introduced to represent the electron
gas density in equilibrium.

III. NUMERICAL RESULTS

In our calculation, we take the charged particle as a pro-
ton, Z1=1, and the relative permittivity �1=3.0. Figures 2�a�
and 2�b� show the spatial distribution of the induced electron
gas density �normalized by ne0= ��3�5/2aB

3�−1� in the metal
film along the z and x directions for different film thick-
nesses: �a� a=6�F and �b� 15�F, with the particle speed
v=3vB. It is found from the figures that a kind of oscillatory
wake field appears apparently behind the particle position
�x=0� along the x direction. The oscillatory state of the elec-
tron gas density in the vicinity of the upper surface �z=a� is
almost invariant with the increase in the film thickness.
Along the z direction, however, one can see from Fig. 2�a�
that the oscillatory amplitude decreases and almost disap-
pears at first, and then begins to increase near the lower
surface of the film �z=−a�. This characteristic may be due to
the limitation of the film thickness, which therefore makes
the electrons accumulate at the lower surface. Besides, one
can see from Fig. 2�b�, the oscillation near the lower surface
gradually disappears with the increasing film thickness and
the electron density perturbation will no longer put any ef-
fects as the film thickness increases up to a certain value.
Thus, from our results, the influence of the induced electron
gas densities due to the intrusive proton cannot be neglected
at the metal-dielectric interface as the metal film is relative
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thin. But, the depth of this kind of influence is finite in a
given case when the thickness is up to a certain value.

To examine the effects of the particle speed on the pertur-
bation of the electron gas, in Figs. 3�a� and 3�b�, we plot the
spatial distribution of the induced density in xoz plane for
different particle speeds: �a� v=1.5vB, and �b� v=7vB, with
a=6�F. For a particular value of particle speed, similar to
what Fig. 2 shows, an oscillatory wake field excited behind
the test charge and the cumulative electrons exist near the
lower surface of the film. However, with the increasing par-
ticle speed v, the maximum amplitude of the oscillation re-
duces and the wavelength becomes longer. Besides, longer
tails of the wake effects behind the proton at both of the
surfaces of the metal film are noticed as the particle speed v
increases.

Stopping powers dependent on the thickness of the metal
film a, the height of the particle b, and the density parameter
rs are shown in Fig. 4, with �1=3 and 
=0.1p. Figure 4�a�
displays the stopping power as a function of particle speed
for different film thickness, with b=3�F and rs=3.0. From
the figure one can see that the energy loss of the particle is
hardly influenced by the thickness of the metal film when the
particle speed is lower than v�2 at which the stopping pow-
ers take the maximum value. However, at the speed much
higher than v�2, the stopping powers for thicker films are
greater than the case for a=5�F but will not increase too
much as the film thickness still increases. The effects of the
particle position on the stopping powers are shown in Fig.
4�b�. Similar to our work �22� in which the interaction of

moving charged particle with two-dimensional electron gas
is discussed, the stopping power increases in magnitude with
the decreasing b value and the extrema in curves shift toward
the lower velocity indicating more energy will be lost when
the particle moves closer to the metal film. Figure 4�c� shows
us the influences of different metal films on the stopping
powers, in which one can see that the stopping power in-
creases in a higher speed region with the decreasing rs,
showing that stronger excitation and polarization will happen
in the electron gas with higher densities.

IV. COMPARISON WITH LFD DIELECTRIC APPROACH

In this section, we try to recalculate the stopping power of
protons by using the LFD dielectric function to describe the
collective response of the electron in the metal film instead
of the QHD model. The expression of the dielectric function
is

��� = 1 −
p

� + i
�
, �22�

where p is the classical plasma frequency and 
 is the fric-
tional coefficient, same as those in Eq. �4�. We assume that
the potential in the metal film can be described as

��M��R,t� =  dkd

�2��3 �Be−kz + Cekz�ei�k·r−t�. �23�

Thus the boundary conditions in Eqs. �13� and �14� will be
changed into
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FIG. 2. �Color online� The distribution of the induced electron
gas density ne1 �normalized by ne0= ��3�5/2aB

3�−1� along the x and z
directions in the metal film for different film thicknesses: �a�
a=6�F, and �b� 15�F with 
=0.05p, rs=3, and b=3�F. The solid
line in the xoz plane is the projection of the ne1.
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FIG. 3. �Color online� The distribution of the normalized in-
duced electron gas density along x and z directions for different
particle speeds: �a� v=1.5vB, and �b� v=7vB with 
=0.05p,
rs=3, and b=3�F.
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�ext�k,a� + A�k,�e−ka = Be−ka + Ceka,

