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We have made an investigation on the 2s2 1Se resonances in helium �He� in exponential cosine-screened
Coulomb potentials �ECSCP�. Highly correlated wave functions are used to take into account of the correlation
effect of the charged particles. Resonance energies and widths for the doubly excited He in ECSCP are
determined using the stabilization method by calculating the density of the resonance states. Results for
resonance energies and widths are reported for the screening parameter in the range 0.0–0.275
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I. INTRODUCTION

The study of atomic phenomena under the influence of an
environment is of utmost importance. Because an isolated
atom or ion may behave very differently from those under
the influence of an environment, the energy spectrum and
other properties may change considerably. The changes in
the properties depend on the interaction between the atom
and its surroundings �Ref. �1� and further references therein�.
Such interaction is a measure of the influence of the environ-
ment on the atom or ion, and to some extent can be repre-
sented by model potentials. For example, the electronic
structure of ions embedded in weakly coupled plasmas can
be modeled by screened Coulomb potentials �SCP� with
screening parameter, � �2�,

V�r� = �− 1/r�e−�r �in a.u.� , �1�

rather than the pure Coulomb one �PCP�. The screening pa-
rameter � shortens the range of the potential in comparison
to the pure Coulomb case. The effects of screened Coulomb
interaction between charged particles in plasmas on atomic
structure and collision properties have been the subject of
extensive studies in the last four decades �Refs. �3–9� and
further references therein�. These studies have been moti-
vated mainly by the research in laser-produced plasmas,
EUV, and x-ray laser development, and inertial confinement
fusion and astrophysics. Again the effective potential for a
test charge in dense quantum plasma can be modeled by
modified Debye-Hückel potential or exponential cosine-
screened Coulomb potential �ECSCP� �10� with screening
parameter �,

V�r� = �− 1/r�e−�r cos��r� �in a.u.� , �2�

rather than SCP. Usually, quantum plasmas are characterized
by a low-temperature and a high-number density. In such
quantum plasmas, � is related to the quantum wave number
of the electron, which, in turn, is related to the electron
plasma frequency. For weakly coupled plasmas, cos��r� term
in Eq. �2� is absent, and so it becomes SCP as in Eq. �1�. Due
to the presence of the cos term in ECSCP, it exhibits stronger
screening effect than SCP. An exponential cosine-screened

Coulomb potential not only represents the effective interac-
tion between the charged particles in a dense quantum
plasma, but also is known to represent the potential between
an ionized impurity and an electron in metal �12–15�, and the
ionized impurity-electron potential in a semiconductor
�16,17�. Furthermore, ECSCP are also found to exist in vari-
ous nanoscale objects, such as nanowires, quantum dot,
semiconductor devices, and laser-produced dense plasmas
�10,11�. Nowadays these potentials find increasing applica-
tions in various physics research areas, such as solid-state
physics �12–19�, nuclear physics �20,21�, and plasma physics
�10,11,22–24�.

In this paper our objective is to investigate the 2s2 1Se

autoionization resonance states of He in ECSCP. There is, of
course, a continuous interest in investigate atomic resonance
phenomena of two-electron systems �25–32�. Moreover, in-
vestigation on two-electron system in ECSCP plays an im-
portant role because correlation effects between the charged
particles can be studied. Recently we have determined the
ground-state energies and wave functions of He in ECSCP
�33�. In SCP, 2s2 1Se autoionization resonance states of He
have been investigated by Kar and Ho �30�, but in ECSCP, to
the best of our knowledge, no such investigation on reso-
nances in a two-electron system has been reported so far in
the literature.

The plan of this paper is as follows: describing the under-
lying theory and calculations of our investigation in Sec. II;
we present and discuss our computed results in Sec. III. Fi-
nally, in Sec. IV we give our concluding remarks.

The atomic units �a.u.� are used throughout the present
work, and all calculations are performed in quadruple preci-
sion �32 significant figures� on IBM-AMD workstations in
UNIX environment.

II. THEORY AND CALCULATIONS

The nonrelativistic Hamiltonian of He in ECSCP charac-
terized by the screening parameter � is given by

H = −
1

2
�1

2 −
1

2
�2

2 − 2� e−�r1

r1
cos��r1� +

e−�r2

r2
cos��r2��

+
e−�r12

r12
cos��r12� , �3�

where r1 and r2 are the coordinates of the two electrons
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relative to the nucleus �assumed to be at rest�, and r12 is their
relative distance. The screening parameter � determines the
effect of screening. With the increase of � the screening
becomes stronger.

