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The electric dipole polarizabilities and hyperpolarizabilities for the lithium isotopes 6Li and 7Li in the
ground state 2 2S and the excited states 2 2P and 3 2D, as well as the leading resonance and dispersion
long-range coefficients for the Li�2 2S�-Li�2 2S� and Li�2 2S�-Li�2 2P� systems, are calculated nonrelativisti-
cally using variational wave functions in Hylleraas basis sets. Comparisons are made with published results,
where available. We find that the value of the second hyperpolarizability of the 2 2S state is sensitive to the
isotopic mass due to a near cancellation between two terms. For the 3 2D state polarizability tensor, the
calculated components disagree with those measured in the sole experiment and with those calculated
semiempirically.
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I. INTRODUCTION

The energies, transition probabilities, and polarizabilities
of the lithium atom and its isotopes and their mutual long-
range interaction coefficients have been extensively studied,
and many calculational approaches have been developed and
tested against each other and against available experimental
results. Nevertheless—as we shall show—there is still a need
for calculations of increasingly high precision to serve as
benchmarks, to predict atomic and interatomic coefficients,
and to help understand discrepancies between various re-
sults. Calculations at the level reflecting the mass of lithium
isotopes may be applied to a diverse set of recent areas of
interest in, for example, astrophysics �1�, ultracold atom-
atom scattering �2,3� and Feshbach resonance analyses �4,5�,
photoassociation spectroscopy �6,7�, atom-molecule scatter-
ing �8�, and three-atom inelastic collisional loss studies �9�.
Measurements and calculations on excited states and their
properties are also at the frontier, though discrepancies be-
tween theory and experiment remain even for the lowest
fine-structure levels �10,11�.

It has been demonstrated that ab initio wave functions
obtained variationally using Hylleraas-type basis functions
are capable of yielding highly accurate results for Li proper-
ties �cf. �12,13��. In turn, those results have proven useful in
gauging the effectiveness of Gaussian-type basis functions
�14� and other calculations �15�, semiempirical methods �16�,
and relativistic approaches �17–19�. The purpose of the
present work is to apply and extend methods developed over
a series of previous papers �e.g., �12,20,21�� to the excited
2 2P and 3 2D states of the lithium isotopes, thereby provid-
ing a consistent and highly accurate ab initio treatment of the
polarizabilities and their related quantities using the nonrel-
ativistic Schrödinger equation. We also refine the previous

results �12� for the 2 2S ground state by improving the accu-
racy and by the inclusion of the isotope mass. For the excited
states of the isotopes, we provide calculations of static polar-
izabilities and static second hyperpolarizabilities and we in-
vestigate the excited-state resonance and the dispersion long-
range interaction potential-energy coefficients.

II. THEORY

In this section, the Hamiltonian and basis sets will be
exhibited along with expressions for the electric multipole
transition operators, polarizabilities, second hyperpolariz-
abilities, and dispersion coefficients. The formulation ex-
tends and unifies those given previously for Li �12,20,21�,
for He �22�, and for H2

+ �23�; we include the isotopic mass
and we treat the response of the atom to an applied electric
field.

A. Hamiltonian

The transformation from the laboratory frame to the
center-of-mass frame that we will use for describing the Li
atom was given by Zhang and Yan �23� in a general form for
n+1-charged particles. It was applied to generate the Hamil-
tonian and transition operators for H2

+ in Ref. �23� and for He
in Ref. �22�.

We directly follow the expressions given in Eqs. �20�–
�26� of Ref. �23�, where the particles are labeled by the index
i=0, . . . ,n. We make the replacement n=3, identify particle
0 with the nucleus of mass m0, identify the particles i=1, 2,
and 3 with the electrons, so that m1=m2=m3=m, where m is
the electron mass, to obtain the Hamiltonian expressed in the
center-of-mass frame describing the internal motion of the Li
atom,
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where ri is the position vector of electron i from the nucleus,
and �=mm0 / �m+m0� is the reduced mass. In this subsection,
j stands for a summation index �in subsequent parts of the
paper it will be an angular-momentum quantum number� and
qj, j=0, . . . ,3 are the charges of the respective particles.

The 2�-pole transition operator is

T� = �
i=0

3

qiRi
�Y�0�R̂i� , �2�

where Ri, i=0, . . . ,3, as shown in Eq. �27� of Ref. �23�. It
can be transformed into the center-of-mass frame by apply-
ing Eqs. �23� and �24� of Ref. �23�, which may be written in
the form

Ri = �
j=1

3

�ijr j , �3�

with �ij =�ij −mj /MT, i=0,1 ,2 ,3, j=1,2 ,3, and
MT=m0+3m. The general formula for T� expressed in the
center-of-mass frame is given in Eq. �30� of Ref. �23�.

For a four-particle system, it can be shown that the tran-
sition operators T� with � up to 3 have the following explicit
forms:
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3
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with 	j ,k
= �1,2�, �2,3�, and �3,1�, and
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For a neutral system, the finite mass effect enters into the
transition operator T� as a polynomial of degree �−1 in
mj /MT. For Li, the three coefficients appearing in the sets of
parentheses in Eq. �6� for the transition operator T3, for ex-
ample, can be written as

�
i=0

3

qi�ij
3 = qj − 3qj� mj

MT
� + 3qj� mj

MT
�2

, �7�

�
i=0

3

qi�ij
2 �ik = − qj� mk
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� + 2qj� mj

MT
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MT
� + qk� mj
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,

�8�

�
i=0

3

qi�i1�i2�i3 = q1� m2

MT
�� m3

MT
� + q2� m3

MT
�� m1

MT
�

+ q3� m1

MT
�� m2

MT
� . �9�

For an atomic system of infinite nuclear mass, all the coeffi-
cients are zero except for those of rj

�Y�0�r̂ j�, which are equal
to qj, as expected. We now let m=1 to utilize atomic units for
the remainder of the paper.

B. Variational basis sets

The wave functions are obtained by solving variationally
the energy eigenvalue equation for lithium

H0�0�r1,r2,r3� = E0�0�r1,r2,r3� , �10�

with H0 given by Eq. �1�, in terms of the explicitly correlated
basis functions in Hylleraas coordinates,

��r1,r2,r3� = r1
j1r2

j2r3
j3r12

j12r23
j23r31

j31e−	r1−
r2−�r3Y��1�2��12,�3

LML �r̂1, r̂2, r̂3���1,2,3� , �11�

where rij = �ri−r j� is the interelectronic separation, Y��1�2��12,�3

LML is a vector-coupled product of spherical harmonics to form an
eigenstate of the total angular momentum L and component ML, which can be written in the form

Y��1�2��12,�3

LML �r̂1, r̂2, r̂3� = �
all mi

��1m1;�2m2��1�2;�12m12
��12m12;�3m3��12�3;LML
Y�1m1
�r̂1�Y�2m2

�r̂2�Y�3m3
�r̂3� , �12�

and ��1,2 ,3� is the three-electron-spin-1/2 function. The variational wave function �0 is a linear combination of basis
functions � antisymmetrized. The procedures followed are similar to those described in Ref. �20�. With some truncations to
avoid the potential numerical linear dependence, all terms in Eq. �11� are included such that
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j1 + j2 + j3 + j12 + j23 + j31 
 � , �13�

where � is an integer, and the convergence for the energy eigenvalue is studied by increasing � progressively. The basic type
of integral that appears in this work is of the form

� dr1dr2dr3r1
j1r2

j2r3
j3r12

j12r23
j23r31

j31e−	r1−
r2−�r3Y�1�m1�
� �r̂1�Y�2�m2�

� �r̂2�Y�3�m3�
� �r̂3�Y�1m1

�r̂1�Y�2m2
�r̂2�Y�3m3

�r̂3� �14�

and computational details for this integral can be found in
Ref. �21�.

