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We present a model applicable to cold diatomic collisions and solve the close-coupled equations for the
particular 6Li2 system. Feshbach resonances are determined ab initio for both s and p waves. The s-wave
scattering lengths are reported for all possible hyperfine states as a function of magnetic field strengths between
0 and 1500 G. In addition, p-wave scattering lengths are calculated for selected hyperfine states. Matrix
elements for the hyperfine, Zeeman, and rotational Hamiltonian were worked out by the use of the molecular
Hund’s case �a� basis set. All relevant matrix elements are reported. The short-range hyperfine interaction has
been included in the calculations, and its effect on the scattering length are investigated. Hyperfine parameters
were obtained from separate ab initio calculations.
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I. INTRODUCTION

Feshbach resonances �1� named after Herman Feshbach
have become very important in ultracold atomic and molecu-
lar physics for the last ten years. Feshbach resonances are
important ingredients in the ongoing exploration of these
systems and in the tremendous progress made after the first
successful creation of a Fermi gas �2�. In ultracold atomic
and molecular physics, the important and relevant Feshbach
resonances occur when the energy of a bound molecular state
coincides with that of two colliding atoms. The coupling
between the bound molecular state and the continuum of
states is caused by the hyperfine interaction in homonuclear
molecules and by the hyperfine interaction together with
electronic spin-dependent interactions in heteronuclear mol-
ecules. Thus, the hyperfine interaction plays an important
role. The experimental and theoretical focus this far has been
on alkali atoms.

The attractive properties of these systems stem from the
possibility of tuning the interatomic interaction by varying
the magnetic field around a Feshbach resonance. The scatter-
ing length is the important parameter which characterizes the
atom-atom interaction in ultracold gases �3� �together with
the Pauli principle�. The scattering length behaves in a pecu-
liar way as one passes through a Feshbach resonance—it
diverges and changes sign �see, e.g., Fig. 6�. This makes it
possible for the experimentalists to attain full control of the
interactions by varying the magnetic field strength. Many
systems have Feshbach resonances that are accessible
through relatively low magnetic field strengths.

The Feshbach resonances also offer the opportunity to
produce weakly bound ultracold molecules �4�. Using a se-
quence of magnetic pulses, the ultracold atoms can be con-
verted into molecules with lifetimes of several seconds
�5–9�. Initially, one thought that such highly excited mol-
ecules would decay very fast. This is true for bosonic atoms,
where inelastic collisions with other atoms or molecules give
a rapid decay. However, for fermionic atoms, the molecules

have a much longer lifetime due to quenching of the inelastic
collision rates as a result of the Pauli principle. In part, this is
why the fermionic isotope 6Li are preferred over the bosonic
isotope 7Li, which is far less studied. The first molecular
Bose-Einstein condensates �BECs� observed in November
2003 utilized molecules created from Feshbach resonances.
Jochim et al. �10� used 40K atoms, while Greiner et al. �11�
and Bartenstein et al. �12� worked with 6Li atoms. The nK
temperature range and BEC were eventually reached by
evaporative cooling.

Finally, the ability to tune the scattering length made the
so-called BEC-BCS transition experimentally accessible
�13,14�. In short, this is a transition from a molecular BEC to
atomic Cooper pairs via a regime where the scattering length
diverges and becomes infinite. In the crossover regime, the
interaction is independent of the scattering length as well as
the range and details of the interatomic potential �15�.

This paper focuses on cold diatomic collisions in general,
and, in particular, the 6Li2 system and on the Feshbach reso-
nances in this system. Most attention is given to the wave
Feshbach resonances, but we also calculate Feshbach reso-
nances occurring in p waves. Rather than to set up a model
with one or more tunable parameters, our philosophy has
been to perform ab initio calculations of the various reso-
nances using a fully coupled-channel approach. No empirical
data have been included in the calculations. The calculations
are performed with the diatomic Hund’s case �a� basis set,
describing the system as a molecule rather than two free
atoms. This allows for a realistic and more accurate descrip-
tion of the short-range hyperfine interaction through the cal-
culation of only a few molecular hyperfine parameters. Most,
if not all, studies of diatomic collisions make no distinction
between the short-range and the long-range hyperfine inter-
action, i.e., the hyperfine interaction is assumed to be inde-
pendent of the internuclear separation. Our approach to the
hyperfine interaction enables us to test this approximation.
However, in the present case we find that the long-range
atomic hyperfine interaction makes a reasonable approxima-
tion to the short-range case. This fact is due to the very
shallow character of the relevant molecular state. In the next
sections, we give a thorough explanation of the particular*marius.lysebo@fys.uio.no
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model that we use and relate the Hund’s case �a� basis set to
the more standard atomic FF-coupled basis sets.

The model and the expressions we present in this paper
are not fully general. Some simplifications have been pos-
sible due to the particular alkali system studied. However, we
do make it clear whenever special assumptions have been
made. Throughout this paper, atomic units �=me=e=a0=1
are used, and we work within the Born-Oppenheimer
approximation.

II. THEORY

The diatomic Hamiltonian can be written as

H = −
1

2�
�2 + Hev�r,x� + Hhf�r,x� + HZ�r,x� , �1�

where r is the internuclear vector pointing from nuclei A to
nuclei B and x= �x1 ,x2 , . . . ,xn�T contains the electronic coor-
dinates. Hev is the electronic and vibrational Hamiltonian,
Hhf is the hyperfine Hamiltonian, and finally HZ denotes the
Zeeman interaction. Hev can also include all types of relativ-
istic contributions such as spin-orbit and spin-spin interac-
tions if needed. � is the reduced mass. The first task is to
expand the total wave function in a chosen basis, e.g., the
eigenstates of Hev or some other operator. At short range, the
eigenstates of Hev are well suited; whereas at long range the
eigenstates of Hhf+HZ diagonalizes the interaction. To solve
the time-independent Schrödinger equation for the whole
molecule

H��r,x� = E��r,x� , �2�

we write

��r,x� = �
b

1

r
�b�r��b�r,x� , �3�

where �b�r� is the radial-wave functions for the relative mo-
tion of the two nuclei for a molecule in electronic state b.
The angular part of the relative motion is included in
�b�r ,x�. Thus, we may write the time-independent
Schrödinger equation �2� as

−
1

2�
�2�

b

1

r
�b�r��b�r,x� + �Hev + Hhf + HZ�

��
b

�b�r�
r

�b�r,x�

= E�
b

�b�r�
r

�b�r,x� . �4�

Multiplying with �a
��r ,x� and integrating over the electronic

coordinates yields

−
1

2�

d2�a�r�
dr2 +

la�la + 1�
2�r2 �a�r� + �

b

�Vab
ev + Vab

hf + Vab
Z ��b�r�

= E�a�r� , �5�

where

Vab
ev�r� = ��a�r,x��Hev��b�r,x�� , �6�

Vab
hf �r� = ��a�r,x��Hhf��b�r,x�� , �7�

Vab
Z = ��a�r,x��HZ��b�r,x�� , �8�

and la is the quantum number associated with the angular
momentum of the relative motion of the two atoms. Deriving
Eq. �5� from Eq. �4�, it has been assumed that the nonadia-
batic coupling terms can be ignored, and we make the ap-
proximation �16�

�
b
	 �a�r,x���2�b�r,x�

�b�r�
r

dx =
d2�a

dr2 +
la�la + 1�

r2 �a�r� .

�9�

Finally, we have the boundary conditions �a�0�=0 and

�a�r� →
r→�

�
b

�b�r,x�
1


kb

�jb�kbr��ab + gb�kbr�Kba� , �10�

where K is the so-called reaction matrix determined from Eq.
�10�. jl�x� and gl�x� are the Riccati-Bessel functions �17� for
real kb=
2��E−Eb� �i.e., open channels E	Eb� but must be
replaced with the modified spherical Bessel functions �17� of
first and third kinds multiplied with kb


r for all closed chan-
nels. The important S matrix can be determined once K is
known �18�,

S =
I + iK00

I − iK00
, �11�

where K00 is a submatrix of K containing all the elements
connecting open channels �I is the identity matrix�. The
S-matrix elements readily yield the important phase shift �l
from the simple expression

Saa = e2i�l, �12�

where l is the partial-wave quantum number.

A. Choice of basis set

To simplify the equations presented in this section, the
two colliding atoms have been assumed to be in S states. For
atoms in other states, e.g., P states, a nonzero angular mo-
mentum must be included. See the Appendix for more
details.

1. Long-range basis: FF-coupled states

The long-range electronic potential energy V�r� for two
atoms, where Li=0 is proportional to r−6 �19�. Asymptoti-
cally, as r→�, we are then left with the hyperfine Hamil-
tonian together with the Zeeman interaction set up by an
external magnetic field. To fulfill the boundary condition im-
posed as r→�, we choose a basis in which these interactions
are diagonal. Consider the situation where atom 1 has total
angular momentum F1 and atom 2 has total angular momen-
tum F2. The atomic hyperfine interaction is diagonal in this
basis if J1�L1+S1, J2�L2+S2, I1 and I2 are good quantum
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numbers together with MF1
and MF2

. The total two-atom
angular-momentum states are constructed by adding the
single atom angular momentum Fi from both atoms together
with the mechanical rotation of the relative motion L �not to
be confused with L1 or L2� to give the total angular momen-
tum F. First, we define the total atomic angular momentum
Fa=F1+F2,

�F1F2FaMFa
� = �

MF1
,MF2

�F1MF1
F2MF2

�FaMFa
��F1MF1

�

��F2MF2
� . �13�

Finally, we include also the angular momentum L from the
relative motion of the two collision partners and construct
the total angular momentum F=Fa+L. The quantum num-
bers l and ml are introduced as eigenvalues of the operators
L2 and Lz, respectively, with the spherical harmonics
�r � lml�=Ylml

�
 ,�� as their eigenfunctions,

�FalFMF� = �
MFa

,ml

�FaMFa
lml�FMF��FaMFa

��lml� . �14�

We will refer to this basis as the FF-coupled basis.
Whenever an external magnetic field B is introduced, the

Zeeman interaction couples the magnetic field to the elec-
tronic spins and �FalFMF� are no longer eigenstates of the
long-range interaction. The long-range interaction is the sum
Hhf+HZ which are diagonalized numerically. The remaining
good quantum numbers in an external magnetic field are the
total projection MF=MF1

+MF2
on a space-fixed axis and the

mechanical rotation quantum number l.

