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We have performed a comprehensive study of the singlet ground state of two electrons on the surface of a
sphere of radius R. We have used electronic structure models ranging from restricted and unrestricted Hartree-
Fock theories to explicitly correlated treatments, the last of which leads to near-exact wave functions and
energies for any value of R. Møller-Plesset energy corrections �up to fifth-order� are also considered, as well as
the asymptotic solution in the large-R regime.
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I. INTRODUCTION

Exactly �or very accurately� solvable models have ongo-
ing value, and are valuable both for illuminating more com-
plicated systems and for testing theoretical approaches, such
as density-functional methods �1–3�. One such model is the
Hooke’s law atom �or Harmonium�, which is composed of
two electrons bound to a nucleus by a harmonic potential but
repelling Coulombically. This system was first considered
more than 40 years ago by Kestner and Sinanoglu �4� but
solved analytically in 1989 by Kais et al. �5� for a particular
value of the harmonic force constant and, later, for a count-
ably infinite set of force constants �6�.

A related system, studied by Alavi and co-workers �7–9�,
consists of two electrons, interacting through a Coulomb po-
tential but confined within a ball of radius R. This possesses
a number of interesting features, including the formation of a
“Wigner molecule” for large R �LR� �10�. The spontaneous
formation of such molecules can also occur in quantum dots
and is analogous to the Wigner crystallization �11� of the
uniform electron gas.

If the two electrons are constrained to remain on the sur-
face of the sphere, one obtains a model that Berry and co-
workers have used �12–15� to understand both weakly and
strongly correlated systems, such as the ground and excited
states of the helium atom, and also to suggest the “alternat-
ing” version of Hund’s rule �16�. Seidl studied this system in
the context of density-functional theory �17� in order to test
the interaction-strength interpolation model �18�. For this
purpose, he derived accurate solutions in both the weak-
interaction limit �the small-R regime� and the strong-
interaction limit �the large-R regime�. He also obtained ac-
curate results by numerical integration of the Schrödinger
equation.

In this paper, we are interested in the 1S ground state of
two electrons on the surface of a sphere of radius R. This
allows us to restrict our study to the symmetric spatial part of
the wave function and ignore the spin coordinates. We have
extended Seidl’s analysis and performed an exhaustive study
using a range of models. We restrict our analysis to the re-
pulsive potential case; the strong-attraction limit �attractive
potential� is carefully examined in Ref. �17�.

Restricted and unrestricted Hartree-Fock �HF� solutions
are discussed in Sec. III, and the strengths and weaknesses of
Møller-Plesset �MP� perturbation theory �19� in Sec. IV. We
consider asymptotic solutions for large R in Sec. V and, in
Sec. VI, we explore several variational schemes including
explicitly correlated techniques �20–24� that enforce the cusp
condition �25,26�. Atomic units are used throughout.

II. HAMILTONIAN

The absolute position of the ith electron is defined by its
spherical polar angles �i= ��i ,�i�. The relative position of
the electrons is conveniently measured by the interelectronic
angle �, which they subtend at the origin. These coordinates
are related by

cos � = cos �1 cos �2 + sin �1 sin �2 cos��1 − �2� , �1�

and we have 0�u��r1−r2��2R.
The Hamiltonian is

Ĥ = T̂ + u−1, �2�

where

T̂ = T̂1 + T̂2 = −
�1

2

2
−

�2
2

2
�3�

is the kinetic operator for both electrons and u−1 is the Cou-
lomb operator. In terms of �, the Hamiltonian is

Ĥ = −
1

R2� d2

d�2 + cot �
d

d�
� +

1

2R
csc

�

2
, �4�

in which form it becomes clear that the kinetic and potential

parts of Ĥ scale with R−2 and R−1, respectively.