C. Stark effect and polarizabilities

The polarizability of an atom can be considered as a mea-
sure of the response of the charge cloud to an external elec-
tric field, which can be illustrated by the Stark effect. Con-
sider a lithium atom in a weak external electric field E=Eẑ.
The initial state is assumed to be a parity eigenstate and is
written as �0
��n0LM
, where n0 is the principal quantum
number and L and M are the usual angular-momentum quan-
tum numbers. According to the perturbation theory, the en-
ergy shift due to E can be expressed in the form

�E = �E2 + �E4 , �15�

where �E2 and �E4 are, respectively, from the second- and
fourth-order corrections, whereas the first- and third-order
corrections are zero because of the parity selection rule. The
detailed derivation for �E2 and �E4 is given in the Appen-
dix. The final expression for �E2 is

�E2 = −
E2

2
�	1 + 	1

�T�g2�L,M�� , �16�

where g2�L ,M� is the only M-dependent part, defined in the
Appendix by Eq. �A29�, and 	1 and 	1

�T� are, respectively, the
scalar and tensor dipole polarizabilities. The polarizabilities
	1 and 	1

�T� can be expressed further in terms of the reduced
matrix elements of the dipole transition operator:

	1 = �
La

	1�La� , �17�

	1
�T� = �

La

W�L,La�	1�La� , �18�

where

	1�La� =
8�

9�2L + 1��n

��n0L��T1��nLa
�2

En�La� − En0
�L�

, �19�

with T1=�i=0
3 qiRiY10�R̂i�, Eq. �2�, and

W�L,La� = �− 1�L+La�30�2L + 1�L�2L − 1�
�2L + 3��L + 1� �1 1 2

L L La
� .

�20�

In the above, the set of energies and wave functions
	En�La� , �nLaMa

 corresponds to an intermediate energy

spectrum allowed by the dipole selection rule, which can be
obtained by diagonalizing the Hamiltonian in a Hylleraas
basis set of given symmetry La. In particular, for the case of
L=0,

	1 = 	1�P� , �21�

	1
�T� = 0, �22�

for L=1,

	1 = 	1�S� + 	1�P� + 	1�D� , �23�

	1
�T� = − 	1�S� +

1

2
	1�P� −

1

10
	1�D� , �24�

and for L=2,

	1 = 	1�P� + 	1�D� + 	1�F� , �25�

	1
�T� = − 	1�P� + 	1�D� −

2

7
	1�F� . �26�

In Eqs. �23� and �24�, 	1�P� is the contribution from the
even-parity configuration �pp��P. In Eqs. �25� and �26�,
	1�D� is from the odd-parity configuration �pd�D.

The fourth-order energy shift can be written in the form

�E4 = −
E4

24
��0 + �2g2�L,M� + �4g4�L,M�� , �27�

where g4�L ,M� is given by Eq. �A47� in the Appendix. In
Eq. �27�, �0 is the scalar second hyperpolarizability and �2
and �4 are the tensor second hyperpolarizabilities, which can
be written as

�0 = �− 1�2L128�2

3

1
�2L + 1

�
LaLbLc

G0�L,La,Lb,Lc�T�La,Lb,Lc� ,

�28�

�2 = �− 1�2L128�2

3
� L�2L − 1�

�2L + 3��L + 1��2L + 1�

� �
LaLbLc

G2�L,La,Lb,Lc�T�La,Lb,Lc� , �29�
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�4 = �− 1�2L128�2

3
� L�2L − 1��L − 1��2L − 3�

�2L + 5��L + 2��2L + 3��L + 1��2L + 1�

� �
LaLbLc

G4�L,La,Lb,Lc�T�La,Lb,Lc� , �30�

where T�La ,Lb ,Lc� and G��L ,La ,Lb ,Lc�, respectively, are
defined in the Appendix by Eqs. �A44� and �A51�. In particu-
lar, for the case L=0, we only need to consider

�0 =
128�2

3
�1

9
T�1,0,1� +

2

45
T�1,2,1�� . �31�

�Note that the case Lb=1 does not enter in Eq. �31�. The first
3-j symbol in Eq. �A51� requires K1=0 or 2 and since
L=0 here, the first 6-j symbol requires Lb=K1; therefore,
Lb=0 or 2.� For the case L=1, we have

�0 =
128�2

3
� 1

27
T�0,1,0� +

2

135
T�0,1,2� +

1

54
T�1,1,1�

−
1

90
T�1,1,2� −

1

90
T�1,2,1� −

�5

450
T�1,2,2�

+
2

135
T�2,1,0� −

1

90
T�2,1,1� +

17

1350
T�2,1,2�

−
�5

450
T�2,2,1� −

1

450
T�2,2,2� +

2

225
T�2,3,2�� ,

�32�

�2 =
128�2

3
�−

1

27
T�0,1,0� −

2

135
T�0,1,2� +

1

108
T�1,1,1�

−
1

180
T�1,1,2� −

1

180
T�1,2,1� −

�5

900
T�1,2,2�

−
2

135
T�2,1,0� −

1

180
T�2,1,1� −

7

2700
T�2,1,2�

−
�5

900
T�2,2,1� −

1

900
T�2,2,2� −

2

1575
T�2,3,2�� , �33�

and for L=2, we have

�0 =
128�2

3

1

15750
	�140T�1,0,1� + 119T�1,2,1�

+ 84T�1,2,3� + 84T�3,2,1� + 74T�3,2,3� + 60T�3,4,3��

− �105T�1,1,1� + 21�5T�1,1,2� + 21T�1,2,2�

+ 21�5T�2,1,1� + 21T�2,1,2� + 21T�2,2,1�

− 119T�2,2,2� + 56T�2,2,3� + 56T�2,3,2�

+ 4�70T�2,3,3� + 56T�3,2,2� + 4�70T�3,3,2�

+ 20T�3,3,3��
 , �34�

�2 =
128�2

3

1

154350
	− �1960T�1,0,1� + 1225T�1,2,1�

+ 840T�1,2,3� + 840T�3,2,1� + 380T�3,2,3�

+ 240T�3,4,3�� + �735T�1,1,1� + 147�5T�1,1,2�

+ 147T�1,2,2� + 147�5T�2,1,1� + 147T�2,1,2�

+ 147T�2,2,1� + 1519T�2,2,2� − 448T�2,2,3�

− 448T�2,3,2� − 32�70T�2,3,3� − 448T�3,2,2�

− 32�70T�3,3,2� − 160T�3,3,3��
 , �35�

�4 =
128�2

3

1

128625
��490T�1,0,1� + 49T�1,2,1�

+ 14T�1,2,3� + 14T�3,2,1� + 4T�3,2,3� +
5

3
T�3,4,3��

+ �245T�1,1,1� + 49�5T�1,1,2� + 49T�1,2,2�

+ 49�5T�2,1,1� + 49T�2,1,2� + 49T�2,2,1�

+ 49T�2,2,2� + 14T�2,2,3� + 14T�2,3,2� + �70T�2,3,3�

+ 14T�3,2,2� + �70T�3,3,2� + 5T�3,3,3��� . �36�

In each of Eqs. �34�–�36�, the terms in the first set of square
brackets only involve the intermediate states of natural pari-
ties, which make the dominant contributions to the hyperpo-
larizabilities, while the terms in the second set of square
brackets involve the intermediate states of unnatural parities,
which make subordinate contributions. For example, the
term T�1,0 ,1� involves the intermediate states 1s2np 2Po,
1s2ns 2Se, and 1s2np 2Po, which are all natural-parity states;
while the term T�1,1 ,1� involves the electronic configura-
tions 1s2np 2Po, 1snpn�p 2Pe, and 1s2np 2Po, where two
states are natural-parity states and one unnatural-parity state.

The scalar dipole polarizability defined in Eq. �17� can be
generalized to the 2�-pole polarizability 	�

	� = �
La

	��La� , �37�

where

	��La� =
8�

�2� + 1�2�2L + 1��n

��n0L��T���nLa
�2

En�La� − En0
�L�

, �38�

and T� is the 2�-pole transition operator given by Eq. �2�.

D. Coefficients for long-range interactions
between two atoms

First, let us consider the simplest case where both a and b
are Li atoms in their ground states �12�. At large separations
R, using the second-order perturbation theory, Vab can be
expressed as a series in inverse powers of R,
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Vab = −
C6

R6 −
C8

R8 −
C10

R10 − ¯ , �39�

where

C6 =
3

�
Gab�1,1� , �40�

C8 =
15

2�
Gab�1,2� +

15

2�
Gab�2,1� , �41�

and

C10 =
14

�
Gab�1,3� +

14

�
Gab�3,1� +

35

�
Gab�2,2� . �42�

Introducing the oscillator strength for the transition
�n0L
→ �nL�
,

f̄ n0
��� =

8�

�2� + 1�2�2L + 1�
En0��n0L��T���nL�
�2, �43�

where En0=En�L��−En0
�L� is the corresponding transition

energy, Gab��a ,�b� can be written in the form

Gab��a,�b� =
�

2 �
nn�

f̄ n0
��a� f̄ n�0

��b�

En0
a En�0

b �En0
a + En�0

b �
, �44�

where throughout a and b, respectively, denote atom a and
atom b.