Beka + Ce−ka = De−ka, �24�

and

�ext�k,a� − A�k,�e−ka = − ����Be−ka − Ceka� ,

− ����Beka − Ce−ka� = �1De−ka. �25�

Substituting Eq. �22� into the boundary conditions Eqs. �24�
and �25�, we finally obtain

A�k,� =
���ch�2ka� + �1sh�2ka� − �������sh�2ka� + �1ch�2ka��
���ch�2ka� + �1sh�2ka� + �������sh�2ka� + �1ch�2ka��

eka�ext�k,a� , �26�

which is to be used in Eq. �21� to evaluate the stopping
power in the LFD dielectric function approach. In Fig. 5, we
calculate the stopping powers in this approach and compare
them with those obtained from QHD theory, for particles
moving above the metal film at different position b, with a

=10�F, rs=2, 
=0.1p, and �1=3. From the figure one can
see that two groups of results coming from different theoret-
ical models appear to be close for high speed indicating that
the LFD dielectric approach may be considered as a simple
approximation to the QHD model when the particle speed is
high. For the large distance like b=20�F, the values of stop-
ping power calculated from two models are almost in agree-
ment with each other independent of proton speed. But, for
the case of particles close to the film or those with low speed,
the results based on the LFD dielectric approach seem to
overestimate the stopping values compared with those in the
QHD model.

V. SUMMARY

This work presents a theoretical description of the inter-
action of a moving charged particle with the thin metal film
covering on the semi-infinite dielectric substrate based on the
QHD model. The analytical expressions of the induced elec-
tron density and the stopping power have been derived with
the assumption of the linear disturbance. The simulation re-
sults indicate that the oscillatory wake effects occur behind
the particle opposite to the particle motion when the particle
moves above the metal film. The oscillatory behavior turns
up near both of the surfaces of the metal films with limited
thickness and the wake effects at the lower surface will dis-
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FIG. 4. The stopping power S �normalized by S0

= �2Z1e /�3�aB�2� versus the moving particle speed v �normalized
by vB� for different thickness a, with b=3�F, and rs=3 �a�, for
different particle position b, with a=5�F, and rs=3 �b�, and for
different density parameter rs, with a=5�F and b=3�F �c�.
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FIG. 5. Stopping power S �multiplied by distance b� vs particle
speed v for distances b=5, 10, 15, and 20�F from the metal surface.
The solid curves are the results of the LFD model and the dotted
curves are the results of QHD dielectric approach, with a=10�F,
rs=2, 
=0.1p, and �1=3.
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appear with the increase in the film thickness indicating that
the film thickness has important influence on the induced
density especially at the metal-dielectric interface. Also,
comparing the results from different particle speeds, the par-
ticle with higher speed can stimulate wake effects with
longer tails and will face weaker damping at both of the
surfaces. Moreover, as a function of the particle speed, the
stopping powers dependent on the thickness of the metal
film, the height of the particle, and the density parameter
have been discussed. Our calculation results indicate that the
stopping power weakly relies on the film thickness in the low
velocity region but increases with the increase in thickness a
in a higher region, until a is up to a certain value. In addition,
smaller distance from the metal surface and greater density
of the electron gas will both lead to stronger wake effects
and then stronger stopping to the intruding particle. From
comparisons of the stopping powers in the QHD model with
those based on the LFD dielectric function model, we find
that our calculation results in this work are capable to be
relied on. For our future study, we would like to extend the
present work to investigate the interactions of ions or laser
beam with metal films.
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APPENDIX

We know from the paper that q can be solved from the
following equation:

� + i
� − p
2 + �2�q2 − k2� − 	2�q2 − k2�2 = 0. �A1�

Thus, the expression of q2 can be given as

q2 = k2 +
�2

2	2 �
�2

2	2�1 +
4	2

�4 �� + i
� − p
2��1/2

.

�A2�

For the momentum-balance equation in Eq. �2�, the term
	2

n0
� ��2ne1�R , t�� is the quantum diffraction effect coming

from the quantum pressure, which is very small compared to
the electric-field force and the quantum statistical effects.
Therefore, if 	→0, the solution of q2 should be consistent
with that coming from the following equation:

�ue1�R,t�
�t

=
e

me
� �ind

�M��R,t� −
�2

n0
� ne1�R,t� − 
ue1�R,t� ,

�A3�

i.e.,

q2 = k2 +
1

�2 �p
2 − � + i
�� . �A4�

When 	→0, the third term on the right-hand side of Eq.
�A2� will close to

�2

2	2 −
1

�2 �p
2 − � + i
�� . �A5�

So, only when we take the symbol “−” in Eq. �A2� is the
expression of which consistent with that of Eq. �A4�.
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