III. HARTREE-FOCK APPROXIMATIONS

A. Restricted Hartree-Fock

In the HF approximation, each electron feels the mean
field generated by the other electron �27�. The restricted
Hartree-Fock �RHF� solution,

�RHF��1,�2� = �RHF��1��RHF��2� , �5�

places both electrons in an orbital �RHF that is an eigenfunc-
tion of the Fock operator*Corresponding author; peter.gill@anu.edu.au
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F̂1 = T̂1 +	 ��RHF��2��2

u
R2d�2, �6�

with d�2=sin �2 d�2 d�2.
By definition, the one-electron basis function

��m��i� =
Y�m��i�

R
, �7�

where Y�m is the spherical harmonic of degree � and order m

is an eigenfunction of T̂i with eigenvalue ���+1� / �2R2�.
Using the partial-wave expansion �28�

u−1 = R−1

�=0

�

P��cos �� , �8�

and the addition theorem �29�

P��cos �� =
4�

2� + 1 

m=−�

+�

Y�m
� ��1�Y�m��2� , �9�

it is straightforward to show that

	 ��00��2��2

u
R2d�2 =

1

R
. �10�

The orbital �00��i� is thus an eigenfunction of F̂i with the
eigenvalue 1 /R. Moreover, it follows from the orthogonality
of the spherical harmonics that

���m��1��F̂1��00��1�� = 	�,0	m,0, �11�

which ensures the stationarity of the RHF energy with
respect to the orbitals ��m.

The ground-state RHF energy is thus

ERHF =
1

R
, �12�

and the normalized RHF wave function is

�RHF =
1

4�R2 , �13�

which yields a uniform electron density over the surface of
the sphere.

B. Unrestricted Hartree-Fock

When R exceeds a critical value, a second unrestricted HF
�UHF� solution develops �30–32� in which the two electrons
tend to localize on opposite sides of the sphere. This is analo-
gous to the UHF description of a dissociating H2 molecule
�27�.

To obtain this symmetry-broken solution

�UHF��1,�2� = �UHF��1��UHF�� − �2� , �14�

we expand the orbital as

�UHF��i� = 

�=0

�

C�����i� , �15�

where the ����i�=Y���i� /R=Y�0��i� /R are zonal spherical
harmonics. The Fock matrix elements in this basis are

F�1�2
= ���1

��i��F̂i���2
��i��

=
�1��1 + 1�

2R2 	�1,�2
+ 


�3,�4=0

�

C�3
C�4

G�1�2

�3�4, �16�

where the two-electron integrals are

G�1�2

�3�4 = ���1
��1���3

��2��u−1���2
��1���4

��2�� . �17�

Using the partial-wave expansion �8� and the relation

��1�2�3� =	 Y�1
���Y�2

���Y�3
���sin � d�

=
�2�1 + 1��2�2 + 1��2�3 + 1�
4�

��1 �2 �3

0 0 0
�2

�18�

between the integrals of three spherical harmonics and the
Wigner 3j-symbols �33�, we find

G�1�2

�3�4 =
�− 1��3+�4

R


�=0

�
4�

2� + 1
��1�2����3�4�� , �19�

where selection rules �33� restrict the terms in the sum.
The UHF energy is then given by

EUHF = 

�=0

�

C�
2��� + 1�

R2 + 

�1,�2=0

�

C�1
C�2

F�1�2
. �20�

The first term is the kinetic energy and is positive. However,
for sufficiently large R, this is outweighed by negative con-
tributions in the second term and it is these that drive the
symmetry-breaking process.

For computational reasons, we truncate the sum in Eq.
�15� at �=L but, for all of the radii R considered in this
study, we found that L=15 suffices to obtain EUHF with an
accuracy of 10−12.