Next, we consider two like lithium atoms a and b, where
atom a is in the ground state and atom b in an excited state
with orbital angular momentum Lb and associated magnetic
quantum number Mb. The zeroth-order wave function for the
combined system ab can be written in the form �12�,

��0� =
1
�2

��a����b�LbMb;�� + 
�a����b�LbMb;��� , �45�

where � and � represent, respectively, the set of all of the
internal coordinates for atom a and atom b, and 
= �1 de-
scribes the symmetry of the system due to the exchange of

two atoms. According to the perturbation theory, the first-
order interaction energy is given by

V�1��LbMb;
� = −
C2Lb+1

Mb


R2Lb+1 , �46�

where

C2Lb+1
Mb
 = 
�− 1�1+Lb+Mb

4�

�2Lb + 1�2� 2Lb

Lb + Mb
�

����a�����TLb
������b�Lb;��
�2. �47�

One can see from Eq. �46� that for the Li�S�-Li�P� system,
the interaction energy is proportional to R−3. To get the next-
order energy, let the complete set for the intermediate states
of the system be

	�s�LsMs;���t�LtMt;��
 , �48�

with the energy eigenvalue Est
�0�=Es

�0�+Et
�0�. According to the

second-order perturbation theory, the second-order energy is

V�2� = −
C6

Mb

R6 −
C8

Mb

R8 − ¯ , �49�

where

C6
Mb = �

st

�6
st

Est
�0� − E�0� , �50�

C8
Mb = �

st

�8
st

Est
�0� − E�0� , �51�

and the energy for the unperturbed system is
E�0�=Ea

�0�+Eb
�0�. Following Ref. �12�, one can obtain the fol-

lowing expressions for �6
st and �8

st that are in agreement with
the formulas in Ref. �22�:

�6
st = ���a�����T1������s�1;��
�2�

�

G�1,1,1,�,1,Mb����b�1;����T1������t��;��
�2, �52�

�8
st = 2���a�����T1������s�1;��
�2�

�

G�1,3,1,�,1,Mb���b�1;����T1������t��;��
��b�1;����T3������t��;��


+ ���a�����T1������s�1;��
�2�
�

G�2,2,1,�,1,Mb����b�1;����T2������t��;��
�2

+ ���a�����T2������s�2;��
�2�
�

G�1,1,2,�,1,Mb����b�1;����T1������t��;��
�2

+ G3�2,2,1,1,1,Mb���a�����T1������s�1;��
��a�����T1������t�1;��


� ��b�1;����T2������t�1;��
��b�1;����T2������s�1;��


+ 2G3�1,2,1,2,1,Mb���a�����T1������s�1;��
��a�����T2������t�2;��
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� ��b�1;����T1������t�2;��
��b�1;�����T2�������s�1;��


+ G3�1,1,2,2,1,Mb���a������T2�������s�2;��
��a�����T2������t�2;��


� ��b�1;����T1������t�2;��
��b�1;����T1������s�2;��
 , �53�

with

G�L,L�,Ls,Lt,Lb,Mb� = �− 1�L+L� �4��2

�2Ls + 1�2 �L,L��−1/2 �
MsMt

KLsL
−MsKLsL�

−Ms� Lb L Lt

− Mb Ms Mt
�� Lb L� Lt

− Mb Ms Mt
� , �54�

and

G3�L,L�,Ls,Lt,Lb,Mb� = �− 1�L+Ls
�4��2

�2Ls + 1��2Lt + 1�
�L,L��−1/2 �

MsMt

�− 1�Ms+MtKLsL
−MsKL�Lt

Mt �Lb L Lt

− Mb Ms Mt
��Lb L� Ls

− Mb Mt Ms
� .

�55�

In Eqs. �54� and �55�, the coefficient K�L
� is

K�L
� = ��� + L

� + �
��� + L

L + �
��1/2

, �56�

and �� ,L , . . .�= �2�+1��2L+1�¯.

III. RESULTS AND DISCUSSIONS

In this section, we present the results of the calculations
of the static electric dipole, quadrupole, and octupole polar-
izabilities, the second hyperpolarizabilities, and the reso-
nance and dispersion long-range coefficients for the pairs
of atoms using the wave functions obtained as described in
Sec. II B. In addition, we give some calculated oscillator
strengths and sum rules that might be useful.

A. 2 2S state: Polarizabilities and hyperpolarizabilities of
atoms and dispersion coefficients between two atoms

Table I presents a convergence study for the calculations
of the scalar dipole polarizability 	1 of lithium with infinite
nuclear mass �Li in the ground state. In the table, N0 and NP,
respectively, are the sizes of the basis sets for the ground

state and for the intermediate states of symmetry P. The
extrapolation obtained by assuming that the ratio between
two successive differences in 	1 stays constant as the sizes of
the basis sets become infinitely large yields the value
164.112�1�. This is in perfect agreement with the value
164.111�2� of Ref. �12� based on calculations up to much
smaller values N0=919 and NP=1846, confirming the effi-
cacy of the extrapolation method used in that work. For 6Li
and 7Li, a similar convergence pattern exists.

Calculations on the hyperpolarizability �0, on the other
hand, require much larger basis set sizes to achieve accura-
cies even approaching that achieved for the polarizabilities.
In our approach, there is a partial cancellation of significant
figures between the sum of the two terms 1

9T�1,0 ,1� and
2

45T�1,2 ,1� in Eq. �31�, even though the individual terms
are converged to about four significant figures. Table II
presents the convergence study for calculations of the hyper-
polarizability �0 of �Li in the ground state. At the largest
sizes of basis sets in Table II, 1

9T�1,0 ,1�=−3463.861 and
2

45T�1,2 ,1�=3471.078, resulting in a loss of about two sig-
nificant figures when added.

Table III summarizes the final values of the polarizabil-
ities 	1, 	2, and 	3, �0, and the dispersion coefficients C6,
C8, and C10 for �Li, 7Li, and 6Li in their ground states 2 2S.

TABLE I. Convergence of 	1 for the ground state 2 2S of �Li,
in atomic units.

�N0 ,NP� 	1

�120, 55� 163.92934

�256, 138� 164.03473

�502, 306� 164.06958

�918, 622� 164.09123

�1589, 1174� 164.10058

�2625, 2091� 164.10695

�4172, 3543� 164.11021

�6412, 5761� 164.11154

Extrapolated 164.112�1�

TABLE II. Convergence for the hyperpolarizability of �Li in the
ground state 2 2S, in atomic units.

�N0 ,NS ,NP ,ND� T�1,0 ,1� T�1,2 ,1� �0

�120,120,55,55� −31221.470 78063.181 177.926

�256,256,138,138� −31195.797 78088.509 1853.126

�502,502,306,306� −31177.012 78100.613 2958.636

�918,918,622,622� −31176.318 78103.456 3044.300

�1589,1589,1174,1174� −31177.339 78104.691 3019.625

�2625,2625,2091,2091� −31176.724 78102.359 3004.784

�4172,4172,3543,3543� −31175.663 78100.447 3018.655

�6412,6412,5761,5761� −31174.753 78099.257 3038.921

Extrapolated 3060�40�
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The dispersion coefficients were calculated similarly to those
calculated in Ref. �12� but with the treatment of finite nuclear
mass. In order to maintain numerical stability, especially
in diagonalizing the Hamiltonian for large basis sets, all
the calculations were performed using the multiple preci-
sion arithmetic quad-double �QD� developed by Bailey and
co-workers �24�, which has 64 decimal digits. The finite
nuclear mass effect is most significant for �0, as shown
in Table III. Fitting the results, we find—roughly—that
�0�3060�1−1000�1 /m0��, where m0 is the nuclear mass and
where the coefficient of 1 /m0 is about 1000 times larger than
it is for, say, 	1. The effect is numerically significant since,
as discussed above, our convergence studies show that at
least two digits of the hyperpolarizabilities are accurate. It
would be interesting to explore this effect for other systems.