2. Short-range basis: Molecular Hund’s case (a) states

Here we define the molecular Hund’s case �a� states. The
matrix elements of the different interactions will be repre-
sented in this basis. For small distances r, the intuitive choice
is a basis which describes the system as a molecule rather
than two atoms. One possible choice is then to quantize S2

= �S1+S2�2 together with Sz and Lz with quantum numbers
S ,�, and �. The quantum numbers � and � are projections
on the interatomic axis in a molecule-fixed system. We also
need the nuclear-spin states �I1
I1

� and �I2
I2
�. Similarly, 
I1

and 
I2
are projections of the nuclear spin on the internu-

clear axis in the molecule-fixed system. Combined to give
the total angular momentum F �see the Appendix�, we obtain
the basis states

�q�S�
I1

I2

F
FMF� = �q�S���
I1

I2

��F
FMF� , �15�

where 
F=�+�+
I1
+
I2

is the projection of the total spin
on the internuclear axis. These are the Hund’s case �a� basis
states. The letter q in the state symbol represents the other
quantum numbers necessary to specify the electronic state.
The quantum numbers I1 and I2 are constants and have been
suppressed in the notation.

3. Unitary transformation between the short-range basis and the
long-range basis

Although we will be mostly concerned with the molecular
Hund’s case �a� states, we obtain the useful unitary transfor-
mation between the FF-coupled states, where the K matrix is
defined �see Eq. �10��, and the Hund’s case �a� states. The
unitary transformation has been worked out in detail in the
Appendix; here we merely give the final expression in terms
of 3j-symbols,

�qS�
I1

I2

FMF
F�qF1F2FalFMF�

= �− 1� f �
MFa

,ml

MF1
,MF2

�
MS1

,MS2
,

MI1
,MI2

�
J,I,

MS

�2J + 1��2I + 1��2F + 1��Fa��F1��F2��S��l�� l Fa F

ml MFa
− MF


� F1 F2 Fa

MF1
MF2

− MFa



�� S1 I1 F1

MS1
MI1

− MF1


� S2 I2 F2

MS2
MI2

− MF2


� S1 S2 S

MS1
MS2

− MS

� S l J

MS ml − MJ

�S l J

� 0 − 




�� I1 I2 I

MI1
MI2

− MI

� I1 I2 I


I1

I2

− 
I

� J I F

MJ MI − MF

� J I F


 
I − 
F

 , �16�

with f =Fa− l+F1−F2+MFa
+2S1− I1+MF1

− I2+MF2
+MS

+
+
I+
F−MJ−MI, �Fa�=
2Fa+1, and similar for other
quantities in square brackets. When Li�0, the unitary trans-
formation �16� is no longer valid.

The unitary transformation from the case �a� basis to the
FF-coupled basis is often called a frame transformation in
the present context �see �20,21��. For further discussion of

other convenient basis states and a more in-depth treatment,
we refer to �16,22� and references therein.

B. Pauli exclusion principle

Due to the Pauli principle, the wave function describing
our system must have certain symmetries upon the inter-
change of identical particles. Working with two identical at-
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oms, the proper wave function must fulfill two requirements.
�1� Interchanging an even �odd� number of electrons should
yield a phase factor +1�−1�, whereas �2� interchanging the
nuclei should give +1 or −1 depending on whether I1= I2 is
integer or half integer �boson or fermion, respectively�. The
long-range and short-range states introduced in Sec. II A
must respect these symmetries. The following discussion is,
in particular, relevant for two alkali atoms with identical nu-
clei L1=L2=0 and S1=S2�0. However, for L1=L2�0, the
modifications to the expressions given are rather straightfor-
ward.

In addition to the previously mentioned Hund’s case �a�
basis, we introduce the Hund’s case �b� basis as the symme-
tries are easier to deduce in this basis. This is due to the fact
that both the electronic and the nuclear spin is quantized in a
space-fixed system ��→MS, 
I1

→MI1
, and 
I2

→MI2
� in a

case �b� basis. See �23� for a further discussion of the differ-
ent Hund’s cases.

Both basis set �q�S�� �case �a�� and �q�SMS� �case �b��
can be constructed as eigenstates for the total inversion op-
erator It �spatial inversion in a space-fixed system� for all
diatomic molecules. We denote the eigenvalues of It with �.
Assuming ML1

=ML2
=0, it can be shown that the only pos-

sible eigenvalue for It is +1 �24�. For homonuclear diatomic
molecules, there are two additional symmetry operations.
These are inversion of the spatial nuclear coordinates In and
inversion of the spatial electronic coordinates Ie with eigen-
value �−1�ie. For all operators, inversion is performed in a
space-fixed coordinate system. Electronic states with ie=1
are denoted u �ungerade�, whereas states with ie=0 are g
states �gerade�. These three symmetry operations are also
related through the relation It= InIe. We will assume that we
are working with states �q�S�� and �q�SMS� that are eigen-
states for the symmetry operators It , Ie and In.

The electronic case �b� states �q�SMS� are linear combi-
nations of spin orbitals q��x ,r��SMS�. To determine their be-
havior under symmetry operations, it suffices to consider
q��x ,r� and �SMS� separately �25,26�. However, it is impor-
tant to realize that the separation �q�SMS�= �q���SMS� is
only generally valid for one- and two-electron molecules.

Next we introduce the electronic permutation operator Pe
that permutes all the electrons. Both the spatial and the spin
part of �q�SMS� are eigenstates of Pe. The eigenvalues cor-
responding to the spatial functions q��x ,r� are �−1�pe where
pe=0 �symmetric� and pe=1 �antisymmetric�. There exists an
intimate but not obvious connection between the eigenvalues
of the operators Ie and Pe when acting on q��x ,r�. It can be
shown �26� that the eigenvalues are related through the rela-
tion �−1�ie = � �−1�pe, where � are the eigenvalues of the It
operator, restricted to +1 for the present system. It then fol-
lows that �−1�ie = �−1�pe, hence Pe and Ie have identical ei-
genvalues acting on q��x ,r�.

The result of the operation Pe�SMS� is easily worked out
due to the symmetry of the Clebsch-Gordan coefficients, and
one obtains Pe�SMS�= �−1�2S1−S�SMS�. To summarize, we
may then write

Pe�q�SMS� = �− 1�ie+2S1−S�q�SMS� . �17�

However, the Pauli principle requires

Pe�q�SMS� = �− 1�N1�q�SMS� , �18�

where N1 is the number of electron permutations. Combined
with Eq. �17�, this implies �−1�ie+2S1−S= �−1�N1. Since
�−1�2S1 = �−1�N1, it follows that only electronic states where
�−1�ie−S=+1 are allowed. These are the 1�g

+ and 3�u
+ states

found in diatomic alkali molecules.
In general, the allowed combinations of g /u and elec-

tronic spin S can be worked out from the Wigner-Witmer
rules �27�. See also �26� and references therein for a more
accessible derivation of the Wigner-Witmer rules.

We have found that It�q�SMS�=+1�q�SMS� and that
Ie�q�SMS�= �−1�ie�q�SMS� �It , Ie and In only act on the spa-
tial coordinates, leaving the spin states �SMS� unaffected�.
From the relation In= ItIe, it then follows that In�q�SMS�
= �−1�ie�q�SMS�. However, inversion and permutation of two
nuclei �in a diatomic molecule� in space-fixed axis with ori-
gin at the center-of-mass position are the same two opera-
tions. Thus we conclude

In�q�SMS� = Pn�q�SMS� = �− 1�ie�q�SMS� . �19�

However, it is not obvious how the electronic case �a�
states defined in molecule-fixed axes are affected by Pn. To
determine this, we use the relation between case �a� and case
�b� states

�q�SMS� = �
�

DMS,�
S ��,
,0���q�S�� , �20�

where D is the rotation matrix �28� that rotates the space-
fixed component of MS into the molecule-fixed � compo-
nent. The effect of Pn is the same as a rotation of the axis of
the molecule by an angle �, which is equivalent to the trans-
formation ��
 ,��→ ��−
 ,�+���. The property

PnDMS,�
S ��,
,0�� = DMS,�

S �� + �,� − 
,0��

= �− 1�SDMS,−�
S ��,
,0��, �21�

which follows from the definition of the D matrix elements
is then very useful. Knowing how Pn acts on both �q�SMS�
and DMS�

S �� ,
 ,0��, it is seen from Eq. �20� that

Pn�q�S�� = �− 1�−S+ie�q�S − �� , �22�

in agreement with �29�. For a more detailed treatment, see
Zare et al. �25� and references therein.

We also need to consider the nuclear-spin states
�I1MI1

��I2MI2
�= �I1MI1

I2MI2
� under permutation of the nuclei

Pn. Working with the case �b� basis in space-fixed axis, it
follows immediately that Pn�I1MI1

I2MI2
�= �I2MI2

I1MI1
�.