In order to determine 1Se states of He atom in ECSCP, we
have employed the wave-function

��r1,r2� = �
i=1

N

Ci�i = �
i=1

N

Ci�1 + P12�e−A�r1+r2��r1
lir2

mir12
ni ,

�4�

li,mi,ni = 0,1,2, ¯ ,

li � mi,

where A is a nonlinear variational parameter, Ci�i
=1,2 ,3 , ¯ ,N� are linear-expansion coefficients, � is a scal-
ing constant to be discussed later, and P12 is an exchange
operator such that P12f�r1 ,r2�= f�r2 ,r1� for an arbitrary
function f . Such a correlated wave function of general type
has recently been used by us �33� to determine the ground-

state energies and wave functions of He in ECSCP. This
wave function has been expanded by generating the powers
of r1, r2, and r12 in such a way that the terms corresponding
to li+mi+ni=�=0�N=1� come first, then ��1�N=3�, �
�2�N=7�, and so on. To determine the ground-state energies
of He in ECSCP we have first set �=1. The nonlinear varia-
tional parameter A has then been optimized using Monte
Carlo optimization technique within the framework of Ritz’s
variational principle �34�.

In order to determine the resonance energies and widths,
we have used stabilization method similar to Kar and Ho
�27�. This method is a slight generalization of the stabiliza-
tion method proposed by Mandelshtam et al. �32�. First, after
diagonalization of the Hamiltonian �3� using the wave func-
tion �4� with different values of � �other than �=1�, we have
obtained the energy levels E��� for a particular value of �.
We then construct stabilization diagrams �as shown in Figs.
1�a�, 2�a�, and 3�a�� by plotting E��� versus �. If there is a
resonance at energy E, the stabilized or slowly decreasing
energy levels will appear in the stabilization plateau. The
details of successful applications of this simple and efficient
method are available in the works of Ho and Kar �Ref. �27�

units of

FIG. 1. �a� Stabilization plots of the 2s2 1Se states of He in ECSCP for �=0.0 and ��14�N=372�. The number in the parenthesis next
to the solid line indicates the order of appearance of the eigenvalues. �b� Calculated density �circles� and the fitted Lorenztian �solid line� for
12th eigenvalue corresponding to the 2s2 1Se state of He in ECSCP for �=0.0.

units of

FIG. 2. �a� Stabilization plots of the 2s2 1Se states of He in ECSCP for �=0.1 and ��14�N=372�. The number in the parenthesis next
to the solid line indicates the order of appearance of the eigenvalues. �b� Calculated density �circles� and the fitted Lorenztian �solid line� for
the 12th eigenvalue corresponding to the 2s2 1Se state of He in ECSCP for �=0.1.
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and further references therein�. The scaling parameter � in
the wave function �4� can be considered as the reciprocal
range of a “soft” wall �27,28�. By changing the range of the
“soft wall,” we obtain different energy levels E��� which
lead to stabilization plots. It is worthy to mention here that,
in the original work of Mandelshtam et al. �32�, a particle-
in-a-box approach was used to calculate resonances for a
short-range model potential. A fixed wave function was used,
and the range of the potential was “cut-off” after the box size
had reached a sufficiently large value. In our present work
for a real atomic system, placing the atom inside a hard wall
leads to computational difficulty. So we take an alternate
approach by keeping the potential in the Hamiltonian fixed,
but the wave function is changed by varying the nonlinear
parameter � in the wave function. If the employed wave
function is capable of representing the “physics” of the sys-

tem, and the basis set of the wave function is sufficiently
large to cover the effective range that the potential spans, a
stabilization plateau in the stabilization plot would reveal the
existence of a resonance.

Next, to extract the resonance-energy Er and the
resonance-width 	, we have calculated the density of reso-
nance states for a single energy level with the help of the
following formula:


n�E� = �En��i+1� − En��i−1�
�i+1 − �i−1

�
En��i�=E

−1

, �5�

where the index i is the ith value for � and the index n is for
the nth resonance. After calculating the density of resonance-
states 
n�E� with the above formula, we fit it to the following
Lorentzian form:

TABLE I. Resonance energies �a.u.� and width �a.u.� along with �2 and r2 arising out of the Lorentz fitting
of different eigenvalues corresponding to �=0.0 and �=0.1. 372 terms are used to draw the stabilization plot
in the range 0.2���0.7 and 0.2���0.6, respectively, which are covered by mesh points with the size
0.0025 �see Figs. 1 and 2�. ��E�= ��Er

CCR−Er
st�2+ �1 /4��	CCR−	st�2�1/2, where CCR and st denote that the

corresponding quantities are obtained from the method of complex coordinate rotation �Ref. �26�� and present
stabilization method.