In Table IV we compare our results to some of those from
the literature for the polarizabilities 	1, 	2, and 	3 and for
the dispersion coefficients C6, C8, and C10 of ground-state Li
atoms. As most of the previously published works have been
devoted to �Li, we list our infinite nuclear mass calculations
in Table IV. The most accurate Hylleraas-type calculation
prior to the present work is that of Ref. �12�, which was
obtained using a basis size up to 1846 using methods similar
to the present work, extrapolated as discussed previously. An
extensive tabulation of over 40 results for 	1 covering much
of the published work from 1959 to 1996 can be found in the
review article by King �13� and another tabulation is given in
Ref. �12�. Tabulations including 	2 and 	3 are given in Refs.
�12,25�. In Table IV, we collect some theoretical results from

between 1996 and the present. The exponentially correlated
Gaussian-basis set calculations of Komasa �26� for 	1 are in
excellent agreement with the present work and they were
carried out with a much smaller basis size. There is a slight
discrepancy, however, for 	2; but Ref. �26� does not provide
computational uncertainties. Both 	1 and 	2 were calculated
using semiempirical model potential-based methods by Co-
hen and Themelis �27� and by Zhang et al. �16�. Cohen and
Themelis �27� used a method dubbed Rydberg-Klein-Rees
quantum-defect theory �RKR-QDT�, which utilized experi-
mental energy levels and it contained some adjustable pa-
rameters fixed using the experimentally determined 2p state
lifetime. The results of Zhang et al. �16� were obtained in the
framework of a frozen-core Hamiltonian with a semiempir-
ical polarization potential. Of the two semiempirical ap-
proaches, the RKR-QDT results are in much better agree-
ment with the present work as the results of Zhang et al. for
	3 differ from the present work by the same percentage as do
their calculations of 	1 and 	2. Chen and Wang �25� evalu-
ated 	2 and 	3 for the ground states of lithiumlike ions using
the full core plus correlation method. The present values lie
just outside the lower limit of Chen and Wang’s error bars,
but Ref. �25� does not reveal how the uncertainties were
obtained.

We can also compare our results to recent relativistic cal-
culations. For 	1 generally, the effect is to reduce the non-
relativistic value by a term on the order of �1 /137.037�2.
Derevianko et al. �28� and Porsev and Derevianko �29�
calculated 	1, 	2, and 	3, as well as C6, C8, and C10 for the

TABLE III. Values of the polarizabilities 	1, 	2, and 	3, the hyperpolarizability �0, and the dispersion
coefficients C6, C8, and C10 for �Li, 7Li, and 6Li in their ground states 2 2S, in atomic units.

System 	1 	2 	3 �0 C6 C8 C10

�Li 164.112�1� 1423.263�3� 39649.29�2� 3060�40� 1393.42�5� 83429�1� 73725�2��102

7Li 164.161�1� 1423.415�5� 39653.72�3� 2820�40� 1394.05�5� 83456�5� 73742�2��102

6Li 164.169�1� 1423.439�4� 39654.46�3� 2780�40� 1394.16�5� 83460�5� 73745�2��102

TABLE IV. Comparison of the polarizabilities 	1, 	2, and 	3, and the dispersion coefficients C6, C8, and C10 for the ground state 2 2S
of �Li, in atomic units. The results from Refs. �17,18,28–30� were calculated using relativistic methods.

Reference 	1 	2 	3 C6 C8 C10

Yan et al. �12� �1996� 164.111�2� 1423.266�5� 39650.49�8� 1393.39�16� 8.34258�42��104 7.3721�1��106

Komasa �26� �2001� 164.11171 1423.282

Derevianko et al. �28� �2001� 164.0�1� 1389�2�
Porsev and Derevianko �29� �2003� 1424�4� 3.957�104 8.34�4��104 7.35�106

Chen and Wang �25� �2004� 1423.48�17� 39650.96�94�
Cohen and Themelis �27� �2005� 164.14 1423.3

Zhang et al. �16� �2007� 164.21 1424.4 39680 1394.6 8.3515�104 7.3811�106

Sahoo �30� �2007� 162.48�56� 1421.37�3.51�
Wansbeek et al. �18� �2008� 162.87 1420 1396�6� 8.360�104

Johnson et al. �17� �2008� 164.084 1422.73 39624.2

This work 164.112�1� 1423.263�3� 39649.29�2� 1393.42�5� 8.3429�1��104 7.3725�2��106

Molof et al. �32� �1974� �experiment� 164.0�3.4�
Miffre et al. �31� �2006� �experiment� 164.2�1.1�

NONRELATIVISTIC AB INITIO CALCULATIONS… PHYSICAL REVIEW A 79, 062712 �2009�

062712-7



ground state of lithium using the relativistic many-body per-
turbation theory �MBPT�. Sahoo �30� calculated the dipole
and quadrupole polarizabilities of Li using the relativistic
coupled-cluster method. Wansbeek et al. �18� performed
ab initio relativistic coupled-cluster calculations on the di-
pole and quadrupole polarizabilities and the dispersion coef-
ficients C6 and C8 of Li. Very recently, Johnson et al. �17�
also calculated the polarizabilities of 7Li by applying the
relativistic MPBT. For 	1, the results of Refs. �17,28� ob-
tained using the relativistic MPBT are smaller than our re-
sults by the expected factor. The results of Refs. �18,30� are
significantly lower, perhaps due to neglected higher-order ef-
fects �18� �see Table IV�.

For C6, compared to the previous value �12�, the uncer-
tainty in the present result has been reduced by a factor of 3.
The semiempirical calculations of Zhang et al. �16� and the
relativisitic calculations of Refs. �28,29� are in good agree-
ment with the present results, though Zhang et al. slightly
overestimate the coefficients, as shown in Table IV.

The most precise measurement of 	1 was that of Miffre
et al. �31� obtained with 0.66% uncertainty using atom inter-
ferometry. It is a factor of 3 more precise than the earlier
measurement of Molof et al. �32�. These values are included
in Table IV.

Currently, however, the experimental accuracy has not
reached the stage where finite nuclear mass and relativistic
effects in 	1 can be tested stringently. One can see from
Table III that the finite nuclear mass correction to 	1 for 7Li
is 0.049 a.u., of which 0.038 a.u. comes simply from the
mass scaling of the Bohr radius. The remaining part 0.011
a.u. is due to the mass polarization terms �−1 /m0� �i ·� j in

the Hamiltonian �1�, where m0 is the mass of the 7Li nucleus.
Furthermore, although the relativistic effect has not been
evaluated rigorously, it can be, however, estimated to be
−0.06 a.u. based on a relativistic coupled-cluster approach
�33–35�. As for the QED effect, Pachucki and Sapirstein �36�
performed a relativistic and QED calculation on the dipole
polarizability of helium and found that the QED correction is
about a factor of 2.5 smaller than the relativistic correction
and is opposite in sign. If we take this reduction factor for
the case of lithium, the QED correction is thus estimated to
be 0.02 a.u. Hence, the finite nuclear mass, relativistic, and
QED corrections cancel out almost entirely, just as in the
case of helium. However, a definitive conclusion regarding
this cancellation cannot be drawn until the calculation of
Pachucki and Sapirstein can be extended to the case of Li.

As discussed above, we have found that the hyperpolariz-
ability is extraordinarily sensitive to the finite nuclear mass.
In Table V, we compare our calculated value of �0 with some
of the published results, all for �Li. A more comprehensive
table of earlier work is given in Ref. �13�. Pipin and Bishop
�37� calculated �0 by applying the combined configuration-
interaction-Hylleraas method. Their result, with one signifi-
cant figure, is in good agreement with ours. Kassimi and
Thakkar �38,39� used the coupled-cluster approach, where
the reported uncertainty of 10% in �0 was later readjusted to
3% �39�. Laughlin �40� performed a semiempirical one-
electron model potential calculation and found that the final
result for �0 was highly sensitive to the data used, particu-
larly, the value of 	1. The value from Jaszunski and Rizzo
�41� was obtained using a series of multiconfiguration self-
consistent-field �SCF� wave functions. Finally, Cohen and
Themelis �27� computed �0 using RKR-QDT. Comparing to
our result, the level of accuracy they achieved is about 10%.
The RKR-QDT calculation was sensitive to the potential
adopted, as discussed in Ref. �27�. The present methodology
has the advantage that no adjustment is required. Once the
convergence pattern is established, the extrapolated value
should be reliable.

