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The final momentum distribution for the scattering of He from a corrugated surface representation of
Cu�110� is obtained from semiclassical theory. We derive a formally exact expression for the distribution which
involves the absolute value squared of a single overlap of the initial wave function with the final momentum
state. This reduces the number of phase-space integrals appearing in the semiclassical expressions and there-
fore leads to a large reduction in the computational effort. In addition, other energy-dependent observables are
directly accessible from the momentum distribution without the need for further simulations. Using this
formalism, we compare the quality of results obtained using a classical Wigner approximation and the frozen
Gaussian, Herman-Kluk, and thawed Gaussian semiclassical propagators. We find that the thawed Gaussian is
not only the best approximation, but it also converges more rapidly than the other semiclassical methods. The
frozen Gaussian Herman-Kluk propagator is superior to the frozen Gaussian propagator. In contrast, the
classical Wigner approach is qualitatively wrong as it does not properly account for the interference which
dominates the angular distribution.
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I. INTRODUCTION

The scattering of helium atoms from metal surfaces �1–3�
at low energy has been extensively applied as a tool to ex-
tract detailed information on surface morphology, adsorbate
dynamics, and energy relaxation processes �4–8�. The in-
coming helium atom interacts weakly with the topmost lay-
ers of the surface, and therefore serves as a nondestructive
probe that only slightly perturbs the underlying substrate �9�.
A measurement of the properties of the scattered beam can
yield a wealth of information on the equilibrium structure
and dynamics of the surface of the crystal. Surface scattering
experiments have been used, for example, as an effective
method to determine the form of the many-body atom-
surface potential �10,11�. However, the experimental proce-
dures and interpretation of the resulting spectra are nontrivial
tasks. Likewise, the theoretical description of the scattering
process is challenging �8,12–15�. While the scattering of
heavier neon and especially argon atoms behaves mostly
classically �16,17�, the relatively small mass of helium leads
to pronounced quantum-mechanical interference effects.

To simulate the experimental data, ideally one would use
an ab initio chemistry approach to compute the force field,
coupled with an exact quantum dynamics method. Such an
ambitious program is still not feasible even with present day
computational resources. For numerically exact quantum dy-
namics one needs the global potential-energy surface. Fur-
thermore, even with multiconfiguration time-dependent Har-
tree methods �18�, the numerical effort grows exponentially
with the number of degrees of freedom. An attractive route
for overcoming these formidable problems is to use the semi-
classical initial value representation �SCIVR� approximation
for the dynamics �19–23�.

The SCIVR approach has the advantage that the compu-
tation may be performed using Monte Carlo methods so that

the numerical effort does not scale exponentially with the
number of degrees of freedom. Not less important is that the
fundamental building blocks of the theory are classical tra-
jectories for which one needs only local force field informa-
tion. As a result, one may adopt highly attractive “on the fly”
methods for the quantum dynamics �24,25�. The main draw-
back of the SCIVR approach is that it is approximate. Al-
though in principle the SCIVR series representation can be
used to obtain the exact quantum dynamics �26�, the numeri-
cal effort is manageable only if the series converges very
rapidly. In the present case of He atom scattering, one must
use a quantum approach which correctly accounts for inter-
ference. Therefore, the SCIVR approximation route provides
a reasonable compromise. A central motivation for this work
is to prepare the way for large scale SCIVR computations of
He scattering from surfaces.

Quantum mechanics based methods used to describe scat-
tering processes have been reviewed recently in Refs.
�12,13�. The exact path-integral expression for the quantum
propagator requires a search for all possible paths that con-
nect the initial and final states in a given time. However the
contribution to the transition probability from most of these
paths is highly oscillatory and as a result their individual
impact largely averages out. The semiclassical approxima-
tion seeks to find only the paths that provide a meaningful
contribution to the integral. Formally this is obtained by a
stationary phase analysis of the path-integral expression, and
leads to a search for the classical trajectories that connect the
initial and final states �21�. This is a great simplification, but
several difficulties still remain. Boundary value problems are
notoriously difficult to manage from a computational per-
spective, and become even more so as the size of the system
increases.