Eigenvalue number −Er 	 �2 r2 ��E�

�=0.0

9 0.77777 0.004527 0.00494 0.99988 0.00010021

10 0.77779 0.004517 0.00267 0.99991 0.00008082

11 0.77781 0.004510 0.00124 0.99995 0.00006185

12 0.77784 0.004503 0.00038 0.99998 0.00003525

13 0.77794 0.004578 0.00341 0.99983 0.00007253

�=0.1

10 0.48301 0.004393 0.00299 0.99991

11 0.48303 0.004386 0.00140 0.99994

12 0.48306 0.004378 0.00052 0.99998

13 0.48312 0.004426 0.00135 0.99993

units of

FIG. 3. �a� Stabilization plots of the 2s2 1Se states of He in ECSCP for �=0.2, and ��15�N=444�. The number in the parenthesis next
to the solid line indicates the order of appearance of the eigenvalues. �b� Calculated density �circles� and the fitted Lorenztian �solid line� for
the 13th eigenvalue corresponding to the 2s2 1Se state of He in ECSCP for �=0.2.
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n�E� = y0 +
�



	
2

�E − Er�2 + �	
2 �2 , �6�

where y0 is the baseline offset, � is the total area under the
curve from the base line, Er is the center of the peak, and 	
denotes the full width of the peak of the curve at half height.
This Lorentzian fitting gives us resonance-energy Er and
resonance-width 	. In the present work, instead of using the
averaging formula given by Mandelshtam et al. �32�, we use
Eq. �5� to calculate the density of resonance states from the
stabilization plots, with one plateau at a time. The calculated
density of resonance states from the individual plateau is
then fitted to Eq. �6�, and the one that gives the best fit �with
the least � square� to the Lorentzian form is considered as
the desired result for that particular resonance.

III. RESULTS AND DISCUSSION

In order to construct the stabilization plot, we use an ex-
pansion length of ��14�N=372� of the wave function �4�.
The stabilization diagram, in Fig. 1�a�, corresponding to �
=0.0 in the range of �=0.15–0.7 shows the stabilization
character near E	−0.77. This range of � is covered by 221
points in the mesh size of 0.0025. We have calculated the
density of resonance states for the individual energy levels in
the range 0.15–0.7, with one energy level at a time. The
calculated density of resonance states from the single-energy
eigenvalue are then fitted to Eq. �6�, and the one that gives
the best fit �with the least �2� to the Lorentzian form is con-
sidered as the desired result for that particular resonance. It is
to be noted that we are using a finite basis set to represent the
wave function, so when the density of a stabilized energy
level is fitted to Eq. �6�, the fitting may not give the best
result for all the stabilized energy levels. In Table I we
present the results of fitting of different energy levels ob-
tained by using 372 terms in the wave function correspond-
ing to �=0.0 and �=0.1 in the range of �=0.2–0.7 and �
=0.2–0.6, respectively �see Figs. 1�a� and 2�a��. This table
also exhibits the absolute difference of the resonance param-
eters, ��E�= ��Er

CCR−Er
st�2+ �1 /4��	CCR−	st�2�1/2, where CCR

and st denote that the corresponding quantities are obtained
from the method of complex coordinate rotation �26� and the
present stabilization method, corresponding to the different
fittings for �=0.0. From this table we see that 12th eigen-
value gives the best fitting �least �2, r2	1, and �E is the
smallest for �=0.0� for both �=0.0 and �=0.1. Now Fig.
1�b� shows the fitting of the density of resonance states for
the 12th eigenvalue of the stabilization plot �Fig. 1�a��. From
the fit, we obtain the resonance-energy Er=−0.77784 and the
corresponding width as 	=0.004503. The circles are the re-
sults of the actual calculations of the density of resonance
states using formula �5�, and the solid line is the fitted
Lorentzian form of the corresponding Eq. �6�. These results,
for case of �=0.0, are also in nice agreement with those
reported by Kar and Ho �30� using stabilization method. Fur-
thermore, this resonance energy converted to electronvolt
and measured from the ground state of the helium atom is
57.8 eV and the width when converted to electronvolt is
0.122 eV. These values compare quite well with the mea-

sured results, Er=57.82�0.04 eV and 	=0.138�0.015
eV, in an electron-impact experiment �31�.