B. 2 2P state: Polarizabilities and hyperpolarizabilities

Table VI shows the convergence of 	1 and of 	1
�T� calcu-

lated for �Li in the 2 2P state, where NS, N�pp��P, and ND are
the sizes of bases for the intermediate states of symmetries S,

TABLE V. Values of the hyperpolarizability �0 for �Li in the
ground state 2 2S, in atomic units.

Reference �0

Pipin and Bishop �37� �1992� 3000

Kassimi and Thakkar �38,39� �1994� 2900�90�
Laughlin �40� �1995� 3930

Jaszunski and Rizzo �41� �1996� 3450

Cohen and Themelis �27� �2005� 3390

Present 3060�40�

TABLE VI. Convergence of 	1 and 	1
�T� for �Li in 2 2P state, in atomic units.

�N0 ,NS ,N�pp��P ,ND� 	1�S� 	1��pp��P� 	1�D� 	1 	1
�T�

�55,120,36,55� −17.181258 0.063053 142.611225 125.493021 2.951662

�138,256,108,138� −16.258204 0.067825 142.675018 126.484639 2.024615

�306,502,264,306� −15.950171 0.069135 142.718553 126.837517 1.712883

�622,918,568,622� −15.871922 0.069501 142.729209 126.926788 1.633752

�1174,1589,1106,1174� −15.866615 0.069591 142.734228 126.937203 1.627988

�2091,2625,2002,2091� −15.861376 0.069641 142.735430 126.943695 1.622654

�3543,4172,3413,3543� −15.860744 0.069646 142.736141 126.945043 1.621953

�5761,6412,3413,5761� −15.860549 0.069648 142.736441 126.945540 1.621729

Extrapolated 126.9458�3� 1.6214�3�
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TABLE VII. Values of the polarizabilities 	1, 	1
�T�, 	2, and 	3, and the hyperpolarizabilities �0 and �2 for

�Li, 7Li, and 6Li in 2 2P state, in atomic units.

System 	1 	1
�T� 	2 	3 �0 �2

�Li 126.9458�3� 1.6214�3� 4103.165�5� 321138�4� 1.00170�9��107 −6.2234�8��106

7Li 126.9472�5� 1.6351�2� 4102.893�4� 321102�5� 1.00201�9��107 −6.2252�8��106

6Li 126.9474�5� 1.6373�3� 4102.848�4� 321096�5� 1.00206�9��107 −6.2255�8��106

TABLE VIII. Comparison of the scalar and tensor dipole polarizabilities and hyperpolarizabilities for �Li
in 2 2P state, in atomic units. The results from �17,18� are relativistic.

Reference 	1 	1
�T� �0 �2

Themelis and Nicolaides �45� �1992� 135.7 0.13 1.10�107 −6.970�106

Pipin and Bishop �42� �1993� 126.844 1.605

Cohen and Themelis �27� �2005� 126.4 1.73 1.002�107 −6.21�106

Zhang et al. �16� �2007� 126.95 1.6627

Wansbeek et al. �18� �2008� 125.20 5.95

Johnson et al. �17� �2008� 126.990 1.59

This work 126.9458�3� 1.6214�3� 1.00170�9��107 −6.2234�8��106

Hunter et al. �43� �1991� �experiment� 126.8�3.4�
Windholz et al. �44� �1992� �experiment� 126.87�36� 1.64�4�

TABLE IX. Values of C3, C6, and C8 for 2 2S-2 2P of �Li, 7Li, and 6Li, in atomic units.

System C3�M2=0� C3�M2= �1� C6�M2=0� C6�M2= �1� C8�M2=0� C8�M2= �1�


=−1
�Li −11.000221�2� 5.500111�1� 2075.40�3� 1406.68�3� 990895�5� 48564.8�5�
7Li −11.001853�2� 5.500926�1� 2076.08�7� 1407.15�5� 991075�6� 48566.4�2�
6Li −11.002125�2� 5.501062�1� 2076.19�7� 1407.20�2� 991104�5� 48566.9�4�


=+1
�Li 11.000221�2� −5.500111�1� 2075.40�3� 1406.68�3� 274079�2� 103044�2�
7Li 11.001853�2� −5.500926�1� 2076.08�7� 1407.15�5� 274128�5� 103052�1�
6Li 11.002125�2� −5.501062�1� 2076.19�7� 1407.20�2� 274137�6� 103053�1�

TABLE X. Comparison of C3, C6, and C8 for the system �Li�2 2S�-�Li�2 2P�, in atomic units.

Reference 
 C3�M2=0� C3�M2= �1� C6�M2=0� C6�M2= �1� C8�M2=0� C8�M2= �1�

Marinescu et al. �46� �1995� −1 −11.01 5.503 2066 1401 9.880�105 4.756�104

+1 2.705�105 1.021�105

Yan et al. �12� �1996� −1 −11.000226�15� 5.5001133�74� 2075.05�5� 1406.08�5�
Zhang et al. �16� �2007� −1 −11.008 5.5041 2076.3 1407.4 9.9202�105 4.8629�104

+1 2.7431�105 1.0316�105

This work −1 −11.000221�2� 5.500111�1� 2075.40�3� 1406.68�3� 9.90895�5��105 4.85648�5��104

+1 2.74079�2��105 1.03044�2��105
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P, and D, respectively, and �pp��P stands for the main con-
figuration of two p electrons coupled to form a total angular
momentum of P. Since the contribution from the �pp��P
configuration is well converged at N�pp��P=3413, we did not
increase N�pp��P any further.

Table VII summarizes the final values of the scalar polar-
izabilities 	1, 	2, and 	3, the tensor dipole polarizability 	1

�T�,
the scalar hyperpolarizability �0, and the tensor hyperpolar-
izability �2 for �Li, 7Li, and 6Li in their 2 2P states.

Table VIII is a comparison of the scalar and tensor dipole
polarizabilities and hyperpolarizabilities 	1, 	1

�T�, �0, and �2
for the 2 2P state of �Li. In general, our calculations provide
significantly more accurate results, particularly, for 	1

�T�. A
more extensive tabulation of previous results is given in Ref.
�27�.

It should be mentioned that the intermediate configuration
of symmetry �pp��P, which contributes to 	1 at the level of
0.05%, was not included in the configuration interaction-
Hylleraas calculation of Pipin and Bishop �42�. The relativ-
istic results for 	1 by Wansbeek et al. �18� and by Johnson et
al. �17� are the �2J+1�-weighted sums between the J=1 /2
and J=3 /2 sublevels. The results of Johnson et al. are close
to ours. In contrast, the results of Wansbeek et al. �18� devi-
ate significantly from ours for example, the value of 	1

�T�

reported by Wansbeek et al. �18� is a factor of 3.6 larger than
our calculation.

The uncertainties in the experimental values for 	1 and
	1

�T� obtained by Hunter et al. �43� and by Windholz et al.
�44� are too large to reveal finite nuclear mass and relativistic
effects. However, the nonrelativistic calculations of Refs.
�16,42�, and the present work, as well as the relativistic cal-
culations of Ref. �17�, agree with the experiment of Wind-
holz et al.; though in contrast, as was also observed by

Johnson et al., the values obtained using RKR-QDT by Co-
hen and Themelis �27� disagree with the experiment.

For the 	2 and 	3 of the 2 2P state, the model potential
results of Zhang et al. �16� are, respectively, 4104.9 and
3.213 5�105, which are slightly larger than our results,
given in Table VII.

There are no measurements of �0 and �2 though our cal-
culated values are in almost perfect agreement with—though
substantially more accurate than—the semiempirical results
of Cohen and Themelis �27� and the early calculation of
Themelis and Nicolaides �45� obtained by fitting electric-
field-induced energy shifts calculated using Hartree-Fock
wave functions.

C. Long-range interactions between a 2 2S atom
and a 2 2P atom

Table IX lists the final values of C3, C6, and C8 for the
system 2 2S-2 2P between two like-atoms �Li, 7Li, and 6Li
with all possible symmetries.