Miller noted that the difficult boundary-value problem can
be substituted for a more amenable phase-space integration
over initial conditions �27�. Heller introduced a very simple
but surprisingly accurate SCIVR known as the frozen Gauss-
ian approximation that is based on coherent states of a fixed
width �28�. However the frozen Gaussian propagator suffers*eli.pollak@weizmann.ac.il

PHYSICAL REVIEW A 79, 062507 �2009�

1050-2947/2009/79�6�/062507�8� ©2009 The American Physical Society062507-1

http://dx.doi.org/10.1103/PhysRevA.79.062507


from a rapid loss of normalization. Herman and Kluk de-
duced that what was missing from Heller’s frozen Gaussian
approximation was a prefactor containing the elements of the
stability matrix �29�. The Herman-Kluk propagator was
shown to approximately conserve normalization for rela-
tively long times and has since been applied and tested ex-
tensively �23,30–32�. Another class of semiclassical propa-
gators originally suggested by Heller which is also based on
coherent states is referred to as thawed Gaussian propagators
�21,33,34�. The width parameter in the thawed Gaussian ap-
proximation is time dependent and also contains the ele-
ments of the monodromy matrix. In contrast to the Herman-
Kluk SCIVR the thawed Gaussian SCIVR loses
normalization rather rapidly �35�. Both approximations are
expensive due to the need of computing the monodromy ma-
trix. For a system with N degrees of freedom, this adds an
additional 4N2 coupled equations of motion as well as the
need to compute the determinant at each step of the compu-
tation.

Perhaps one of the most severe criticisms of SCIVR
methods until recently was that all of the various approxima-
tions lacked a systematic method for improvement. Pollak
and co-workers have recently formulated a series representa-
tion of the exact quantum propagator where the respective
SCIVR is simply the leading-order term �26,36�. This for-
malism allows one to assess the quality of a particular semi-
classical approximation by the rate at which its series con-
verges. The series representation has been successfully
applied to several physical systems including the quartic
double well, diffraction in a model of the double slit experi-
ment, deep tunneling, the spin boson problem, and vibra-
tional relaxation in dissipative oscillators �36–40�. While the
computations are not trivial and can become quite costly, in
all these cases the series has been shown to converge rapidly,
typically within the first two terms. It is worthwhile to note
here that subsequently, Kay derived an asymptotic � depen-
dent series representation of the propagator and has analyzed
its performance for several model systems �41–43�.

In this work, the low energy scattering of helium atoms
from the copper �110� surface is modeled using several semi-
classical approximations and a classical Wigner approach.
The experimental scattering angle distributions display sev-
eral peaks of varying intensity depending on the incident
angle �9,11,44�. While it is often the case that the Herman-
Kluk propagator is the most accurate of the SCIVRs �30,35�,
here we find that the thawed Gaussian propagator is substan-
tially superior. It agrees almost quantitatively with exact
quantum computations. Not less important is the fact that the
thawed Gaussian simulations converge with at least 2 orders
of magnitude fewer trajectories. While the thawed Gaussian
and Herman-Kluk frozen Gaussian approaches are capable of
semiquantitatively reproducing the scattering angle distribu-
tions at all angles of incidence, the frozen Gaussian SCIVR
is much less accurate and the classical Wigner simulations
produce qualitatively incorrect results. The latter predicts
only two peaks at the rainbow angles while the specular
peak, which is often the most intense peak in the angular
distribution, is completely absent. The structure seen in the
angular distributions is a result of quantum-mechanical inter-
ference which has been shown to be rather well described by
semiclassical methods �37,45�.

In the following section, a formally exact expression for
the calculation of the final momentum distribution and sub-
sequently, the angular distribution, is presented. It casts the
semiclassical expression in a particularly simple form which
leads to a reduction in the number of phase-space integra-
tions required to calculate the momentum distribution. This
removes some of the serious difficulties encountered with
previous approaches. The direct computation of the final mo-
mentum distribution has the advantage that other energy-
dependent quantities are also immediately available without
the need to carry out any further simulations. The various
semiclassical propagators used in the scattering angle distri-
bution calculations are also introduced in this section. Nu-
merical results of the semiclassical and classical simulations
are presented in Sec. III. We end with a discussion of the
merits and possible further applications of the SCIVR ap-
proach to surface scattering.