However, to obtain Pn�I1
I1
I2
I2

� we write

�I1MI1
I2MI2

� = �

I1

DMI1
,
I1

I1 ��,
,0���I1
I1
I2MI2

� , �23�

or alternatively
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�I2MI2
I1MI1

� = �

I1

DMI1
,
I1

I1 ��,
,0���I2MI2
I1
I1

�

= Pn��

I1

DMI1
,
I1

I1 ��,
,0���I1
I1
I2MI2

��
= �− 1�I1�


I1

DMI1
,−
I1

I1 ��,
,0��Pn�I1
I1
I2MI2

� , �24�

hence Pn�I1
I1
I2MI2

�= �−1�−I1�I2MI2
I1−
I1

�. Similarly, rotat-
ing MI2

into 
I2
yields

Pn�I1
I1
I2
I2

� = �− 1�−2I1�I2 − 
I2
I1 − 
I1

� . �25�

Finally, we determine the effect of Pn on the total angular-
momentum states �FMF
F�. �r �FMF
F� are given in terms
of the DMF
F

F �� ,
 ,0�� rotation matrix elements �30�,

�FMF
F
��,
� = �r�FMF
F� =
2F + 1

4�
DMF
F

F ��,
,0��,

�26�

and the phase factor is easily determined from Eq. �21� with
F in place of S, and with similar replacements for MF and

F. The result is

Pn�FMF
F� = �− 1�F�FMF − 
F� . �27�

Combining Eqs. �22�, �25�, and �27�, we obtain

Pn�q�S�
I1

I2

FMF
F�

= �− 1�−S+ie−2I1+F�q�S − � − 
I1
− 
I2

FMF − 
F� ,

�28�

and case �a� states that are eigenstates for the Pn operator
and, fulfill, the Pauli principle can be constructed,

�q�S�
I1

I2

FMF
F� =
1

2

��q�S�
I1

I2

FMF
F�

+ �− 1�−S+ie+F�q − �S − � − 
I2

− 
I2
FMF − 
F� . �29�

The Pauli principle requires the states �q�S�
I1

I2

FMF
F�
to have the following symmetry:

Pn�q�S�
I1

I2

FMF
F� = �− 1�2I1�q�S�
I1

I2

FMF
F� ,

�30�

which has been used to obtain Eq. �29�.
Similarly, the long-range basis must also fulfill the Pauli

principle. The long-range basis is defined in Eq. �14� and is a
linear combination of basis states �F1F2FAMFa

� and �lml�.
The two atoms may or may not be in the same hyperfine
state. Permuting the nuclei in the states �FaMFa

� gives

Pn�F1F2FaMFa
� = �

MF1
,MF2

�
MS1

,MI1

�
MS2

,MI2

�F1MF1
F2MF2

�FaMFa
�

��S1MS1
I1MI1

�F1MF1
�

��S1MS2
I1MI2

�F2MF2
�Pn��qS1MS1

S2MS2
�

��I1MI1
I2MI2

�� . �31�

To continue, we decouple the electronic spin S in the sates
�q�SMS�,

�qS1MS1
S2MS2

� = �
S,MS

�S1MS1
S1MS2

�SMS��q�SMS� ,

�32�

and obtain Pn�qS1MS1
S1MS2

�,

Pn�qS1MS1
S1MS2

� = �
S,MS

�S1MS1
S1MS2

�SMS��− 1�ie�q�SMS� ,

�33�

where we have used Eq. �19� and �−1�ie = �−1�S−2S1+N1, which
follows from Eq. �17� and requirement �18�. Finally, we ex-
ploit the symmetry of the Clebsch-Gordan coefficients and
write �S1MS1

S2MS2
�SMS�= �−1�S1+S2−S�S2MS2

S1MS1
�SMS� to

obtain

Pn�qS1MS1
S2MS2

� = �
S,MS

�S2MS2
S1MS1

�SMS��− 1�N1�q�SMS�

= �− 1�N1�qS2MS2
S1MS1

� . �34�

The nuclear-spin states �I1MI1
I1MI2

� can be permuted without
introducing any phase factor and we can conclude

Pn�F1F2FaMFa
� = �

MF1
,MF2

�
MS1

,MI1

�
MS2

,MI2

�F1MF1
F2MF2

�FaMFa
�

��S1MS1
I1MI1

�F1MF1
��S1MS2

I1MI2
�F2MF2

�

��− 1�N1�qS2MS2
S1MS1

��I2MI2
I1MI1

�

= �− 1�N1+F1+F2−Fa�F2F1FaMFa
� . �35�

The phase factor �−1�F1+F2−Fa stems from a rearrangement of
the Clebsch-Gordan coefficient. Finally, we determine the
sign of the states �lml� under nuclear permutation

Pn�lml� = �− 1�l�lml� , �36�

which follows from the properties of the spherical harmon-
ics. All together, the FF-coupled basis states fulfill the equa-
tion

Pn�F1F2FalFMF� = �− 1�N1+F1+F2−Fa+l�F2F1FalFMF� ,

�37�

hence we can construct eigenstates for the Pn operator,
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�F1F2FalFMF� =
1

2

��F1F2FalFMF�

+ �− 1�N1+F2+F2−Fa+l+2I1�F2F1FalFMF�� .

�38�

The phase factor is in agreement with the expression ob-
tained by Bo Gao �16� working with similar basis states.

III. INTERACTIONS

Consider again the diatomic Hamiltonian, now written in
the abbreviated form

H = −
�2

2�

d2

dr2 + Hev + Hhf + Hss + HZ + Hrot, �39�

where Hev denotes the electronic and vibrational contribu-
tion. Hhf represents the hyperfine operator, HZ is the Zeeman
interaction operator, and Hrot is the rotational energy opera-
tor. Hss is the spin-spin interaction operator included explic-
itly. Other relativistic effects are included in Hev. In this sec-
tion, we obtain the matrix elements for these operators in the
molecular Hund’s case �a� basis. Working with the case �a�
basis enables rather compact expressions for the relevant ma-
trix elements. The CPU time is also reduced by avoiding the
all too familiar Clebsch-Gordan coefficients often present in
large numbers in both hyperfine and Zeeman interaction
terms. Furthermore, it is very easy to write down the differ-
ent matrices in this basis, yielding an easy and transparent
algorithm less susceptible to errors.

A. Diatomic magnetic hyperfine interaction
in Hund’s case (a) basis

The general diatomic hyperfine Hamiltonian is given in
�31�. Only interactions that depend on the electronic spin are
of current interest. We will start with a microscopic hyperfine
Hamiltonian that takes the form

Hhf = �
j=1

2

�
�=−1

1

�− 1��Ij−��
i=1

N

si�a�rij� , �40�

where N is the total number of electrons. Ij−� and si�, respec-
tively, denote spherical components of the nuclear spin I j and
the electronic spin si. The quantity a�rij� depends on the
position of electron i relative to nucleus j. The Hamiltonian
in Eq. �40�, in particular, applies to the dominant Fermi-
contact interaction, with a�rij� defined by

a�rij� =
16�

3
gIj

�0�N��rij� , �41�

where gIj
denotes the g factor of nucleus j.

We are considering the states �qS�
I1

I2

� and have omit-
ted �FMF
� as the hyperfine interaction is diagonal in the
corresponding quantum numbers. � is also ignored as it is
zero in alkali-metal diatomic molecules �or it may be in-
cluded in the collective quantum number q�. The relevant
matrix element can then be written as

�qS�
I1

I2

�Hhf�q�S���
I1
� 
I2

� �

= �
�=−1

1

�− 1���
I1
�I1−��
I1

� ��qS���
i=1

N

si�a�ri1�

��q�S�����
I2
,
I2

� + �
�=−1

1

�− 1���
I2
�I2−��
I2

� �

��qS���
i=1

N

si�a�ri2��q�S�����
I1
,
I1

� . �42�

For the elements diagonal in spin �S=S��, it follows from Eq.
�42� and the Wigner-Eckart theorem

�qS���
i=1

N

si�a�ri1��qS���

= �
i=1

N

�S��si��S����qS���a�ri1��qS���

= �S��S��S����
i=1

N

�S��si��S��qS���a�ri1��qS���

= �S��S��S���b1, �43�

where b1 has been defined as

b1 � �
i=1

N

�S��si��S��qS���a�ri1��qS��� , �44�

and a similar definition holds for b2 related to the other
nucleus. S� is the spherical component � of the total elec-
tronic spin. For two identical nuclei b1=b2=b. Combining
Eqs. �42�–�44�, the hyperfine interaction diagonal in S can be
written as

�qS�
I1

I2

�Hhf�qS��
I1
� 
I2

� �

= b��qS�
I1

I2

�I1 · S�qS��
I1
� 
I2

� ��
I2
,
I2

�

+ �qS�
I1

I2

�I2 · S�qS��
I1
� 
I2

� ��
I1
,
I1

� � , �45�

where the matrix elements in Eq. �45� are defined by

�qS�
I1

I2

�I j · S�qS��
I1
� 
I2

� �

= �
Ij
��,���
Ij

,
Ij
� +

1

2
�S�S + 1� − ��� − 1��1/2

��Ij�Ij + 1� − 
Ij
�
Ij

+ 1��1/2���,�−1�
Ij
� ,
Ij

+1

+
1

2
�S�S + 1� − ��� + 1��1/2

��Ij�Ij + 1� − 
Ij
�
Ij

− 1��1/2���,�+1�
Ij
� ,
Ij

−1, �46�

with j=1,2. Equation �46� has been worked out by standard
ladder operator techniques.

We now return to Eq. �42� and to the part of the hyperfine
interaction off diagonal in S. Again, using the Wigner-Eckart
theorem,
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�qS���
i=1

N

si�a�ri1��q�S���� = �
i=1

N

�qS��si��q�S�����qS��a�ri1�

��q�S���� , �47�

=�1�S����S���
i=1

N

�S��si��S���q�a�ri1��q�� = g1�1�S����S�� ,

�48�

where g1 has been defined

g1 �
1

�1�S����S��
�qS���

i=1

N

si�a�ri1��q�S����

= �
i=1

N

�S��si��S���q�a�ri1��q�� . �49�

A similar expression applies to g2 for the other nucleus.
We will return to the explicit connection between g1 and g2
later on. We note, however, that g1 and g2 are independent of
�. �1�S��� �S�� denotes the Clebsch-Gordan coefficient
from the Wigner-Eckart theorem that couples a spherical ten-
sor of rank 1 to the electronic spin S� to yield S. The off-
diagonal matrix elements in terms of g1 and g2 are written as
�combining Eqs. �42� and �48��

�qS�
I1

I2

�Hhf�qS���
I1
� 
I2

� �

= g1 �
�=−1

1

�− 1���1�S����S���
I1
�I1−��
I1

� ��
I2
,
I2

�

+ g2 �
�=−1

1

�− 1���1�S����S���
I2
�I2−��
I2

� ��
I1
,
I1

� .