As Table I and Fig. 1 show, the UHF solution becomes
lower than the RHF one for R
Rcrit�1.5 and the UHF, not
RHF, energy behaves correctly for large R. Specifically, it
can be shown that

lim
R→�

RERHF = 1, �21�

lim
R→�

REUHF = 1/2. �22�

The UHF result reflects the Coulomb interaction between
two electrons localized on opposite sides of the sphere �17�,
a phenomenon known as Wigner crystallization �10,11�. The
difference between the UHF and exact energies �i.e., the cor-
relation energy� appears to decay as O�R−3/2�.
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IV. EXPANSION FOR SMALL R

In Møller-Plesset perturbation theory, the Hamiltonian of
the system is partitioned as

Ĥ = Ĥ0 + V̂ , �23�

where Ĥ0 is the zeroth-order Hamiltonian and V̂ is a pertur-
bation operator and, in our case, we have

Ĥ0 = T̂ , �24�

V̂ = u−1. �25�

The ground-state wave function and energy are expanded

� = ��0� + ��1� + ��2� + ��3� + . . . , �26�

E = E�0� + E�1� + E�2� + E�3� + . . . . �27�

We will refer to E�n� as the nth-order energy and define the
MPn correlation energy as

EMPn = 

m=2

n

E�m�. �28�

Dimensional analysis reveals that

� =
�0

R2 +
�1

R
+ �2 + �3R + �4R2 + �5R3 + . . . , �29�

E =
�0

R2 +
�1

R
+ �2 + �3R + �4R2 + �5R3 + . . . , �30�

where the �n are functions of � and the �n are numbers.
From Eqs. �12� and �13�, we see �0=1 /4�, �0=0, and �1
=1.

The excited eigenfunctions of Ĥ0 are given by

��1m1

�2m2��1,�2� = ��1m1
��1���2m2

��2� , �31�

and we can expand the exact wave function � in this basis.
However, for the 1S ground state, angular-momentum theory
�33,34� limits the combinations of �1, �2, m1, and m2 that
contribute, and it is more efficient to expand � in the basis of
two-electron functions

����� =

2� + 1

4�R2 P��cos �� , �32�

which are eigenfunctions of T̂ with eigenvalues

E� =
��� + 1�

R2 . �33�

A. First-order wave function

In the intermediate normalization, the first-order wave
function is

��1���� �
�1���

R

= 

�=1

� ��RHF�V̂����
E0 − E�

�����

= −
1

4�R


�=1

�
1

��� + 1�
P��cos �� . �34�

Using the Legendre generating function



�=0

�

P��x�t� =
1


1 − 2xt + t2
, �35�

the sum in Eq. �34� can be found in closed-form, yielding

��1���� =
1

4�R
�2 ln�1 + sin

�

2
� − 1� , �36�

or, equivalently,

��1��u� =
1

4�R
�2 ln�1 +

u

2R
� − 1� , �37�

and these yield the normalized first-order wave function

TABLE I. RHF, UHF, and exact energies for various R.

R ERHF EUHF Eexact

0.0001 10000 10000 9999.772600495

0.001 1000 1000 999.772706409

0.01 100 100 99.773761078

0.1 10 10 9.783873673

0.2 5 5 4.794237154

0.5 2 2 1.820600768

1 1 1 0.852781065

2 0.500000 0.489551 0.391958796

3 0.333333 0.304783 0.247897526

4 0.250000 0.215864 0.179210308

5 0.200000 0.165161 0.139470826

10 0.100000 0.072829 0.064525123

20 0.050000 0.032983 0.030271992

50 0.020000 0.012006 0.011363694

100 0.010000 0.005708105 0.005487412

1000 0.001000 0.000522363 0.000515686

0 5 10 15 20
0.5

0.6

0.7

0.8

0.9

1.0

1.1

R �a.u.�

R
�

E
�a

.u
.�

FIG. 1. R�ERHF �dashed�, R�EUHF �dotted�, and R�Eexact

�solid� as a function of R.
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�MP1��� =
�RHF + ��1����


1 + �16 ln 2 – 11�R2
. �38�

The true ground-state wave function must be nodeless.
However, it is easy to show that the MP1 wave function
possesses a node if R
1, leading us to anticipate that �MP1

will be a poor wave function for large spheres.