II. SCATTERING FORMALISM

A. Scattering angle distribution

We will restrict ourselves to a two-dimensional model of
the system involving the scattering coordinate perpendicular
to the surface and a transverse coordinate parallel to the sur-
face. This model is appropriate for in-plane scattering experi-
ments at low surface temperatures, such that at zeroth order
the interaction with surface phonons can be ignored. The
traditional approach to calculating the angular scattering dis-
tribution is written in terms of the correlation function �45�

P��� = lim
t→�

Tr�������K̂†�t���� − �̂�K�t�� , �1�

where the angle operator �̂=tan−1�
p̂x

p̂z
�, � characterizes the

initial wave packet of the scattering atom and K�t� is the
quantum propagator. However, the angle operator can prove
to be troublesome from a computational perspective when
implemented in semiclassical approximations.

As an alternative, the angular distribution can be written
in terms of an intermediate two-dimensional distribution in
polar coordinates as

P��� = �
0

�

P�p,��pdp . �2�

In the natural Cartesian coordinates of the simulation,
P�p ,�� carries over to the final Cartesian momentum distri-
bution P�px , pz� with px= p sin��� and pz= p cos���. Then the
central quantity to calculate becomes

P�p̄x, p̄z;t� = Tr�������K̂†�t���p̄x − p̂x���p̄z − p̂z�K�t��

= ��p̄x, p̄z�K�t�����2 	 �I�p̄x, p̄z;t��2, �3�
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and this defines the overlap function I�p̄x , p̄z ; t�. The momen-
tum operators commute so there is no ambiguity in this defi-
nition. Introducing the final momentum distribution reduces
the numerical effort to the evaluation of a single overlap
function that contains only one time propagation. As a result,
only a single phase-space integration is required in the
SCIVR approximation leading to a large reduction in the
computational effort. The final angular distribution is then
obtained from Eq. �2� after an additional numerical integra-
tion over the radial momentum. The momentum distribution
is well-behaved numerically and has the additional advan-
tage that other energy-dependent quantities such as the
energy-loss distribution are immediately available from
P�p̄x , p̄z� without the need for any further semiclassical cal-
culations. For in-plane scattering, introducing the requisite
two-dimensional fixed grid of momentum points is not an
issue.

B. Semiclassical initial value representations

The frozen Gaussian, Herman-Kluk, and thawed Gaussian
SCIVR propagators can all be written in the generic form,

K̂0�t��g�p,q;0�� = R�p,q;t�e�i/��W�p,q;t��g�p,q;t�� , �4�

where the coordinate representation of the coherent states is

�x�g�p,q�� = 
det Re ��t�
�N �1/4

exp
−
1

2
�x − q�T��t��x − q�

+
i

�
pT�x − q�� , �5�

and N is the total number of degrees of freedom in the sys-
tem. For future use, we also note the momentum representa-
tion of the coherent states,

�p�g�p,q�� = 
 1

��2�N/4
det Re ��t�
det���t��2 �1/4

�exp
−
1

2�2 �p − p�T��t�−1�p − p� −
i

�
qTp� .

�6�

The differences between the propagators which will be speci-
fied below are borne out in the Hamiltonian governing the
classical dynamics and the definitions of the prefactor R, the
action W, and the width matrix �.

Introducing the notation Y= �p ,q� and dY
=dpdq / �2���N, the zeroth order semiclassical expression
for the momentum overlap function in terms of the generic
propagator Eq. �4� can be written as

I0�p̄x, p̄z;t� =
1

�N�t�
�

−�

�

dY�p̄x, p̄z�g�Y;t��

��g�Y����R�Y;t�exp
 i

�
W�Y;t�� . �7�

The SCIVR propagators studied here are not unitary so one
must renormalize with the function N�t� defined as

N�t� = Tr���K0
†�t�K0�t���� . �8�

Alternatively, the normalization function may be obtained
more efficiently by simply integrating the momentum distri-
bution at each step during the calculation. For the zeroth
order SCIVR, it is sufficient to renormalize only the final
momentum distribution so that the added effort of renormal-
ization is negligible.