�50�

The matrix elements in Eq. �50� are readily calculated, and
the results are

�
Ii
�Ii�1�
Ii

�� = �
1

2

�Ii�Ii + 1� − 
Ii
�
Ii

� 1��1/2�
Ii
�,
Ii

�1,

�51�

�
Ii
�Ii0�
Ii

�� = 
Ii
�
Ii

�,
Ii
. �52�

Finally, we specialize to the alkali atoms where S1=S2

= 1
2 and S� �0,1�. It is readily seen from Eq. �49� that g1 and

g2 are independent of �. To simplify the calculation of g1
and g2, we set �=1 which yields �1100 �11�=1�S�=0,��
=0�. The relation between g1 and g2 is obtained by decou-
pling the total electronic spin S,

�q,S = 1,� = 1� = �q,S1,�1 = 1/2,S2,�2 = 1/2� , �53�

�q,S = 0,� = 0� =
1

2

��q�,S1,�1 = 1/2,S2,�2 = − 1/2�

− �q�S1�1 = − 1/2,S2,�2 = 1/2�� , �54�

and we obtain

g1 = −
1

2

�qS1,�1 = 1/2��
i=1

N

si1a�ri1��q�S1,�1� = − 1/2� .

�55�

In a similar way, we obtain for g2

g2 =
1


2
�qS2�2 = 1/2��

i=1

N

si1a�ri2��q�S2,�2� = − 1/2� ,

�56�

which means that we have g1=−g2. Thus, we see that just
two hyperfine parameters are needed. For the 3� state the
only parameter is b, and for the 3�− 1� hyperfine interaction
there is a single parameter g1=−g2.

B. Ab initio calculation of the molecular hyperfine parameters

First, we consider the Fermi-contact hyperfine interaction.
The parameter b1 of Eq. �44� is then denoted b1F, and in the
case of two identical nuclei b1F=b2F=bF. The Fermi-contact
parameter bF, which is independent of �, is from Eqs. �43�
and �41� given by

bF =
16�

3
gI�0�N

1

�
�qS���

i=1

N

siz��ri1��qS�� . �57�

The expressions for bF above applies to the interaction that is
diagonal in the spin �S=S��, i.e., to the triplet state for the
alkali molecules.

For the Fermi-contact interaction that is off diagonal in S,
i.e., triplet-singlet interaction in the alkali case, the corre-
sponding parameters b1F� =g1 and b2F� =g2 are obtained from
Eq. �49�. Specializing to the diatomic alkali molecules, we
see from Eqs. �55� and �56� that b1F� =−b2F� , and

bF� = b1F� = −
16�

3
gI�0�N

1

2
�q,S1 =

1

2
,� =

1

2
��

i=1

N

si1��ri1�

��q�S1 =
1

2
,�1� = −

1

2
� . �58�

For a diatomic molecule, there is furthermore an aniso-
tropic spin-dependent hyperfine interaction that is generally
included through the parameter c �cf. �31��. In this case, the
quantity a�rij� in the Hamiltonian of Eq. �40� will also de-
pend on the component �. The Fermi-contact hyperfine pa-
rameters bF and bF� were computed ab initio for 6Li2 for
several internuclear separations. Extensive configuration in-
teraction �CI� calculations were performed to obtain ab initio
values of the parameters bF and bF� in 6Li2. The results are
shown in Fig. 10, with a corresponding discussion in Sec.
VI C 1.

The anisotropic part of the diatomic hyperfine Hamil-
tonian yields two additional hyperfine parameters. For inter-
actions diagonal in the spin S, there is an extra parameter c,
and terms off diagonal in S �singlet-triplet interaction� intro-
duces a parameter c� �cf. �31��. Basically, the anisotropic part
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adds corrections to the Fermi-contact parameters bF and bF�
in the matrix elements of the hyperfine Hamiltonian as fol-
lows:

bF → bF +
2

3
c, � = 0,

bF → bF −
1

3
c, � = � 1,

bF� → bF� +
2

3
c�, � = 0,

bF� → bF� −
1

3
c�, � = � 1. �59�

Ab initio values for the parameters c and c� were obtained
from calculations similar to those performed to obtain values
for bF and bF� . The results are shown in Fig. 10 for the 6Li2
molecule. We notice that the contribution from the aniso-
tropic hyperfine interaction is rather insignificant compared
with the dominant Fermi-contact interaction.

C. Diatomic molecular Zeeman interaction
in Hund’s case (a) basis

Calculations similar to those presented in this section can
be found in �32�, although this reference only considers di-
atomic molecules with one nuclear spin I. We extend the
theory to include atoms with two nuclear spins I1 and I2, but
we ignore some of the smaller second-order effects treated in
�32�. We write the Zeeman Hamiltonian as

HZ = �0gSS · B = �0gS �
�=−1

1

�− 1��S�B−�, �60�

and neglect the terms �0�gII+gNN� ·B ��0 is the Bohr mag-
neton�, which are all expected to be much smaller than the
electronic spin contribution. In Eq. �60�, it has been assumed
that L=0. S� and B−� refer to space-fixed spherical compo-
nents. The space-fixed components S� are related to the
molecule-fixed components S��

� by the usual D matrix ele-
ments

S� = �
��

D���
1 ��,
,0��S��

� . �61�

Inserted in Eq. �60�, this gives the Hamiltonian

HZ = �0gS �
�,��=−1

1

�− 1��D���
1 ��,
,0��S��

� B−�. �62�

Labeling all quantum numbers except the total angular mo-
mentum F by w��w�= �qS�
I1


I2
��, the matrix elements are

worked out as

�wFM
F�HZ�w�F�M�
F��

= �0gS �
�,��=−1

1

�− 1���w�S��
� B−��w��

��FMF
F�D�,��
1 ��,
,0���F�MF�
F�� . �63�

The integral �w�D1�� ,
 ,0���w�� is easily evaluated as an in-
tegral over the product of three D matrices �cf. Eq. �26��. By
convention we assume that the magnetic field is along the
space-fixed z axis with magnetic field strength B. Thus, there
is only a contribution from �=0 in Eq. �63� and we obtain

�wFMF
F�HZ�w�F�MF�
F��

= B�0gS

�2F + 1��2F� + 1� �

��=−1

1 � F 1 F�

MF 0 − MF



�� F 1 F�


F − �� − 
F�

�− 1�MF−
F�−���w�S��

� �w���MF,MF�
.

�64�

As expected, it is clear from Eq. �64� that different MF quan-
tum numbers are not mixed. After a short piece of algebra,
we obtain the matrix elements with F�=F,

�wFMF
F�HZ�wFMF
F���=0 = B�0gs
MF
F

F�F + 1�
� , �65�

�wFMF
F�HZ�w�FMF
F����=�1

= − B�0gs
MF


�F � 
F��F � 
F + 1�
2F�F + 1�

�w�S�1� �w��

��
F� ,
F�1, �66�

and for F�=F+1,

�wFMF
F�HZ�w�F + 1�MF
F���=0 = − B�0gs
�F − 
F + 1��F + 
F + 1��F − MF + 1��F + MF + 1�
�F + 1�2�2F + 1��2F + 3�

� , �67�

�wFMF
F�HZ�w��F + 1�MF
F����=�1 = � B�0gs
�F − MF + 1��F + MF + 1��F � 
F + 1��F � 
F + 2�
�2F + 2�2�2F + 1��2F + 3�

�w�S�1� �w���
F� ,
F�1,

�68�

finally for F=F−1,
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�wFMF
F�HZ�w�F − 1�MF
F���=0 =

− B�0gs


F2 − MF
2

F

 F2 − 
F

2

�2F − 1��2F + 1�
� , �69�

�wFMF
F�HZ�w��F − 1�MF
F����=�1

= � B�0gs


F2 − MF
2

2F

�
�F � 
F − 1��F � 
F�
�2F − 1��2F + 1�

�w�S�1� �w���
F� ,
F�1. �70�

Deriving these matrix elements from Eq. �64�, it is important
to be aware that the total angular momentum F has compo-
nents that obey anomalous commutation relations �33�. For
completeness, we also give

�w�S�1� �w�� = �qS�
I1

I2

�S�1� �q�S���
I1
� 
I2

� �

= 
S�S + 1� − ��� � 1�

��q,q��S,S��
I1
,
I1

� �
I2
,
I2

� ���,��1. �71�

D. Diatomic molecular rotational interaction in Hund’s case
(a) basis

The rotational energy operator is simply written B�r�R2

with B�r�= �2

2�r2 , where R is the orbital angular momentum of
the relative motion of the nuclei A and B. However, the case
�a� states are not eigenstates for this operator and the Hamil-
tonian is rewritten as

Hrot = B�r��F − �L + S + I��2

= B�r��F − Fa�2 = B�r��F2 − 2F · Fa + Fa
2� . �72�

Hrot is in general diagonal in the quantum numbers
q ,S , I1 , I2 ,F ,MF but off diagonal in 
�
=�+��, 
I1

, and

I2

.

To work out the diagonal contribution, it is convenient to
define Ja�L+S. Consider

�

I1

I2

�Fa
2�

I1


I2
� = �

I1


I2
��Ja + I1 + I2�2�

I1


I2
�

= �

I1

I2

�Ja
2�

I1


I2
� + I1�I1 + 1�

+ I2�I2 + 1� + 2
I1

I2

+ 2
�
I1

+ 
I2
� . �73�

The remaining element in Eq. �73� can be worked out:
�

I1


I2
�Ja

2�

I1

I2

�= �

I1

I2

�L2+2L ·S�

I1

I2

�+S�S
+1�. Effectively, this gives S�S+1� when L=0. However, if
L�0 the terms �

I1


I2
�L2+2L ·S�

I1


I2
� can be in-

cluded in Hev. Hence, we obtain for the diagonal matrix el-
ement

�

I1

I2

�Hrot�

I1

I2

� = B�r��F�F + 1� − 2�
 + 
I1
+ 
I2

�2

+ S�S + 1� + I1�I1 + 1� + I2�I2 + 1�

+ 2
I1

I2

+ 2
�
I1
+ 
I2

�� . �74�

Next we turn to the off-diagonal elements. Consider first
the elements off diagonal in both 
I1

and 
I2
. The only

relevant operator in this case is 2B�r�I1 ·I2 and the corre-
sponding matrix element is

2B�r��

I1

I2

�I1 · I2�

I1
� 
I2

� �

= B�r�
�I1 + 
I1
��I1 − 
I1

+ 1��I2 + 
I2
+ 1��I2 − 
I2

�

��
I1
� ,
I1

−1�
I2
� ,
I2

+1 + B�r�

�
�I1 − 
I1
��I1 + 
I1

+ 1��I2 + 
I2
��I2 − 
I2

+ 1�

��
I1�
,
I1

� �
I2
� ,
I2

−1. �75�

The operator −2B�r�Fa ·F will yield matrix elements off
diagonal in 
I1

�
I2
� but diagonal in both 
I2

�
I1
� and 
.