B. Second- and third-order energies

According to the Wigner 2n+1 rule �35�, the first-order
wave function generates the second- and third-order ener-
gies. The second-order energy, which has previously been
found by Seidl �17�, is given by

E�2� � �2 = ��RHF�V̂���1�� = 4L − 3 = − 0.227 411 278 . . . ,

�39�

where L=ln 2. As Table II shows, the MP2 correlation en-
ergy is an excellent approximation for small R but, because it
is independent of R, it is poor for large R.

It is surprising to find that E�2� is so much larger than the
limiting correlation energies �36� of the helium-like ions
�−0.0467� or Hooke’s law atoms �−0.0497�.

The third-order energy is given by

E�3� � �3R = ���1��V̂ − E�1����1�� , �40�

and this yields

�3 = 8�L2 − 5L + 3� = + 0.117 736 889 . . . , �41�

which agrees with Seidl’s rough estimate �17�. Table II
shows that MP3 gives an improvement over MP2 but that it,
too, eventually breaks down as R increases.

C. Second-order wave function

To find the fourth- and fifth-order energies, we need the
second-order wave function. This is given by

��2���� = 

�=1

� ���1��V̂ − E�1�����
E0 − E�

����� , �42�

which yields

��2���� =
1

4�



�1,�2=1

�



�=��1−�2�

�1+�2 2�2 + 1

�1��1 + 1��2��2 + 1�

���1 �2 �

0 0 0
�2

P�2
�cos �� . �43�

Using the identity



�=1

�
2� + 1

��� + 1�
P��x�P��y� = − ln

�1 − x��1 + y�
4

− 1, �44�

for x�y, we eventually obtain

TABLE II. Correlation energies �relative to UHF and multiplied by −1� from various models for various R.

R MP2 MP3 MP4 MP5 Hylleraas Seidl Exacta

0.0001 0.227411 0.227399504071 0.227399504574 0.227399504574 0.222212 0.227399504574

0.001 0.227411 0.227293541 0.227293591147 0.227293591133 0.222123 0.227293591133

0.01 0.227411 0.226234 0.226238936 0.226238922473 0.221237 0.226238922463

0.1 0.227411 0.215638 0.216140 0.216126387 0.212574 0.2175b 0.216126326630

0.2 0.227411 0.203864 0.205875 0.205763261 0.203406 0.2064b 0.205762846030

0.5 0.227411 0.168543 0.181112 0.179367 0.178908 0.1796b 0.179399232168

1 0.227411 0.109674 0.159950 0.145992 0.147181 0.1473b 0.147218934944

e-e LR0 LR1 LR2

2 0.239551 0.062774 0.094024 0.095405 0.096444 0.0977c 0.097591955594

3 0.138116 0.041890 0.055780 0.056281 0.054783 0.056885070442

4 0.090864 0.028352 0.036176 0.036420 0.033984 0.036653426934

5 0.065161 0.020440 0.025440 0.025580 0.022707 0.0257c 0.025690364031

10 0.022829 0.007018 0.008268 0.008292 0.005129 0.0083c 0.008303955973

20 0.007983 0.002393 0.002706 0.002710 0.000154 0.002711198384

50 0.002006 0.000592 0.000642054 0.000642496 −0.000860 0.000642573605

100 0.000708 0.000187 0.000220605 0.000220683 −0.000679 0.000220692615

1000 0.000022 0.000006552 0.000006677055 0.000006677302 −0.000112 0.000006677311

aFrom the polynomial wave function in Sec. VI D.
bNative result of Ref. �17�.
cCorrelation energy form Ref. �17� relative to the UHF energy.
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��2��u� = �2L2 − 2L + 5��0 + �2L − 5��1�u� −
�

4

+
1

�
�Li2�1

2
−

u

4R
� − 2Li2�−

u

2R
�� , �45�

where Li2 is the dilogarithm function �37�.