Table X contains comparisons for C3, C6, and C8 for the
system �Li�2 2S�-�Li�2 2P� with some published results, in-
cluding the Hylleraas-type calculations of Yan et al. �12�, the
model potential approach of Marinescu and Dalgarno �46�,
and the semiempirical model potential of Zhang et al. �16�.
Our ab initio results confirm the more accurate semiempir-
ical results of Zhang et al. �16�, though their results are sys-
tematically slightly larger in magnitude than ours. It is also
evident that the present results have substantially improved
the precision of C8.

D. 3 2D state: Polarizabilities and hyperpolarizabilities

Tables XI and XII, respectively, list convergence studies
for the dipole polarizabilities 	1 and 	1

�T� and for the hyper-

TABLE XI. Convergence for 	1 and 	1
�T� of �Li in 3 2D state, in atomic units.

�N0 ,NP ,N�pd�D ,NF� 	1�P� 	1��pd�D� 	1�F� 	1 	1
�T�

�138,138,126,132� −18857.791600 0.059150 1916.643488 −16941.088962 18310.238324

�306,306,322,302� −16933.479208 0.062827 1916.940725 −15016.475656 16385.844685

�622,622,714,636� −16850.080546 0.063886 1917.021571 −14932.995089 16302.423983

�1174,1174,1428,1248� −16845.626886 0.064157 1917.026639 −14928.536090 16297.969146

�2091,2091,2640,2307� −16845.378158 0.064226 1917.035892 −14928.278040 16297.717843

�3543,3543,4587,4051� −16845.342790 0.064242 1917.040003 −14928.238545 16297.681317

�5761,5761,4587,6806� −16845.342870 0.064243 1917.043303 −14928.235324 16297.680455

TABLE XII. Convergence for �0, �2, and �4 of �Li in 3 2D state, in atomic units.

�N0 ,NS ,NP ,N�pp��P ,ND ,N�pd�D ,NF ,N�pf�F ,NG� 10−12 �0 10−12 �2 10−10 �4

�138, 256, 138, 108, 138, 126, 132, 126, 139� 2.335078929997 −2.435345979367 10.1097221264

�306, 502, 306, 264, 306, 322, 302, 322, 330� 1.673627590440 −1.744707390466 7.1916589358

�622, 918, 622, 568, 622, 714, 636, 714, 720� 1.648569007586 −1.718605330888 7.0875021256

�1174,1589,1174,1106,1174,1428,1248,1428,1458� 1.647221992572 −1.717197712093 7.0814607892

�2091,2625,2091,2002,2091,2640,2307,2640,2769� 1.647149117913 −1.717122212016 7.0812009263

�3543,4172,3543,3413,3543,4587,4051,4587,4975� 1.647145129442 −1.717120442563 7.0814240701
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polarizabilities �0, �2, and �4 of �Li in 3 2D. Table XIII is
the summary of all the values for the polarizabilities and the
hyperpolarizabilities of �Li, 7Li, and 6Li in their 3 2D states.

Table XIV presents comparisons of our calculated scalar
and tensor dipole polarizabilities of �Li with the existing
theoretical and experimental values for the 3 2D state. The
relative signs and magnitudes �though of limited accuracy�
were correctly predicted by Themelis and Nicolaides �47�
using an empirically modeled dipole moment operator and
fitting to field-dependent energy shifts. For 	1, the percent-
age difference between the semiempirical model potential
result of Magnier and Aubert-Frécon �48� and ours is about
7%. The values of Ashby and van Wijngaarden �49� obtained
using the semiempirical Coulomb approximation method and
the values of Zhang et al. �16� obtained in the framework of
a frozen-core Hamiltonian with a semiempirical model po-
tential are very close to each other, but they differ from our
results at the levels of, respectively, 0.9% and 0.8%. The
experimental results of Ashby et al. �50� and the relativistic
calculations of Wansbeek et al. �18� are expressed in the LSJ
coupling scheme, which may be converted into the LS cou-
pling by averaging over the fine structure using a
�2J+1�-weighted sum �16�. One can see that our result for 	1
disagrees with the experiment at the level of 1%. Similarly,
for 	1

�T�, the discrepancy is at the level of 0.5%. It should be
pointed out that, at this level of accuracy, the finite nuclear
mass and relativistic effects do not account for the discrep-
ancy. The present calculation and that of Wansbeek et al.
�18� are ab initio. Their results, which may suffer from an
incomplete treatment of correlation effects, differ drastically
from our own.

E. Some oscillator strengths and sum rules

As by-products in calculating the dipole polarizabilities,
we have obtained the oscillator strengths of �Li, 7Li, and 6Li
for the transitions of 2 2S-2 2P, 2 2P−3 2D, and 3 2D-4 2F
listed in Table XV. For the case of �Li, a comparison with
some previous results is presented in Table XVI, including
the multiconfiguration Hartree Fock of Godefroid et al. �15�,
the semiempirical model potential of Zhang et al. �16�, and
the relativistic many-body approach of Johnson et al. �17�.
The nonlinear variational parameters in our calculation are
optimized only for the lowest-energy eigenstate of the given
symmetry and thus individual oscillator strengths for
excited-state transitions may not necessarily be of better ac-
curacy than other dedicated calculations. Nevertheless, the
present calculations have slightly improved the previous val-
ues �20� for the 2 2S-2 2P and 2 2P-3 2D transitions, which
were obtained variationally using smaller Hylleraas basis
sets up to about 3500 terms. The most accurate results for the
2 2S-2 2P oscillator strength was obtained by Yan et al. �51�
using variational trial functions that contained the core and
valence electron wave functions in the zeroth order. �Note
that for 7Li and 6Li, the present definition for the oscillator
strength �43� differs from the one adopted in Refs. �20,51� by
a factor of 1+ �3 /m0�, where m0 is the nuclear mass.�

Finally, we have calculated the oscillator strength sum
rule �52� S�−3��2
1, where 
1 is given in terms of the
quantities defined in Sec. II, in a manner similar to the defi-
nition of 	l in Eqs. �37� and �38�, as

TABLE XIII. Values of the polarizabilities 	1, 	1
�T�, 	2, and 	3, and the hyperpolarizabilities �0, �2, and �4 for �Li, 7Li, and 6Li in 3 2D

state, in atomic units.

System 	1 	1
�T� 	2 	3 �0 �2 �4

�Li −14928.230�5� 16297.675�5� 158060�10� −1.340902�3��108 1.647140�5��1012 −1.717115�5��1012 7.0814�2��1010

7Li −14921.330�4� 16291.094�5� 158070�10� −1.339746�5��108 1.644875�5��1012 −1.714740�5��1012 7.0700�3��1010

6Li −14920.180�6� 16290.000�5� 158070�10� −1.339554�5��108 1.644500�4��1012 −1.714345�5��1012 7.0680�5��1010

TABLE XIV. Comparison of the scalar and tensor polarizabilities and hyperpolarizabilities for �Li in 3 2D state, in atomic units. The
results from �18� are relativistic.

Reference 10−4 	1 10−4 	1
�T� 10−5 	2 10−8 	3 10−12 �0 10−12 �2 10−10 �4

Themelis and Nicolaides �47�
�1995� −2.0468 2.1944 4.56 −3.97 19.5

Magnier and Aubert-Frécon �48�
�2002� −1.3950 1.5324

Ashby and Wijngaarden �49�
�2003� −1.507 1.642

Zhang et al. �16�
�2007� −1.5044 1.6414 1.5786 −1.3548

Wansbeek et al. �18�
�2008� −1.986 2.090

This work −1.4928230�5� 1.6297675�5� 1.58060�10� −1.340902�3� 1.647140�5� −1.717115�5� 7.0814�2�
Ashby et al. �50�
�2003� �experiment� −1.513�4� 1.643�6�
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1 = �
La


1�La� , �57�

where


1�La� =
4�

9�2L + 1��n

��n0L��T1��nLa
�2

�En�La� − En0
�L��2 . �58�

The results for 
1 are given in Table XVII for �Li, 7Li,
and 6Li in the 2 2S, 2 2P, and 3 2D states. The result for �Li
in the 2 2S state is in agreement with the value 
1=1197
given by Pipin and Bishop �37�.