Keeping in mind that F obeys anomalous commutation rela-
tions, we obtain

− 2B�r��

I1

I2

�Fa · F�

I1
� 
I2

� = − B�r�
�I1 � 
I1
+ 1��I1 � 
I1

��F � 
F + 1��F � 
F��
I1
� ,
I1

�1, �76�

with a similar expression for the elements off diagonal in

I2

.
In Eq. �72� we also have additional operators of the type

2BJa ·I j with j=1,2. The corresponding matrix elements are
off diagonal in both 
 and 
Ii

,

2B�r��

Ii

Ij

�Ja · Ii�
�
Ii
�
Ij

�

= B�r��
�L� + S��
��
�Ii � 
Ii
+ 1��Ii � 
Ii

��
Ii
�,
Ii

�1,

�77�

with j=1,2 and j� i. The matrix element in Eq. �77� is eas-

ily evaluated: �
�L�+S��
��=
S�S+1�−����1����,��1,
when L=0 is assumed.

Finally, we give the matrix elements off diagonal in 
 but
diagonal in both 
I1

and 
I2
coupled by the operator Ja ·F,

− 2B�

I1

I2

�Ja · F�
�
I1

I2

�

= − B
S�S + 1� − ��� � 1�

�
�F � 
F + 1��F � 
F����,��1. �78�

All other matrix elements for the rotational Hamiltonian are
zero.
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E. Diatomic 3� spin-spin interaction in Hund’s case (a) basis

The electronic spin-spin Hamiltonian takes the form �34�

Hss = D�Sz
2 −

1

3
S2
 + E�Sx

2 − Sy
2� . �79�

For 3� states, E=0 and D is equal to twice the standard
spin-splitting parameter ��r�. Ab initio calculations of the
spin-spin parameter ��r� seem to be nonstandard, an imple-
mentation of such a calculation is found in �35�. The spin-
spin interaction is diagonal in the basis �q�S��, and the ma-
trix element can be written as

�qS��Hss�qS�� = 2��r���2 −
1

3
S�S + 1�� . �80�

If we omit the constant diagonal contribution equal to
− D

3 S�S+1�, the spin-spin matrix elements take the simple
form,

�qS��Hss�qS�� = 2��r��2, �81�

i.e., �= �1 are degenerate and shifted up or down in energy
relative to states with �=0, depending on the sign of ��r�.

IV. COMPUTATIONAL DETAILS

To solve the coupled Eq. �5�, we have implemented the
log-derivative method of Johnson �18�. Our routine deter-
mines which basis states to include based on the input from
the user. The basis should be chosen in such a way that the
important interactions are well represented. The restrictions
imposed by the Pauli principle are also important as nonex-
isting states would interact with the allowed states otherwise.
Computationally, the Pauli principle is also convenient in the
sense that it restricts the number of states included in the
calculation and thereby the dimension of the matrices. The
interactions are set up in the Hund’s case �a� basis using the
matrix elements worked out in the previous section. Inter-
atomic potentials are necessary input along with values for
the hyperfine parameters, which were handled in Sec. III B.

The various matrix elements in Eq. �5� must be evaluated
at different values of r. However, the Zeeman interaction is
independent of r and the Zeeman matrix elements are set up
only once. Similarly, the matrix elements of the rotational
operator �72� depend on r only through B�r�. This is in con-
trast with the hyperfine interaction which depends on r in a
more complex manner; hence the matrix elements repeatedly
need to be updated. The spin-spin interaction is diagonal and
depends on r through ��r�.

The integration of Eq. �5� extends from 2.75 to 300 a.u.
Interpolation in the interatomic potentials, hyperfine interac-
tion parameters, and the spin-spin parameter ��r� were per-
formed with cubic splines. The reduced mass used for 6Li is
5482.264721 a.u. calculated with the isotope mass obtained
from �36�.

The unitary transformation given in Sec. II A 3 is used to
transform from Hund’s case �a� basis to the FF-coupled ba-
sis. Finally, we perform another unitary transformation to a
basis that diagonalizes both the hyperfine interaction and the

Zeeman interaction terms. This final transformation defines
the K matrix. From the output, we can extract the S matrix
and the scattering lengths, in principle, for any partial wave l.

V. SINGLET AND TRIPLET INTERACTION
POTENTIAL CURVES

Reliable interaction potentials are very important in ultra-
cold physics. Fortunately, the Li2 interatomic potentials have
been extensively studied experimentally and theoretically,
both for the ground state X 1�g

+ and for the lowest electronic
triplet state A 3�u

+.
For the X 1�g

+ Li2 interatomic potential, we use the ab
initio potential calculated by Zavitsas �37� for distances be-
tween 3.4a0 and 12.0a0. We extend the data of Zavitsas �37�
with three values from Barakat et al. �38� at 12.6a0 , 13.4a0,
and 14.5a0. In addition, we use two values from Konowalow
and Olsen �39� at 2.75a0 and 3.00a0, and a value of Schmidt
Mink et al. �40� at 3.25a0. The interatomic potential curve
was smoothly joined with cubic splines to the long-range
potential in Eq. �82�.

For the 3�u
+ state, we use the interatomic potential dis-

cussed by Zemke and Stwalley �41� for distances between
6.39a0 and 15.5a0. We have supplemented this potential with
seven values �at 3.00a0, 3.50a0, 4.00a0, 4.50a0, 5.00a0,
5.50a0, and 6.00a0� from Konowalow et al. �42�. Cubic
splines were used to join the short- and long-range poten-
tials.

At large separations, both the singlet and triplet interac-
tion potentials can be written as a sum of dispersion terms
�43�

V�r� = −
C6

r6 −
C8

r6 −
C10

r10 . �82�

The dispersion coefficients �also called van der Waals coef-
ficients� C6 , C8, and C10 for Li2 have been calculated by
several authors. In Table I, we compare some of the most
recent calculations which show rather good agreement. We
have adopted the values obtained by Yan et al. for C6 , C8,
and C10.

The adopted singlet and triplet interatomic potentials are
shown in Fig. 1. The long-range potential was used for dis-
tances greater than �16.5a0.

With the combined short- and long-range interatomic po-
tentials described in this section, we obtained the elastic
s-wave scattering lengths as

T=−2090.94a0 and as
S

TABLE I. Comparison of the van der Waals coefficients
C6 ,C8 ,C10. All numbers in atomic units.

Yan et al.a Zemke and Stwalleyb Marinescu et al.c

C6 1393.39�16� 1381�8 1388

C8 83425.8�4.2� 82616�2288 83240

C10 73721�1��102 �64250�5140��102 73650�102

aReference �44�.
bReference �41�.
cReference �45�.
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=45.558 2a0 for the triplet �T� and singlet �S� potentials,
respectively. The singlet elastic-scattering length is experi-
mentally determined with rather high accuracy to be as

S

=45.151 9�16�a0 �46�, whereas the triplet scattering length is
not that well known. Abraham et al. �47� reported the value
as

T=−2160�250a0.
The different short- and long-range interatomic potentials

available in the literature yield deviating results for the scat-
tering lengths. Thus it seems hard to obtain ab initio scatter-
ing lengths with an accuracy comparable with the experi-
mental values, without of course somehow fitting the
combined �short and long range� potential to reproduce the
experimental results. Ab initio scattering lengths are there-
fore very demanding to calculate. Without the experimental
values available to guide the search for reliable interatomic
potentials, as

S and, in particular, as
T would be reported with

large uncertainties. One should also be aware that a com-
pletely inadequate interatomic potential can give excellent
values for the scattering lengths; thus there are no one-to-one
correspondence.

It has been reported previously that most s-wave Fesh-
bach resonances observed in 6Li are very sensitive to the
singlet potential and rather insensitive to the triplet potential
curve. An exception is the broad well-known Feshbach reso-
nance at B�837 G �see next section�, which is highly sen-
sitive to both. Thus, the rather small difference between the
ab initio calculated as

S compared to the experimental value

may indicate that the calculated resonance positions are sys-
tematically shifted relative to the observed positions. We ex-
plore this further in the next section and we will see that this
shift is roughly plus a few Gauss for all resonances.

VI. RESULTS

A. Calculation of s-wave scattering lengths and Feshbach
resonances

In this section, we report s-wave scattering lengths and
Feshbach resonances for two colliding 6Li atoms. The
s-wave scattering length is defined as

as = − lim
k→0

tan �0�k�
k

, �83�

where the phase shift �0 has been defined in Eq. �12�. In
alkali-metal diatomic molecules where L1=L2=0, the mo-
lecular mechanical rotation quantum number N corresponds
to the partial-wave quantum number l. In the following, N
= l and we write N rather than l.

The 6Li isotope has a nuclear spin I1=1 and an electronic
spin S1=1 /2 with a total angular momentum F1=S1+I1

� � 1
2 , 3

2 �, i.e., two hyperfine levels for zero external magnetic
field. The subscript 1 is used as a label to distinguish atom 1
from atom 2. Collisions can occur between atoms in the hy-
perfine levels F1=F2= 1

2 , F1=F2= 3
2 and Fi=

1
2 , Fj =

3
2 , �i , j�

=1,2 and i� j. Experimentally, most studied are collisions
between atoms in the lowest-allowed energetic states
�F1MF1�= � 1

2 , 1
2 � and �F2MF2�= � 1

2 ,− 1
2 �. Collisions between at-

oms in excited states may be inelastic and give spin relax-
ation. We have calculated s-wave scattering lengths for all
possible collisions, including atoms in different hyperfine
levels. The results are presented in Fig. 3 for magnetic field
strengths up to 1500 G �1 G=10−4 T�.