D. Fourth- and fifth-order energies

The Wigner 2n+1 rule and the closed-form expression of
��2� yield the fourth- and fifth-order coefficients

�4 =
16

3
�4L3 − 42L2 + 96L − 45� − 12
�3�

= − 0.050 275 600 . . . , �46�

�5 =
32

3
�5L4 − 90L3 + 450L2 − 660L + 252�

+ �216 − 80L�
�3�

= + 0.013 957 832 . . . , �47�

where 
 is the Riemann zeta function.
The MPn correlation energies for various values of R are

reported in Table II and illustrated in Fig. 2. The results show
that MP4 and MP5 are very accurate for small R and, indeed,
the latter is reasonable up to R�1.

The MP expansion converges for radii R within the radius
of convergence

Rcvg = lim
n→�

� �n

�n+1
� . �48�

From our results, it seems that Rcvg
2 but it is not possible
to be more precise than this �17,18�.

V. EXPANSION FOR LARGE R

A. Harmonic approximation

For LR, the potential dominates the kinetic energy and the
electrons tend to localize on opposite sides of the sphere. The
classical mechanical energy would be

Ee-e =
1

2R
, �49�

but, quantum mechanically, the kinetic energies of the elec-
trons cannot vanish and each electron therefore maintains a
zero-point oscillation around its equilibrium position with an
angular frequency �. Such phenomena are ubiquitous in
strongly correlated systems, as demonstrated by Seidl and his
co-workers �17,18,38–40�.

In this limit, the supplementary angle �=�−� is the natu-
ral coordinate and the Hamiltonian becomes

Ĥ = −
1

R2� d2

d�2 + cot �
d

d�
� +

1

2R
sec

�

2
. �50�

For small oscillations ���0�, the Taylor series,

cot � = �−1 − �/3 − �3/45 + . . . , �51�

sec��/2� = 1 + �2/8 + 5�4/384 + 61�6/46 080 + . . . ,

�52�

yield the harmonic-oscillator Hamiltonian

Ĥ� = −
1

R2� d2

d�2 +
1

�

d

d�
� +

1

2R
�1 +

�2

8
� , �53�

whose ground-state wave function and energy are

�0
���� =

1

2
2�R7/4exp�− 
R�2/8� , �54�

ELR0 � E�0� =
1

2R
+

1

2R3/2 . �55�

The second term is the zero-point energy associated with
harmonic oscillations of angular frequency �=1 /R3/2 and it
appears that this is the leading error in the UHF description
at large R.

B. First and second anharmonic corrections

By analogy with the small-R expansion �30�, we would
like to construct a large-R asymptotic expansion

E � E�0� + E�1� + E�2� + . . . =
�1

R
+

�2

R3/2 +
�3

R2 +
�4

R5/2 + . . . ,

�56�

where we know �1=�2=1 /2. The nth excited state of the
Hamiltonian �53� has the wave function and energy

�n
���� = Ln�
R�2/4��0

���� , �57�

En
� = �n +

1

2
�� , �58�

where Ln is the Laguerre polynomial of degree n �29�. The
anharmonic corrections, E�1� and E�2�, can be found �41� us-
ing the perturbation operators

Ŵ�1� = −
1

R2

�

3

d

d�
+

1

2R

5�4

384
, �59�

EMP3 EMP5

EMP2

EMP4
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FIG. 2. MPn correlation energies as a function of R. The exact
correlation energy is shown as the solid curve.
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Ŵ�2� = −
1

R2

�3

45

d

d�
+

1

2R

61�6

46 080
. �60�

The first-order correction is

E�1� = ��0
��Ŵ�1���0

�� = 4�2R4	
0

�

�0
����Ŵ�1��0

�����d� ,

�61�

and this yields �3=−1 /8 and therefore

ELR1 =
1

2R
+

1

2R3/2 −
1

8R2 . �62�

The second-order correction is

E�2� = 

n=1

� ��0
��Ŵ�1���n

��2

E0
� − En

� + ��0
��Ŵ�2���0

�� , �63�

but because of the orthogonality and recurrence relations of
Laguerre polynomials �29�, only the first two terms in the
sum in Eq. �63� are nonzero and one finds �4=−1 /128, and
therefore

ELR2 =
1

2R
+

1

2R3/2 −
1

8R2 −
1

128R5/2 . �64�

From the results in Table II and Fig. 3, it seems that the
asymptotic expansion converges toward the exact energy and
is reasonably accurate for R
3.