1. Prefactor-free frozen Gaussian propagator

The simplest SCIVR approximation is the frozen Gauss-
ian propagator �28�. As the name implies, the prefactor
RFG�p ,q ; t�=1, and the width matrix in the coherent states is
time independent so that the widths of the Gaussians are
“frozen” throughout the propagation. To ensure integrability,
�FG must be positive definite. We will assume that it is di-
agonal with positive elements. The action term appearing in
the frozen Gaussian propagator involves the coherent-state
averaged Hamiltonian

WFG�p,q;t� = �
0

t

dt��p�t��q̇�t�� − �g�p,q;t���Ĥ�g�p,q;t���� .

�9�

The dynamics is governed by the Wigner representation of
the Hamiltonian operator.

2. Herman-Kluk frozen Gaussian propagator

Although very simple to implement, the prefactor-free
propagator suffers from a rapid loss of normalization. In an
attempt to address this deficiency, the Herman-Kluk SCIVR
includes a prefactor containing the elements of the stability
matrix �29�,

RHK�p,q;t� =�2−N det
 �q�t�
�q�0�� + �−1
 �p�t�

�p�0��� +
i

�
�−1
 �p�t�

�q�0�� − i�
 �q�t�
�p�0���� . �10�

In general, including the prefactor leads to simulations that are approximately unitary for relatively long times. The action in
the Herman-Kluk propagator takes the standard form,
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WHK�p,q;t� = �
0

t

dt��p�t��q̇�t�� − H� . �11�

As with the frozen Gaussian propagator, the width matrix in
the coherent states is taken to be constant and diagonal with
positive elements. The dynamics takes place on the Wigner
representation of the Hamiltonian operator, although in prin-
ciple, one may also define a Herman-Kluk like SCIVR in
which the dynamics is governed by the coherent-state repre-
sentation of the Hamiltonian operator �46�.

3. Thawed Gaussian propagator

The thawed Gaussian propagator is distinguished from the
previous two frozen Gaussian propagators in that the width
matrix is allowed to be time dependent. In this case, �TG�t� is
restricted to be symmetric and positive definite although it is
generally complex valued. Following Gelabert et al. the
width matrix can be written in terms of the elements of the
monodromy matrices by defining two auxiliary terms �47�,

Q�t� = 
 �q�t�
�q�0�� + i�
 �q�t�

�p�0���TG�0� ,

MQ̇�t� = 
 �p�t�
�q�0�� + i�
 �p�t�

�p�0���TG�0� , �12�

where M is the mass. The width matrix may now be written
compactly as

i�

M
�TG�t� = Q̇�t�Q�t�−1, �13�

and similarly, the prefactor can be represented simply as

RTG�p,q;t� = 
det Re��TG�0��
det Re��TG�t�� �

1/4 1
�det Q�t�

. �14�

One then distinguishes between two different thawed Gauss-
ian approximations. The Wigner thawed Gaussian �WTG�
approximation has a classical dynamics which is evolved
from the Wigner representation of the Hamiltonian operator.
In this case the action term is the same as in the Herman-
Kluk propagator. The other approximation is the coherent-
state thawed Gaussian approximation suggested by Baranger
et al. �21� and generalized to multidimensional systems in
Ref. �34�, in which the classical dynamics is derived from
the coherent-state representation of the Hamiltonian operator.
The action term then includes the time integral over the co-
herent state averaged quantities. In Ref. �26�, the coherent-

state thawed Gaussian was shown to be more accurate than
the Wigner thawed Gaussian or Herman-Kluk propagator at
short times.

C. Classical Wigner approximation

In the classical Wigner �or linearized SCIVR� approxima-
tion �48–50�, the initial conditions for the system are treated
quantum mechanically, but the ensuing time evolution is re-
placed by classical dynamics. The Wigner representation for
the momentum distribution

PW�p̄x, p̄z;t� = 2���
−�

�

dpdq	�p,q��„p̄x − px�t�…

��„p̄z − pz�t�… , �15�

requires only a single phase-space integration for the system
variables. The initial state of the system 	�p ,q� is given by
the Wigner transform of the initial wave packet,

	�p,q� =
1

�2���N�
−�

�

d�e�i/��pT��q +
�

2
������q −

�

2
� .

�16�

As there are no phases appearing in the classical Wigner
calculations, the calculations typically converge much more
rapidly than the semiclassical simulations.