The states are identified by the quantum numbers N and
MF and in addition a label n to distinguish states with equal
quantum numbers N and MF. The new notation is motivated
by the fact that the quantum numbers F1 ,F2 ,Fa and F are
generally mixed in external magnetic fields. Table II lists all
relevant states �nNMF� and their correspondence with the
low- or zero-field states �F1F2FMF�. Since N=0, the quan-
tum number Fa=F and is suppressed in the notation. The
possible molecular levels corresponding to N=0 �no me-
chanical rotation, lowest rotational level� are shown sche-
matically in Fig. 2.

From the discussion in Sec. II A, it is clear that the states
�F1F2FMF� can be written as linear combinations of states

5 10 15 20 25
−0.04
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−0.01

0
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FIG. 1. Interatomic potential curves for the electronic states 1�g
+

�solid line� and 3�u
+ in Li2.

TABLE II. Correspondence between the states �n ,N ,MF� and the zero-field states �F1 ,F2 ,F ,MF�. F1 ,F2

and F are good quantum numbers only at zero magnetic field.

�nNMF� �F1F2FMF� �nNMF� �F1F2FMF� �nNMF� �F1F2FMF�

�1,0 ,0� � 1
2 , 1

2 ,0 ,0� �1,0 ,−2� � 3
2 , 1

2 ,2 ,−2� �2,0 ,1� � 3
2 , 1

2 ,2 ,1�
�2,0 ,0� � 3

2 , 1
2 ,2 ,0� �2,0 ,−2� � 3

2 , 3
2 ,2 ,−2� �3,0 ,1� � 3

2 , 1
2 ,1 ,1�

�3,0 ,0� � 3
2 , 1

2 ,1 ,0� �1,0 ,2� � 3
2 , 3

2 ,2 ,2� �1,0 ,−1� � 3
2 , 1

2 ,1 ,−1�
�4,0 ,0� � 3

2 , 1
2 ,2 ,0� �2,0 ,2� � 3

2 , 1
2 ,2 ,2� �2,0 ,−1� � 3

2 , 1
2 ,2 ,−1�

�5,0 ,0� � 3
2 , 3

2 ,0 ,0� �1,0 ,1� � 3
2 , 3

2 ,2 ,1� �3,0 ,−1� � 3
2 , 3

2 ,2 ,−1�
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��n� which are eigenstates for the total electronic spin opera-
tor S2= �S1+S2�2 �e.g., Hund’s case �a� or Hund’s case �b�
states�

�F1F2FMF� = �
n

cmn��n� . �84�

At zero field, none of the states �nNMF� can be written as
linear combinations of only singlet states ��n�S=0�� as such

states would have zero hyperfine energy as r→�. However,
pure triplet states �nNMF� do exist. In fact, at zero magnetic
field the states �3,0 ,0�, �3,0 ,1�, and �2,0 ,−1� have total
electronic spin S=1, and corresponding s-wave scattering
lengths equal to as

T. As the magnetic field is increased from
zero, singlet states are introduced in the linear combinations
�84�, and the sensitive s-wave scattering length changes very
rapidly. This particular behavior is not resolved in Fig. 3.

The states �4,0 ,0�, �1,0 ,2�, and �1,0 ,1� have s-wave
scattering lengths that show a steep decrease when the mag-
netic field is increased. At zero magnetic field, the scattering
lengths are moderate, but at higher magnetic field strengths
they attain the triplet scattering length as

T. In fact, at B
�1000 G these states are almost pure triplet states. To con-
firm, this we have plotted the sum of coefficients �n�cmn�S
=1��2 vs magnetic field for the states �4,0 ,0�, �2,0 ,−1�, and
�2,0 ,2� in Fig. 4. The states �2,0 ,−1� and �2,0 ,2� are also
included for comparison and are seen to have rather different
behaviors.
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FIG. 3. �Color online� Scattering lengths �s wave� vs magnetic field B for all states with N=0. Upper left panel includes all states with
MF=0, lower left panel includes all states with MF�2, whereas the right panel includes all states with MF�1. Each of the three panels
shows one well-resolved Feshbach resonance.

FIG. 2. Schematic diagram of the hyperfine energy levels in
6Li2 consistent with N=0. Quantum numbers at short range in ac-
cordance with Hund’s case �b� are indicated. Missing levels are
excluded by the Pauli exclusion principle �e.g., all N= I=0 levels�.
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In general, the scattering length varies only weakly with
the magnetic field, a property that is seen to hold for a ma-
jority of the states in Fig. 3. In fact, most states appear
largely unaffected by the magnetic field, e.g., the states
�2,0 ,0�, �2,0 ,2�, �5,0 ,0�, �3,0 ,−1�, �2,0 ,1�, and �2,0 ,−2�
all have moderate scattering lengths at all investigated mag-
netic field strengths. There are several reasons for this, some
of which will be discussed later on.

The states �3,0 ,1� and �2,0 ,−1� share a particular prop-
erty. Their energy eigenvalues are not affected by the in-
creasing magnetic field strength. Both states are part of �dif-
ferent� three level systems of interacting states in which one
of the eigenvalues retains a nearly constant value due to par-
ticular relations among the matrix elements for the hyperfine
and Zeeman interactions. At large magnetic fields, both
�3,0 ,1� and �2,0 ,−1� have scattering lengths of roughly
−6a0 and are found to be in a 50/50 superposition of singlet
and triplet basis states �see also Fig. 4�.

Further, the states �2,0 ,−2�, �2,0 ,2�, and �2,0 ,0� have
energy eigenvalues that approach zero when the magnetic
field strength increases. Hence, in larger magnetic fields
these states are almost pure singlet states with a moderate
scattering length as

S. Finally, �3,0 ,−1� shares much of the
same behavior, although the energy is decreasing toward
zero more slowly.

The most prominent features in Fig. 3 are the three clearly
visible Feshbach resonances, among them the broad well-
known 6Li2, F1=F2= 1

2 resonance in �1,0 ,0�. All Feshbach
resonances reported in the present paper originate when the
hyperfine energy levels of the colliding atoms are Zeeman
shifted into resonance with the highest vibrational level �v
=38� of the X 1�g

+ electronic state �the molecular ground
state�. The precise resonance positions are shifted by the hy-
perfine interaction and depend upon the state in question and
its interacting partners. We remark that states where F1=F2

= 3
2 �low-field quantum numbers� will not have Feshbach

resonances as the corresponding energy eigenvalues are
larger than zero even at the highest magnetic field strengths
investigated. In the upper left panel of Fig. 3, we recognize

the broad Feshbach resonance. In our calculation it is located
at B=837.13 G, experimentally it is found at B0� �822
−834� G �46�. Part of this discrepancy might be caused by
the ab initio singlet and triplet potential curves which do not
reproduce the precise experimental scattering lengths. Simi-
lar discrepancies can be seen in the positions of all calculated
Feshbach resonances. The B�837 G resonance is accessible
through collisions of atoms in the states �F1MF1

�= � 1
2 , 1

2 � and
�F2MF2

�= � 1
2 ,− 1

2 �. This is a very broad resonance which
makes it well suited for experiments as it is easy to control
the scattering length with high precision.

Two additional broad Feshbach resonances are visible in
Fig. 3 �lower left and right panels�. In the lower left panel,
we report a Feshbach resonance experimentally less acces-
sible as it occurs in �1,0 ,−1� which is a linear combination
�see Eq. �13�� of the FF-coupled states � 3

2 ,− 3
2 , 1

2 , 1
2 � and � 3

2 ,
− 1

2 , 1
2 ,− 1

2 �. The precise location of this Feshbach resonance
is B=692.89 G in our calculation. Furthermore, we also find
a Feshbach resonance in �1,0 ,−2� accessible through colli-
sions of atomic pairs in the atomic states ��Fi ,MFi

��� 3
2 ,− 3

2 ,�
and � 1

2 ,− 1
2 � �low-field quantum numbers�, with a combined

total angular-momentum projection MF=−2. The resonance
is clearly visible in Fig. 3 �lower left plot�. A detailed calcu-
lation locates this resonance at B=813.98 G.

In addition to the three s-wave resonances at B
�690–840 G discussed above, a narrow Feshbach reso-
nance in the state �1,0 ,0� can be seen in Fig. 6 at the precise
magnetic field strength B=544.90 G. Experimentally, the
resonance is observed at 543.28�0.08 G �46�. It has been
reported that this particular resonance has a total nuclear spin
I=2, whereas the broad B�837 G resonance has I=0 �46�.
In contrast to �1,0 ,0�, the states �1,0 ,−1� and �1,0 ,−2� do
not have two Feshbach resonances as they do not interact
with any I=0 states. However, at much larger field strengths
the v=37 singlet vibrational level will become energetically
accessible and make additional Feshbach resonances pos-
sible �48�.

Figure 5 sums up the discussion of the s-wave scattering
lengths as a function of magnetic field. States with corre-
sponding energy eigenvalues that are easily tunable by mag-
netic fields will become pure triplet states in high magnetic
fields with large and negative scattering lengths �as

T. States
with energy eigenvalues that are Zeeman shifted to lower
energies may be tuned into resonance with the singlet v
=38 vibrational level and give rise to Feshbach resonances.
However, most states are only weakly influenced by the ap-
plied field, with moderate scattering lengths that show small
dependencies on the magnetic field strength.

B. Calculation of the p-wave scattering volume

It is well known that s-wave collisions between two fer-
mions in identical spin states are forbidden by the Pauli prin-
ciple. However, p-wave collisions are possible although sup-
pressed at ultracold temperatures as �p�E3/2, whereas �s
�E1/2. Whenever s-wave scattering is not allowed, the
p-wave scattering volume Vp replaces the usual s-wave scat-
tering length as one of the important parameters. The p-wave
scattering volume is defined as
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FIG. 4. �S� as a function of magnetic field for �4,0 ,0� and
�2,0 ,2� �dotted line�.
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Vp � − lim
k→0

tan �p�k�
k3 , �85�

and ap=
3Vp is sometimes referred to as the p-wave scatter-
ing length. �p is the p-wave phase shift and as usual k is the
wave number. To avoid the cube root, we report Vp instead of
ap.

Knowledge of the p-wave scattering volume is in general
of importance for experiments involving fermions. The
p-wave scattering volume has also been discussed in relation
with p-wave Cooper pairs �49� and p-wave scattering is an
important mechanism in a three-body recombination of iden-
tical spin-polarized fermions �50�.