Through judicious use of the fifth-order truncation of Eq.
�30� and the second-order truncation of Eq. �56�, one can
predict satisfactory energies over a wide range of R values.
However, there remains a region �1�R�3� where both the
small-R and large-R solutions are inadequate.

VI. VARIATIONAL WAVE FUNCTIONS

A. Configuration interaction

We begin with a configuration-interaction �CI� treatment
wherein the wave function is expanded as

�L
CI��� = 


�=0

L

T������ �65�

in the Legendre polynomial basis set �32�. The resulting en-
ergy EL

CI is the lowest eigenvalue of the CI matrix

���1
�Ĥ���2

� =
�1��1 + 1�

R2 	�1,�2
+

1

R



�=��1−�2�

�1+�2 
 4�

2� + 1
��1�2�� ,

�66�

where ��1�2�� is defined by Eq. �18�.
The CI energy as the maximum angular momentum L

increases is reported in Table III. It converges very slowly
and even L=40 yields an accuracy of only 10−4. The reason
for this slow convergence—the failure of Eq. �65� to satisfy
the Kato cusp condition—is well known.

B. Hylleraas

The simplest possible wave function with a cusp is

�Hy = 1 + �u , �67�

which has an explicit linear dependence on the interelec-
tronic distance u. Kato proved �25� that �=1 /2 in normal
singlet states but, because our electrons are confined to a
sphere, this � does not apply �see below�.

Using the partial-wave expansion

u = R

�=0

� � 1

2� + 3
−

1

2� − 1
�P��cos �� , �68�

one finds that the energy is

EHy��� =
6 + 3��� + 4�R + 8�2R2

2R�3 + 8�R + 6�2R2�
, �69�

and minimizing this with respect to � yields

ELR2

ELR1
EMP5ELR0
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FIG. 3. Correlation energies �relative to RHF� from ELR0

�dashed�, ELR1 �dotted�, and ELR2 �dot-dashed�, and EMP5 �small
dash� and Eexact �solid� as a function of R.

TABLE III. Convergence of correlation energies with respect to
the number L of terms in the CI, R12-CI, and Hylleraas wave func-
tions. All results pertain to the sphere with R=1.

L CI R12-CI Polynomial

0 −0.000000 −0.147180860 −0.000000000000

1 −0.131665 −0.147185454 −0.147180859845

2 −0.141241 −0.147202916 −0.147218627134

3 −0.144065 −0.147209904 −0.147218930072

4 −0.145273 −0.147213200 −0.147218934845

5 −0.145900 −0.147214987 −0.147218935941

10 −0.146847 −0.147217796 −0.147218935944

15 −0.147047 −0.147218405 −0.147218935944

20 −0.147120 −0.147218631 −0.147218935944

25 −0.147155 −0.147218738 −0.147218935944

30 −0.147174 −0.147218797 −0.147218935944

35 −0.147186 −0.147218833 −0.147218935944

40 −0.147194 −0.147218257 −0.147218935944
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�opt =
12

9 − 12R + 
81 + 72R + 48R2
, �70�

EHy =
9 + 12R − 
81 + 72R + 48R2

8R2 . �71�

Correlation energies obtained from Eq. �71� for several val-
ues of R are reported in Table II. Despite the simplicity of the
wave function, its energies are surprisingly good with a
maximum deviation of 0.003 for large R and 0.005 for small
R. As R tends to zero, the correlation energy approaches
−0.222 222, which is close to the exact value −0.227 411.
However, as R becomes large, one can show that EHy

�1 / �1.58R�, which lies between the RHF and UHF ener-
gies. The Hylleraas wave function is thus a useful alternative
to the small- and large-R solutions in the problematic inter-
mediate region �1�R�3� with errors of 0.000, 0.0011, and
0.0021 for R=1, 2, and 3, respectively.