In order to check the convergency of our calculation we
have constructed the stabilization plot for three different ex-
pansion lengths, namely, ��12�N=252�, ��14�N=372�,
and ��15�N=444� of the wave function �4� in the range of
�=0.15–0.45 for �=0.2. This range, 0.15���0.45, has
been covered by 301 points in the mesh size of 0.001. In
Table II we present the results of resonance parameters for
these three expansions of the wave function �4�. The num-
bers in this table establish the convergency of the resonance
parameters with the increase in terms in the wave function.
In Figs. 2�a� and 3�a� the stabilization plots for �=0.1 and
�=0.2 are shown. The corresponding Lorenztian fittings are
shown in Figs. 2�b� and 3�b�, respectively. These plots have
been made in the range of 0.15���0.6 and 0.15��
�0.45 with mesh sizes 0.0025 and 0.001, respectively. It is
worthy to mention here that, when density of the resonance
states 
n�E� is fitted to the Lorentzian form, it is observed
that the value of �2 for each fitting is much less than 0.1. The
overall uncertainty in our present investigation is about 4
�10−5 a.u. each for the resonance energy and width.

In Table III, we present the resonance energies and the
widths for some values of the screening parameter � ranging
from zero �corresponding to no screening� to 0.275 �corre-
sponding to strong screening� along with the energies of
He+�2s�. All these results have been obtained using 372
terms in the wave function. The values of the He+�2s� ener-
gies have been calculated by using a wave function of the
form

��r� = �
i

Ci�i = �
i

Cie
−Airrli, li = 0,1,2, ¯ ,

where Ai is a nonlinear variational parameter, and r denotes
the coordinates of the electron relative to the nucleus, within

TABLE II. Convergence of the resonance energy �Er� �a.u.� and
width �	� �a.u.� with ��12�N=252�, ��14�N=372�, and �
�15�N=444� corresponding to the screening parameter �=0.2. The
fittings correspond to 11th, 13th, and 13th eigenvalue, where mesh
points with 0.001 spacing is used.

��12 ��14 ��15

−Er 0.220059 0.220048 0.220048

	 0.003581 0.003587 0.003559

TABLE III. The resonance energies �Er� �a.u.� and widths �	�
�a.u.� along with the energies of He+�2s� in ECSCP for various
values of the screening parameter �.

� −EHe+�2s� −Er 	

0.0 0.5 0.77784 0.004503

0.05 0.400793962 0.62848 0.004487

0.1 0.305798385 0.48306 0.004378

0.15 0.218026079 0.34554 0.004085

0.2 0.139765248 0.22004 0.003559

0.25 0.073148176 0.11142 0.002642

0.275 0.045030496 0.06560 0.002008
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the frame work of Ritz’s variational principle �34�.
In Fig. 4�a� we have plotted the present resonance ener-

gies associated with the N=2 He+ threshold along with the
He+�2s� threshold energies for different values of �. The cor-
responding widths are plotted in Fig. 4�b�. From Fig. 4�a�
and also from Table III, it is seen that the resonance energy
gradually increases with increasing value of � and ultimately
becomes very close to He+�2s� energy at �=0.275. It should
be mentioned here that we have not found any Feshbach-type
resonances lying below the He+�2s� threshold beyond �
=0.3. For 0.275���0.3, the resonance, if existing, would
be located very near the He+�2s� threshold as is evident from
Fig. 4�a�. However, such calculations would need more ex-
tensive basis sets, and are outside the scope of our present
investigation.