Another sum rule S�−1� can be related to the interaction
potential between an atom and a perfectly conducting wall
�see Ref. �53��. A highly accurate value obtained �53� using
matrix elements from Ref. �54� is 12.14404408�24� and the
present work does not give an improvement. The value from
Bishop and Pipin �37� is 12.13.

IV. CONCLUSIONS

In this paper, the nonrelativistic polarizabilities and hyper-
polarizabilities have been calculated ab initio in a unified
manner for the 2 2S, 2 2P, and 3 2D states of lithium using
fully correlated Hylleraas basis sets. The dispersion coeffi-
cients for Li�2 2S�-Li�2 2S� and Li�2 2S�-Li�2 2P� have also
been evaluated. Furthermore, the finite nuclear mass effects
on these properties have been studied for Li laying the foun-
dation for future work, such as investigating relativistic and
QED effects on the polarizabilities, especially on the dipole
polarizability of the ground state of lithium, using the ap-
proach of Pachucki and Sapirstein �36�, following the
progress on He �36,55–57�.

Our results can also be used as a benchmark for other
methods that may be developed in future research. For the
dipole polarizabilities of lithium in 3 2D state, an improved

measurement would be important in resolving the existing
discrepancy between the experimental values of Ashby et al.
�50� and the present results.
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APPENDIX: STARK EFFECT

The Hamiltonian for an atom in a uniform electric field
E=Eẑ is given by

H = H0 + H� = H0 − E · P , �A1�

where H0 is the unperturbed Hamiltonian and P is the elec-
tric dipole moment of the atom,

P = �
i

qiRi. �A2�

In the above, qi is the charge of ith particle, Ri is its position
vector relative to a laboratory frame, and the summation is
over all charged particles inside the atom, including the
nucleus. Under the perturbation H�, the energy eigenvalue
and eigenfunction of H can be written in the form

E = E0 + �E1 + �E2 + �E3 + �E4 + ¯ , �A3�

TABLE XV. Values of oscillator strengths of �Li, 7Li, and
6Li.

System 2 2S-2 2P 2 2P-3 2D 3 2D-4 2F

�Li 0.7469563�5� 0.6385685�5� 1.0153771�5�
7Li 0.7469614�4� 0.6385835�5� 1.0154562�5�
6Li 0.7469623�4� 0.6385858�4� 1.0154695�5�

TABLE XVI. Comparison of oscillator strengths of �Li.

Reference 2 2S-2 2P 2 2P-3 2D 3 2D-4 2F

Yan and Drake �20� �1995� 0.7469572�10� 0.6385705�30�
Yan et al. �51� �1998� 0.7469569396�98�
Godefroid et al. �15� �2001� 0.74690 0.63853

Zhang et al. �16� �2007� 0.7475 0.6388 1.0153

Johnson et al. �17� �2008� 0.746944 0.638615 1.015637

This work 0.7469563�5� 0.6385685�5� 1.0153771�5�

TABLE XVII. Values of 
1 of �Li, 7Li, and 6Li in their 2 2S,
2 2P and 3 2D states, in atomic units.

System 
1�2 2S� 
1�2 2P� 
1�3 2D�

�Li 1196.9696�2� 1614.68�2� 5202428�1�
7Li 1197.4886�2� 1614.99�2� 5197637�1�
6Li 1197.5750�2� 1615.04�2� 5196841�1�
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� = �0 + �1 + �2 ¯ , �A4�

where

H0�0 = E0�0 �A5�

is the zero-order equation, and �Ei and �i are the corre-
sponding ith-order corrections. According to the perturbation
theory, the energy corrections can be expressed as

�E1 = ��0�H���0
 , �A6�

�E2 = ��0�H���1
 , �A7�

�E3 = ��1�H���1
 − �E1��1��1
 , �A8�

�E4 = ��1�H���2
 − �E2��1��1
 − �E1��1��2
 .

�A9�

If the state of interest �0 has a fixed parity, as in the case of
this work, �E1=0 due to the parity selection rule. �1 and �2
can be expanded in terms of their spectral representations,

��1
 = �
n

�n�H��0

E0 − En

�n
 , �A10�

��2
 = �
nk

�n�H��k
�k�H��0

�E0 − En��E0 − Ek�

�n
 , �A11�

where �0
���0
 and 	En , �n

 is a complete set of H0, includ-
ing the continuum. Inserting Eq. �A10� into Eq. �A8� yields
�E3=0, also due to the parity consideration. Thus,

�E2 = �
n

�0�H��n
�n�H��0

E0 − En

, �A12�

�E4 = �
kmn

� 1

�E0 − Em��E0 − En��E0 − Ek�

− ��n,0�
1

�E0 − Em��E0 − Ek�2�
��0�H��m
�m�H��n
�n�H��k
�k�H��0
 . �A13�

1. �E2

Let us first consider the operator H��n
�n�H� in Eq. �A12�.
Using the spherical tensor operator technique, we have the
following decomposition:

H��n
�n�H� = �
Kq

�− 1�K+q�P�1�
� �nP�1��q

�K��E�1�
� E�1��−q

�K�,

�A14�

where ���n
�n�. Since E is along the z axis, only the q=0
component survives in the above equation. Thus,

H��n
�n�H� = �
K

�− 1�K�2K + 1 �
q1q2

� 1 1 K

q1 q2 0
�

�Pq1

�1��nPq2

�1��E�1�
� E�1��0

�K�. �A15�

After substituting Eq. �A15� into Eq. �A12�, one has

�E2 = �
nK

�− 1�K�2K + 1 �
q1q2

� 1 1 K

q1 q2 0
�

�
�0�Pq1

�1��n
�n�Pq2

�1��0


E0 − En
�E�1�

� E�1��0
�K�. �A16�

To be specific, let us write out explicitly the angular-
momentum quantum numbers in the initial and intermediate
states,

�0
 = �n0LM
 , �A17�

�n
 = �nLaMa
 , �A18�

where n0 and n are the corresponding principal quantum
numbers. Then, the summation over n in Eq. �A16� actually
means the summation over 	n ,La ,Ma
. By applying the
Wigner-Eckart theorem for the irreducible tensor operator
P�

�1�, one can recast Eq. �A16� into the following form:

�E2 = �
nLaK

�− 1�K�2K + 1
�n0L��P�1���nLa
�nLa��P�1���n0L


En0
�L� − En�La�

��E�1�
� E�1��0

�K�A , �A19�

where En0
�L� and En�La� stand for E0 and En, respectively, in

Eq. �A16�, and

A = �
Maq1q2

�− 1�L−M+La−Ma� L 1 La

− M q1 Ma
�

�� La 1 L

− Ma q2 M
�� 1 1 K

q1 q2 0
� . �A20�

The quantity A can be simplified by using the standard
graphical method of dealing with angular momentum �58�,

A = �− 1�L−M� L L K

− M M 0
��1 1 K

L L La
� , �A21�

provided K is an integer, and note that

�E�1�
� E�1��0

�K� = �2K + 1 �
q1q2

� 1 1 K

q1 q2 0
�Eq1

�1�Eq2

�1�

= �2K + 1�1 1 K

0 0 0
�E2. �A22�

Therefore, the second-order correction can be written as
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�E2 = − E2�
nLa

�n0L��P�1���nLa
�nLa��P�1���n0L

En�La� − En0

�L� �
K

�2K + 1�

��− 1�L−M�1 1 K

0 0 0
�� L L K

− M M 0
��1 1 K

L L La
� .

�A23�

Since

�− 1�L−M� L L 0

− M M 0
� = �− 1�2L 1

�2L + 1
, �A24�

�− 1�L−M� L L 2

− M M 0
�

= �− 1�2L 3M2 − L�L + 1�
��2L + 3��L + 1��2L + 1�L�2L − 1�

, L � 1,

�A25�

and also �58�

P�
�1� =�4�

3 �
i

qiRiY1��R̂i� , �A26�

�nLa��P�1���n0L
 = �− 1�L−La�n0L��P�1���nLa
�, �A27�

the second-order energy correction can finally be expressed
in the form

�E2 = −
E2

2
�	1 + 	1

�T�g2�L,M�� . �A28�

In the above, g2�L ,M� is the only M-dependent part,

g2�L,M� = �0 if L = 0, 1
2

3M2 − L�L + 1�
L�2L − 1�

otherwise, � �A29�

and 	1 and 	1
�T� are, respectively, the scalar and tensor dipole

polarizabilities,

	1 = �
La

	1�La� , �A30�

	1
�T� = �

La

W�L,La�	1�La� , �A31�

where

	1�La� =
8�

9�2L + 1��n

��n0L��T1��nLa
�2

En�La� − En0
�L�

, �A32�

with T1=�iqiRiY10�R̂i�, and

W�L,La� = �− 1�L+La�30�2L + 1�L�2L − 1�
�2L + 3��L + 1� �1 1 2

L L La
� .