C. R12-CI

Using Hylleraas wave function �67� as the reference for a
CI expansion yields the R12-CI wave function

�L
R12-CI��� = P̂�Hy��� + 


�=1

L

T������ , �72�

where

P̂ = Î − 

�=1

�

�������� �73�

is a projection operator that ensures orthogonality between
the reference wave function and the excited determinants,

and Î is the identity operator. The coupling coefficients be-
tween two basis functions are the same as those for the con-
ventional CI calculation �Eq. �66�� but with a correction for
the matrix element,

��Hy�Ĥ���� = ��RHF�Ĥ���� + �
��� + 1�

R
2� + 1
� 1

2� + 3
−

1

2� − 1
� ,

�74�

involving the ground state and the excited determinants. It is
no longer possible to optimize � in closed form so we used
the value given by Eq. �70�.

As Table III shows, the R12-CI energies converge much
more rapidly with L than the CI energies and, for example,
E2

R12-CI is more accurate than E40
CI. This illustrates the impor-

tance of including a term that is linear in u. However, al-
though this term enhances the initial convergence rate, the
asymptotic behavior of the CI and R12-CI schemes are iden-
tical. Therefore, we now investigate the effect of including
higher-order u terms.

D. Polynomial

In terms of the distance u, the Hamiltonian is

Ĥ = � u2

4R2 − 1� d2

du2 + � 3u

4R2 −
1

u
� d

du
+

1

u
, �75�

and a Kato-like analysis �25� reveals the cusp condition

���0�
��0�

= 1, �76�

which deviates from the normal value of 1/2 �17�.
The natural generalization of Hylleraas wave function

�67� is a polynomial and it is convenient to select the ortho-
normal basis of Jacobi polynomials �29�

���u� =

� + 1

4�R2 P�
�1,0��1 −

u

R
� , �77�

and write the wave function as

�L
poly = 


�=0

L

c����u� . �78�

The energy EL
poly is the lowest eigenvalue of the matrix

��i�Ĥ�� j� =
�m2 − 1���m + 	i,j�

4R2 +
�m

R
, �79�

where m=min�i , j� and �=
 min�i,j�
max�i,j� .

Table III reveals the remarkable convergence of EL
poly. Us-

ing L=40 and R=1, for example, we find

E40
poly = 0.852 781 065 056 462 665 400 437

966 038 710 264 283 589 518 406

360 162 484 313 983. �80�

The convergence is slower for larger values of R but still
impressive. For example, using L=40 and R=1000, the en-
ergy is still correct to 49 digits. The ease with which we can
obtain these Schrödinger eigenvalues can be traced to the
fact that the polynomial basis efficiently models all of the
singularities �the first-order cusp, the third-order cusp, etc.�
in the exact wave function.

In recent work �17�, Seidl reported correlation energies
based on his numerical integration of the Schrödinger equa-
tion from �=0 to � using Eq. �4� and we have included these
in Table II. It appears that some of his energies for small R
are slightly inaccurate.

VII. CONCLUSION

In this paper, we have reported results for the ground state
of a simple two- electron system that is described by a single
parameter R. Although we cannot solve its Schrödinger equa-
tion in closed form, we have found accurate wave functions
and energies for small R �the weakly correlated limit� and
large R �the strongly correlated limit�. For R�1, Møller-
Plesset perturbation theory yields results close to the exact
solution; for R�1, accurate results can be found by consid-
ering the zero-point oscillations of the appropriate Wigner
molecule.
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We have also explored variational schemes that yield sat-
isfactory results for all R. In particular, we have discovered a
polynomial wave function that easily yields results of any
required accuracy.

We believe that our results will be useful in the future
development of accurate correlation functionals within
density-functional theory �42,43� and intracule functional
theory �44–49�.
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