Furthermore, from Table III and Fig. 4�b�, it is seen that
the resonance-width 	 decreases with increasing value of �.
Though a more quantitative explanation of this situation
needs a separate investigation which is beyond the scope of
the present paper, yet an attempt to explain such phenom-
enon can be made in the following way: For S-wave reso-
nances lying below the He+�N=2� threshold, they can be
classified into “+” and “−” states. Readers are referred to
Refs. �35,36� and the references therein for detailed discus-
sions. The + state corresponds to the radial motions of the
two electrons in step with one another, and the − state cor-
responds to the radial motions of the two electrons out of
step with one another. The 2s2 1Se state in He is a + state,
and the two electrons are located on the opposite sides of the
nucleus. The movements of the two electrons are such that
they are moving toward the nucleus “in phase.” The autoion-
ization of such a state is accomplished through momentum
transfer, as one of the electrons is “knocked out” by the other
via the nucleus. When the electron-ion screening is increased
�increasing ��, the attractive force is reduced. But at the
same time, increasing the electron-electron screening would
result in the decrease in the repulsive force. Apparently, the
screening has a larger effect on the electron-ion attraction
than on the electron-electron repulsion. As a result, the
movement of the electrons will be slowed down, and the
lifetime of the autoionization process will be prolonged,
leading to the narrowing of the resonance width, a conse-

quence of the uncertainty principle. Alternatively, this can
also be described by the mixing of configuration spaces be-
longing to a discrete spectrum �the so-called closed space
Q� in the Feshbach projection formulism� with continuous
spectrum �the so-called open-space P� in the Feshbach pro-
jection formulism�, which gives rise to the phenomenon of
autoionization �37� by ejecting an electron. The resonance
width is given by 	=2�VE�2, where �VE�2 is an index of the
strength of the configuration interaction �38�. �VE�2 is charac-
terized by the product of two different factors, one is deter-
mined by the configuration interaction within the closed
space of the doubly excited two-electron helium, whereas the
other �the open space� is determined by the details of the
field at large distance from the He+�1s� ground state, the state
to which the doubly excited 2s2 1Se resonance autoionized.
Now as the screening increases, it seems that both these fac-
tors decrease and as a result the width decreases. Further-
more, from Fig. 4�a�, it is observed that the resonance energy
approaches toward a bound state of He+ ion as � increases.
In other words, as the screening increases, it looks like pres-
sure ionization may occur. At the limit, one has a bound
state, and its width becomes zero �39�. The second S-wave
resonance state, denoted by 2p2 1Se, is classified as a − state.
The screening effect on such a state will have a different
consequence, and it is outside the scope of our present inves-
tigation to study the − states. Again, here we should mention
that the above discussion for the screening effect on the reso-
nance widths is a conjecture, and we have not carried out
detailed analysis for the resonance wave functions under the
external screening environments. It seems such investiga-
tions are called for, and we hope that our findings would
stimulate further studies of such intriguing phenomenon.

In Table IV we have compared our present results of EC-
SCP with those of Kar and Ho using SCP �30�. From this
table we notice that the resonance energy �and the excited 2S
state energy� at a particular value of � is being shifted to a
higher-resonance position in ECSCP than in SCP. This is
quite expected due to the stronger screening effect of ECSCP
than of SCP.

IV. CONCLUSIONS

We have carried out a calculation on the 2s2 1Se autoion-
ization resonances for helium atom interacting with exponen-

units of units of

FIG. 4. �a� The 2s2 1Se resonance energy Er for different values of the screening parameter �. Dashed line denotes the He+�2s� threshold
energy. �b� Resonance width, 	, corresponding to the resonance energy in �a� for different values of the screening parameter �.
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tial cosine-screened Coulomb potentials. Highly correlated
Hylleraas-type wave functions have been employed to take
into account the correlation effects. The resonance energies
and widths for various values of the screening parameter
ranging from 0 to 0.275 are reported in the present work. The
stabilization method has been used to extract resonance en-
ergies and widths. This method is a computational powerful

and practical method to determine resonance parameters
�Er ,	�. Our work on ECSCP will play a role in studies of
atomic structures and collisions processes in quantum plas-
mas �10,24�.
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TABLE IV. The resonance energies �Er� �a.u.� and widths �	� �a.u.� of He in ECSCP and SCP for various
values of the screening parameter �.

Potential �⇒ 0.0 0.05 0.1 0.2 0.25

−Er ECSCPa 0.77784 0.62848 0.48306 0.22004 0.11142

SCPb 0.77783 0.63683 0.51279 0.31105 0.23151

PCPc 0.77787

	 ECSCPa 0.004503 0.004487 0.004378 0.003559 0.002642

SCPb 0.004549 0.004450 0.004159 0.003191 0.002591

PCPc 0.00454

aPresent results.
bSCP results of Kar and Ho using 500 terms in the basis set �Ref. �30��.
cPCP results of Ho using the method of complex coordinate rotation with 308 terms in the wave function
�Ref. �26��.
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