We present calculations of the p-wave scattering volume
as a function of magnetic field for selected spin states. We
have focused on states where s-wave scattering is forbidden
and restricted the calculations to states corresponding to the
lowest atomic hyperfine level, that is, F1=F2= 1

2 . A sketch of
molecular hyperfine levels corresponding to N=1 is pre-
sented in Fig. 7.

We have used the same singlet and triplet potentials as
described in Sec. V. The corresponding singlet and triplet
p-wave scattering volumes are Vp

S =62 298a0
3 and Vp

T=
−48 252a0

3, respectively. This yields p-wave scattering
lengths ap

S =39.6a0 and ap
T=−36.4a0. The ap

T value should be
compared to −45a0 obtained in �51�.

Vp as a function of B is shown in Fig. 8. Because of the
Pauli principle, the total atomic spin Fa=F1+F2=1 for all
zero-field states. The definition and correspondence between
the states �nNMF� and the zero-field states �F1F2FaFMF� are
given in Table III.

Three different Feshbach resonances are visible in Fig. 8,
at the magnetic fields B1=162.99 G, B2=189.02 G, and
B3=218.72 G. All states corresponding to the lowest hyper-

fine level F1=F2= 1
2 at zero field show one of these reso-

nances, which one depends on the detailed interaction, i.e.,
the response to the magnetic field.

There are three different FF-coupled states �F1MF1
F2MF2

�
corresponding to F1=F2= 1

2 . These are � 1
2 , 1

2 , 1
2 , 1

2 �, � 1
2 , 1

2
1
2 ,

− 1
2 �, and � 1

2 ,− 1
2 , 1

2 ,− 1
2 �. The magnetic field only interacts

with the atomic spin; thus the corresponding energies should
only depend on the quantum numbers F1 ,MF1

,F2 ,MF2
. The

energy eigenvalues corresponding to the states �FMF� will
therefore be degenerate with only three distinct values at all
magnetic field strengths. Figure 9 show the energy of all
states as a function of magnetic fields B� �0,100� G.

Collisions between atoms with MF1
=MF2

= 1
2 enable a

p-wave Feshbach resonances at B1, whereas collisions be-
tween atoms in MF1

=MF2
=− 1

2 enables a p-wave Feshbach
resonance at B3. Finally, there exists a p-wave Feshbach
resonance at B2 from collisions between atoms in MF1

= 1
2 ,

MF2
=− 1

2 . The different magnetic field strengths where the
resonances occur reflect the different Zeeman shifts experi-
enced in the various states, i.e., states that resonate at B1
have eigenvalues that are most easily perturbed to lower val-
ues by an external magnetic field. The resonances reported
here have all been experimentally observed in �46� at the
magnetic field strengths B1e=159.14 G, B2e=185.09 G, and
B3e=214.94 G. As previously emphasized, the calculated
values are a result of an ab inito calculation and the small
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FIG. 5. �Color online� Schematic presentation of the Zeeman
shift for different states as a function of the magnetic field strength.
At zero field, there are only three hyperfine levels. At nonzero mag-
netic field, three states with different MF quantum numbers are
shifted sufficiently low in energy to enable Feshbach resonances.
The energy differences are not correctly displayed in this figure.
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FIG. 7. Schematic diagram of the hyperfine structure in the N
=1 rotational level of 6Li2. The Pauli exclusion principle has been
taken into account.
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deviation in the resonance positions can be contributed to
small errors in the singlet potential. All the p-wave reso-
nances are found to be insensitive to the triplet potential.

Note that the relative positions of the calculated and ex-
perimentally observed resonances are in almost perfect
agreement: B2−B1=26.03 G in the present ab initio calcu-
lation whereas the experimental value is 25.95 G. Corre-
spondingly, B3−B2=29.70 G ab initio and B3−B2
=29.85 G experimentally.

Whereas the s-wave resonances had a total nuclear spin of
I=0 or I=2, the relevant nuclear spin for p-wave resonances
is I=1. In analogy with the s-wave scattering lengths, the
value of the p-wave scattering volume approaches the triplet
value Vp

T at high magnetic field strengths. The total electronic
spin together with the total nuclear spin are both approxi-
mately good quantum numbers at high magnetic field
strengths with the values 1 and 2, respectively.

The p-wave scattering volume as a function of magnetic
field strength for states with F1=F2=3 /2 �zero field� has a
behavior which resembles that of the s-wave scattering
length. Many states have p-wave scattering volumes that are
approximately constant, whereas a few attains the triplet
p-wave scattering volume in stronger fields.

C. Short-range hyperfine- and spin-spin interaction

1. Hyperfine interaction

The convenient representation of the hyperfine interaction
in the Hund’s case �a� basis easily allows for experimentation
with the short-range �r�20 a.u.� interaction. At r
	20 a.u. the hyperfine interaction is well described by the
simpler atomic hyperfine Hamiltonian

Hhf = bf�S1 · I1 + S2 · I2� , �86�

but this is not the case for r�20 a.u. as the electronic spin
of atom 2 will start to couple to the nuclear spin of atom 1
and vice versa. In Sec. III A, it has been described how the
hyperfine interaction is determined for all r by the four mo-
lecular parameters bf�r�, bf��r�, c�r�, and c��r�. These hyper-
fine parameters were calculated as described in Sec. III B
and are plotted in Fig. 10. For reference, the atomic values
are indicated with dotted lines. We see from Fig. 10 that the
calculated hyperfine parameters are rather similar to the
atomic hyperfine parameters. As expected the difference is
completely negligible for r	20 a.u., whereas there are only
minor differences for 20 a.u.	r	9 a.u.; in fact the only
difference is the bf� parameter that slowly decreases, coupling
the singlet and triplet states. For r�9 a.u., the molecular
hyperfine parameters are rather different from the atomic val-
ues, hence the molecular hyperfine interactions deviates from
the atomic interaction.

In scattering calculations, it is often assumed that the mo-
lecular hyperfine interaction at short range is equal to the
atomic hyperfine interaction. It can be argued from Fig. 10
that one can safely use the atomic hyperfine interaction also
at small distances for the present and similar systems without
introducing significant errors, as the hyperfine parameters are
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FIG. 8. �Color online� p-wave
scattering volume as a function of
magnetic field strength for all
channels with F1=F2=1 /2.

TABLE III. Correspondence between the states �nNMF� and the
zero-field states �F1F2FalFMF�. F1 ,F2 ,Fa and F are good quantum
numbers only at zero magnetic field. At zero field F1=F2= 1

2 , Fa

=1, and N=1 for all states.

�nNMF� �FMF� �nNMF� �FMF� �nNMF� �FMF�

�1,1 ,0� �0,0� �1,1 ,1� �1,1� �2,1 ,−1� �2,−1�
�2,1 ,0� �1,0� �2,1 ,1� �2,1� �1,1 ,2� �2,2�
�3,1 ,0� �2,0� �1,1 ,−1� �1,−1� �1,1 ,−2� �2,−2�
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only slowly varying. On the other hand, the molecular hy-
perfine parameters show significant deviations from the
atomic values for small r.

We have tested the effect of the short-range molecular
interaction by repeating some of the s-wave scattering calcu-
lations. The results obtained using the atomic hyperfine in-
teraction have been compared with the results from a calcu-
lation including the complete r-dependent molecular
hyperfine interaction. To investigate this effect, we have
looked at the broad Feshbach resonance located at B
�837 G and calculated how much the resonance position is
shifted upon changes in the short-range hyperfine interaction.
As expected the resonance position is rather insensitive to

the detailed short-range molecular hyperfine interaction. The
shift is only +0.02 G when we replace the molecular inter-
action with the asymptotic atomic interaction. The much
more narrow resonance at B�545 G is even less affected.
Thus, we are led to conclude that the scattering length is
quite insensitive to small changes in the hyperfine energy in
the region of small r.

The strength of the short-range hyperfine interaction has
been varied and the effect calculated. The hyperfine param-
eters were varied by multiplying the functions bf�r�, c�r�,
bf��r�, and c��r� with a factor m to yield a stronger or weaker
short-range hyperfine interaction. The atomic hyperfine inter-
action valid at r	20 was left unchanged. Again we used the
Feshbach resonance at B�837 G to test the reaction. The
results are presented in Fig. 11, which shows that the short-
range hyperfine interaction needs a substantial increase to
shift the resonance positions in a significant way. Finally, we
also investigated the position of a p-wave Feshbach reso-
nance and found the same insensitivity to changes in the
short-range molecular hyperfine interaction.

It seems reasonable to expect that systems with similar
electronic structures �i.e., other alkali molecules� have hyper-
fine interactions that are well described by the atomic inter-
action. This conclusion is valid with respect to cold colli-
sions where the results are rather insensitive to small changes
in the short-range potential. Diatomic molecules with several
open-shell electrons that couple to the nuclear spin may have
a much stronger short-range hyperfine interaction. Figure 11
shows that in such cases, the above conclusion does not hold
and the short-range molecular hyperfine interaction becomes
important also in cold collisions.
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FIG. 9. �Color online� Energy vs magnetic field for states cor-
responding to the lowest hyperfine level.
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2. Spin-spin interaction

The spin-spin interaction was treated in Sec. III E. The
spin-spin parameter ��r� has been calculated ab initio in �52�
for selected values of r between 3.77 and 18.9 a.u. In Li2 the
spin-spin parameter ��r� is very small, on the order of
−0.01 cm−1. We have, however, included the spin-spin inter-
action in the present calculations and investigated its effect
on the various Feshbach resonances.

As might be expected, Feshbach resonances that are sen-
sitive to the triplet interatomic potential are also very sensi-
tive to the spin-spin interaction. For 6Li2, this means that the
Feshbach resonances at B�837, 814, and 693 G are sensi-
tive to the spin-spin interaction, whereas the other ones are
not.

To enable a more quantitative conclusion regarding the
effect of the spin-spin interaction, the calculations were re-
peated for a series of different choices of ��r�. In these re-
peated calculations, the function ��r� from �52� was multi-
plied by a factor m, with m ranging from −5 to 5. The results
are presented in Fig. 12, which shows the results for three
representative Feshbach resonances.