�A33�

2. �E4

According to Eq. �A15�, the fourth-order energy correc-
tion of Eq. �A13� can be written as

�E4 = �
kmn

t�k,m,n� �
K1K2

�− 1�K1+K2�K1,K2�1/2

� �
q1q2q3q4

�1 1 K1

q1 q2 0
��1 1 K2

q3 q4 0
�

��0�Pq1

�1��mPq2

�1��nPq3

�1��kPq4

�1��0


��E�1�
� E�1��0

�K1��E�1�
� E�1��0

�K2�, �A34�

where the notation �a ,b�= �2a+1��2b+1�,

t�k,m,n� =
1

�E0 − Em��E0 − En��E0 − Ek�

− ��n,0�
1

�E0 − Em��E0 − Ek�2 , �A35�

and �m= �m
�m�, etc. Writing out the all angular-momentum
quantum numbers explicitly

�0
 = �n0LM
 , �A36�

�m
 = �mLaMa
 , �A37�

�n
 = �nLbMb
 , �A38�

�k
 = �kLcMc
 , �A39�

and applying the Wigner-Eckart theorem, we have

�E4 = �
kmn

�
LaLbLc

t�k,m,n� �
K1K2

�− 1�K1+K2�K1,K2�1/2

��E�1�
� E�1��0

�K1��E�1�
� E�1��0

�K2��n0L��P�1���mLa


��mLa��P�1���nLb
�nLb��P�1���kLc
�kLc��P�1���n0L
B ,

�A40�

where B �which contains all the angular coefficients� is

B = �
q1q2q3q4

�
MaMbMc

�− 1�L−M+La−Ma+Lb−Mb+Lc−Mc

��1 1 K1

q1 q2 0
��1 1 K2

q3 q4 0
��L 1 La

− M q1 Ma
�

� �La 1 Lb

− Ma q2 Mb
��Lb 1 Lc

− Mb q3 Mc
��Lc 1 L

− Mc q4 M
� .

�A41�

Using the graphical method, B can be simplified into

B = �− 1�L−M�1 1 K1

L Lb La
��1 1 K2

L Lb Lc
��

�

�2� + 1�

��K1 K2 �

0 0 0
�� L L �

− M M 0
��K2 K1 �

L L Lb
� , �A42�
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provided K1 and K2 are integers. From Eqs. �A22�, �A26�, and �A27�, one can further write Eq. �A40� in the form

�E4 = − E4�4�

3
�2

�
LaLbLc

T�La,Lb,Lc��
�

�− 1�L−M� L L �

− M M 0
�

� �
K1K2

��,K1,K2��1 1 K1

0 0 0
��1 1 K2

0 0 0
��K1 K2 �

0 0 0
��1 1 K1

L Lb La
��1 1 K2

L Lb Lc
��K2 K1 �

L L Lb
� , �A43�

where

T�La,Lb,Lc� = �
kmn

�n0L��T1��mLa
�mLa��T1��nLb
�nLb��T1��kLc
�kLc��T1��n0L

�Ek�Lc� − En0

�L���Em�La� − En0
�L���En�Lb� − En0

�L��

− ��Lb,L��− 1�2L−La−Lc�
m

��n0L��T1��mLa
�2

�Em�La� − En0
�L���k

��n0L��T1��kLc
�2

�Ek�Lc� − En0
�L��2 . �A44�

According to the property of 3j symbol, the possible values for � are 0, 2, and 4. Also,

�− 1�L−M� L L 4

− M M 0
� =

2�− 1�2L�3�5M2 − L2 − 2L��5M2 + 1 − L2� − 10M2�4M2 − 1��
��2L + 5��2L + 4��2L + 3��2L + 2��2L + 1��2L��2L − 1��2L − 2��2L − 3�

, L � 2. �A45�

Together with Eqs. �A24� and �A25�, the fourth-order correction can finally be expressed in the form

�E4 = −
E4

24
��0 + �2g2�L,M� + �4g4�L,M�� , �A46�

where g2�L ,M� is defined in Eq. �A29�, and g4�L ,M� is given by

g4�L,M� = �0 if L 

3
2

3�5M2 − L2 − 2L��5M2 + 1 − L2� − 10M2�4M2 − 1�
L�2L − 1��2L − 2��2L − 3�

otherwise. � �A47�

In Eq. �A46�, �0 is the scalar hyperpolarizability, and �2 and �4 are the tensor hyperpolarizabilities, which can be written as

�0 = �− 1�2L128�2

3

1
�2L + 1

�
LaLbLc

G0�L,La,Lb,Lc�T�La,Lb,Lc� , �A48�

�2 = �− 1�2L128�2

3
� L�2L − 1�

�2L + 3��L + 1��2L + 1� �
LaLbLc

G2�L,La,Lb,Lc�T�La,Lb,Lc� , �A49�

�4 = �− 1�2L128�2

3
� L�2L − 1��L − 1��2L − 3�

�2L + 5��L + 2��2L + 3��L + 1��2L + 1� �
LaLbLc

G4�L,La,Lb,Lc�T�La,Lb,Lc� , �A50�

where

G��L,La,Lb,Lc� = �
K1K2

��,K1,K2��1 1 K1

0 0 0
��1 1 K2

0 0 0
��K1 K2 �

0 0 0
��1 1 K1

L Lb La
��1 1 K2

L Lb Lc
��K2 K1 �

L L Lb
� .

�A51�

�1� M. Asplund, D. L. Lambert, P. E. Nissen, F. Primas, and V. V.
Smith, Astrophys. J. 644, 229 �2006�.

�2� E. R. I. Abraham, W. I. McAlexander, J. M. Gerton, R. G.
Hulet, R. Côté, and A. Dalgarno, Phys. Rev. A 55, R3299
�1997�.

�3� M. Bartenstein, A. Altmeyer, S. Riedl, R. Geursen, S. Jochim,
C. Chin, J. H. Denschlag, R. Grimm, A. Simoni, E. Tiesinga,

C. J. Williams, and P. S. Julienne, Phys. Rev. Lett. 94, 103201
�2005�.

�4� E. G. M. v. Kempen, B. Marcelis, and S. J. J. M. F. Kokkel-
mans, Phys. Rev. A 70, 050701�R� �2004�.

�5� S. E. Pollack, D. Dries, M. Junker, Y. P. Chen, T. A. Corcovi-
los, and R. G. Hulet, Phys. Rev. Lett. 102, 090402 �2009�.

�6� W. I. McAlexander, E. R. I. Abraham, and R. G. Hulet, Phys.

NONRELATIVISTIC AB INITIO CALCULATIONS… PHYSICAL REVIEW A 79, 062712 �2009�

062712-15



Rev. A 54, R5 �1996�.
�7� U. Schlöder, T. Deuschle, C. Silber, and C. Zimmermann,

Phys. Rev. A 68, 051403�R� �2003�.
�8� M. T. Cvitaš, P. Soldán, J. M. Hutson, P. Honvault, and J.-M.

Launay, J. Chem. Phys. 127, 074302 �2007�.
�9� P. Naidon and M. Ueda, e-print arXiv:0811.4086.

�10� Z.-C. Yan, W. Nörtershäuser, and G. W. F. Drake, Phys. Rev.
Lett. 100, 243002 �2008�.

�11� M. Puchalski and K. Pachucki, Phys. Rev. A 79, 032510
�2009�.

�12� Z.-C. Yan, J. F. Babb, A. Dalgarno, and G. W. F. Drake, Phys.
Rev. A 54, 2824 �1996�.

�13� F. W. King, J. Mol. Struct.: THEOCHEM 400, 7 �1997�.
�14� M. Stanke, J. Komasa, D. Kȩdziera, S. Bubin, and L. Ad-
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