The three different Feshbach resonances investigated in
Fig. 12 are representable for all the Feshbach resonances
calculated. The three broad s-wave resonances behave simi-
lar to the 850 G resonance, whereas the p-wave resonances
behave similarly to the p-wave resonance in 12. We have let
the spin-spin parameter ��r� go to zero at r�21 a.u. as a
natural continuation of the function D�r�=2��r� plotted in
Fig. 3 in �52�.

We conclude that Feshbach resonances in states sensitive
to the triplet potential are affected by the spin-spin interac-
tion. For these states, the spin-spin interaction is important

�see also Fig. 12�. Feshbach resonances in states insensitive
to the triplet potential are also insensitive to the spin-spin
interaction as S�0 with �=0 in such states.

VII. SUMMARY

We have used rather accurate ab initio potentials available
for 6Li2 and solved the coupled equations to obtain s- and
p-waves scattering lengths for magnetic field strengths up to
1500 G. Hund’s case �a� basis states were used to work out
the molecular matrix elements required for the hyperfine,
Zeeman, and rotational operators. Basis states which are in
accordance with the Pauli principle upon the interchange of
identical nuclei were constructed and used. Emphasis was
put on including and working with the molecular hyperfine
interaction in the short-range regime. However, it was found
that the results of the scattering calculations were rather in-
sensitive to the short-range hyperfine structure.

Several Feshbach resonances of both s and p types were
found. The Feshbach resonance positions determined ab ini-
tio deviated with plus 2–4 G from the experimentally mea-
sured positions available for comparison. By inspection, the
deviations are found to be well represented by a constant
shift. Using the p-wave resonance at B=218.72 G as a ref-
erence, one obtains Bshift=Bab initio−Bexp=3.78 G. Subtract-
ing Bshift from the calculated Feshbach resonance positions
yields corrected positions Bcorrected which are in very good
agreement with the experimental values. Table IV summa-
rizes the discussion above. The constant shift is determined
from a reference state which is sensitive to the singlet poten-
tial curve but insensitive to the triplet potential curve. Hence,
Bshift can be seen as a correction to the singlet potential. The
broad s-wave resonances at B=837, 814, and 693 G are in
addition sensitive to the triplet potential, but there is no ob-
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perfine interaction changes the resonance position by tens of Gauss,
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vious way to obtain an additional correction for the triplet
state that would affect only those particular resonances.

APPENDIX: TRANSFORMATION BETWEEN
FF-COUPLED STATES AND MOLECULAR HUND’S CASE

(A) STATES

We start with the FF-coupled states �qS1MS1
S2MS2

� and
specialize to alkali atoms where L1=L2=0. For this reason,
L1 and L2 are suppressed in the notation. The FF-coupled
states �qS1MS1

S2MS2
� have both a spatial part with collective

quantum number q and an electronic spin part. To obtain the
connection with the Hund’s case �a� states, we form the total
electronic spin S=S1+S2,

�qSMS� = �
MS1

,MS2

�S1MS1
S2MS2

�SMS��qS1MS1
S2MS2

� .

�A1�

The states �qSMS� are assumed to be eigenstates of the op-
erators It , Ie and In �see Sec. II B�. It follows from Eq. �A1�
that the states �qS1MS1

S2MS2
� can be written as

�qS1MS1
S2MS2

� = �
SMS

�S1MS1
S2MS2

�SMS��qSMS� , �A2�

thus they are in general not eigenstates for the symmetry
operators Ie and In. At this point, it is appropriate to make a
comment regarding the situation when Li�0. In such cases,

the expression �A1� would still be valid although the replace-
ment �qSMS�→ �qL1L2ML1

ML2
S�� is needed. To form the

states �q�SMS�, we would then write

�q�SMS� = �
ML1

+ML2
=�

CML1
,ML2

�L1L2ML1
ML2

SMS� ,

�A3�

where the coefficients CML1
,ML2

are determined by the inter-

action between the atoms. In Eqs. �A1� and �A3� the quan-
tum number MS refers to the space-fixed axis. The relation
between space-fixed and molecule-fixed states is

�qSMS� = �
�

DMS,�
S ��,
,0���qS�� , �A4�

where D is the rotation matrix �28�. We also need the di-
atomic rotational wave function �53�,

�NMN���,
� = �2N + 1

4�

1/2

DMN,�
N ��,
,0��. �A5�

N is the total molecular angular momentum excluding elec-
tronic and nuclear spin. When Li=0, N represents only the
mechanical rotation. In addition, whenever �=0, the rota-
tional wave function simplifies to the spherical harmonics
�NMN0�� ,
�=YN,MN

�
 ,��.
Multiplying the states �qSMS� and �NMN��, using Eq.

�A5� for the rotational wave function and contracting the two
D matrices gives

�qSMSNMN� = �2N + 1

4�

1/2

�
�

DMS,�
S ��,
,0��DMN,�

N ��,
,0���qS�,

=�2N + 1

4�

1/2

�
�,J

�2J + 1�� S N J

MS MN − MJ

�S N J

� � − 


D−MJ,−


J ��,
,0��qS�,

=�2N + 1

4�

1/2

�− 1�
−MJ�
�,J

�2J + 1�� S N J

MS MN − MJ

�S N J

� � − 


DMJ,


J ��,
,0���qS�. �A6�

TABLE IV. Summary of calculated Feshbach resonances compared with experimentally observed ones.
�B=Bab initio−Bexp. See the text for a definition of Bcorrected and a further discussion of this quantity. The star
� �� indicates that there is no one-to-one correspondence between the state �nNMF� and a unique free-atom
state �F1MF1

F2MF2
�.

State �nNMF� �F1MF1
��F2MF2

�
Bab initio

�G�
Bexp

�G�
�B
�G�

Bcorrected

�G�

�1,0 ,0� � 1
2 , 1

2 �� 1
2 ,− 1

2 � 837.13 822–834 3.70–15.1 833.35

�1,0 ,0� � 1
2 , 1

2 �� 1
2 ,− 1

2 � 544.90 543.28�0.08 1.62�0.08 541.12

�1,0 ,−1� � 692.89 689.11

�1,0 ,−2� � 3
2 ,− 3

2 �� 1
2 ,− 1

2 � 813.98 810.20

�1,1 ,0� , �1,1 ,−1� , �1,1 ,−2� � 1
2 ,− 1

2 �� 1
2 ,− 1

2 � 218.72 214.94�0.08 3.78�0.08 214.94

�2,1 ,0� , �1,1 ,1� , �1,1 ,2� � 1
2 , 1

2 �� 1
2 , 1

2 � 162.99 159.14�0.14 3.85�0.14 159.21

�3,1 ,0� , �2,1 ,1� , �2,1 ,−1� � 1
2 , 1

2 �� 1
2 ,− 1

2 � 189.02 185.09�0.08 3.93�0.08 185.24

M. LYSEBO AND L. VESETH PHYSICAL REVIEW A 79, 062704 �2009�

062704-18



At this point, we introduce the nuclear-spin states �I1MI1
� �I2MI2

� and rotate them into the molecule-fixed coordinate system.
The projections MI1

and MI2
are defined on the space-fixed axis. We have the relations

�IiMIi
� = �


Ii

DMIi
,
Ii

Ii ��,
,0���Ii
Ii
� , �A7�

for i=1,2. Contracting the matrices DMI1
,
I1

I1 �� ,
 ,0��DMI2
,
I2

I2 �� ,
 ,0�� �I=I1+I2�, and using D−MI,
I

I �� ,
 ,0�= �
−1�
I−MIDMI,
I

I �� ,
 ,0��, we may write

�qNMN�S�I1MI1
I2MI2

= �2N + 1

4�

1/2

�
�,J,I,


I1
,
I2

�− 1�
−MJ+
I−MI�2J + 1��2I + 1�� S N J

MS MN − MJ

�S N J

� � − 


� I1 I2 I

MI1
MI2

− MI



�� I1 I2 I


I1

I2

− 
I

DMI,
I

I ��,
,0��DMJ,

J ��,
,0���qS�I1
I1

I2
I2
, �A8�

or if we define F=J+I together with the total angular-momentum function �53�

�FMF
F
��,
� = �2F + 1

4�

1/2

DMF,
F

F ��,
,0��, �A9�

this can be written as

�qSMS��NMN���I1MI1
��I2MI2

� = 
�2N + 1� �
�,J,I,F


I1
,
I2

�− 1�
+
I+
F−MJ−MI−MF�2J + 1��2I + 1�
2F + 1� S N J

MS MN − MJ



��S N J

� � − 


� I1 I2 I

MI1
MI2

− MI

� I1 I2 I


I1

I2

− 
I

� J I F

MJ MI − MF

� J I F


 
I − 
F



��qS���I1
I1
��I2
I2

��FMF
F� . �A10�

To establish Eq. �A10�, we have contracted DMJ,
J

J �� ,
 ,0�� and DMI,
I

I �� ,
 ,0��.
The FF-coupled basis states �qF1F2FalFMF� are easily written in terms of the states �qS1MS1

S2MS2
� together with the

nuclear-spin states �I1MI1
� � I2MI2

�, and after a piece of algebra one obtains the transformation to the
�qSMS��NMN��I1MI1

��I2MI2
� basis,

�qF1F2FalFMF� = �
MFa

,ml,

MF1
,MF2

�
MS1

,MS2

MI1
,MI2

�
S,MS

�− 1�Fa−l+MF+F1−F2+MFa
+S1−I1+MF1

+S2−I2+MF2
+S1−S2+MS

�
�2F + 1��2Fa + 1��2F1 + 1��2F2 + 1��2S + 1�� l Fa F

ml MFa
− MF


� F1 F2 Fa

MF1
MF2

− MFa



� � S1 I1 F1

MS1
MI1

− MF1


� S2 I2 F2

MS2
MI2

− MF2


� S1 S2 S

MS1
MS2

− MS

�qSMS��NMN���I1MI1

��I2MI2
� ,

�A11�

an expression which is lengthy, but rather easy to derive. Combining Eqs. �A10� and �A11� yields the relevant transformation
matrix elements �qS�
I1


I2
FMF
F �qF1F2FalFMF� reported in Eq. �16�.
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