III. SCATTERING CALCULATIONS

A. Scattering model

The Hamiltonian for the scattering system has the stan-
dard form

H =
px

2 + pz
2

2M
+ V�x,z� , �17�

where M is the mass of the helium atom. The model potential
is taken as the modified corrugated Morse potential �MCMP�
developed by Salanon et al. �11�

V�x,z� = V0�e−2
z − 2e−
z + 1� + V0Vce
−3
z cos�2�x/l� .

�18�

The well depth of the Morse potential is V0=6.35 meV and
the inverse length is 
=1.05 Å−1, such that the isolated sys-
tem would support two bound states. The Cu�110� lattice
length is l=3.6 Å and the dimensionless corrugation coeffi-
cient is Vc=0.0255. The initial wave packet of the incoming
helium atom is chosen to be a Gaussian coherent state whose
coordinate representation is

�x,z��� = 
�x�z

�2 �1/4
e−��x/2��x − x0�2−��z/2��z − z0�2+�i/��px0

�x−x0�+�i/��pz0
�z−z0�. �19�
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The center of the wave packet �x0 ,z0� is chosen to be suffi-
ciently far from the surface that V�x ,z� is negligible for all
trajectories. The initial momenta of the wave packet are de-
fined by the initial energy of the beam �125 meV� and the
specified scattering angle. The width parameters for the ini-
tial wave packet are taken to be �x=�z	�=0.05 a.u.−2 and
the width parameters for the coherent states are �x=�z
=10� in all of the computations presented below. The spe-
cific choice for these parameters is a tradeoff between the
need to define the momenta of the original wave packet
rather narrowly, while at the same time the coherent states
should be defined on a length scale which does not smear out
the corrugation potential.

Outside the interaction regime, the free particle motion of
the trajectories is integrated analytically for efficiency. At the
lowest scattering angle studied of 32.5° �defined relative to
the surface normal�, a simulation time of 10 ps was needed
in order to ensure that all particles had escaped from the
interaction regime. At a larger incident angle of 50.5°, 20 ps
simulations were required and this lengthened to 40 ps at a
scattering angle of 65.5°. The simulation length is not an
issue in this case since only the final phase-space points of
the trajectories are required and a large part of the propaga-
tion can be performed analytically. The spatial width of the
wave packet was sufficiently larger than the lattice length so
there was no further need to average over the impact param-
eter �horizontal center of the Gaussian wave packet�.

B. Numerical results

The final momentum distribution calculated from the
Wigner thawed Gaussian approximation at an incidence
angle of 32.5° is presented in Fig. 1. The scattering angle
distribution obtained after the subsequent integration over
the radial momenta is displayed in the lower portion of Fig.
2, along with the results of the coherent-state thawed Gauss-
ian �CSTG� SCIVR approximation and the exact quantum-
mechanical values reported in Ref. �11�. As can be seen, the
regions of large intensity in the momentum distribution are
directly related to the distinct peaks in the angular distribu-
tion. The frozen Gaussian �FG�, Herman-Kluk Frozen
Gaussian �HKFG�, and the classical Wigner approximations
are compared with the exact results in the top panel of Fig. 2.

As noted many times before, both the frozen and thawed
Gaussian propagators suffer from a rapid loss of normaliza-

tion, but nevertheless, all of the semiclassical scattering
angle distributions need to be renormalized. The Herman-
Kluk propagator required 107 trajectories to achieve a vari-
ance of 1% in the momentum distribution calculations, the
frozen Gaussian results required 106, while each of the
thawed Gaussian approximations and the classical Wigner
dynamics needed only 105 trajectories to reach a similar
level of convergence. As a result, the thawed Gaussian simu-
lations are the most computationally efficient of the semi-
classical methods even with the need to calculate the addi-
tional time dependent width matrix.

As can be seen in Fig. 2, the frozen Gaussian propagator
yields results of rather poor quality compared with the other
semiclassical approximations. Much of the structure seen in
the exact scattering angle distribution is either missing or of
incorrect intensity in this case. The results of the thawed
Gaussian propagators on the other hand are significantly su-
perior to those of the HKFG. As shown below, similar be-
havior for the frozen and thawed Gaussian propagators is
observed at other scattering angles as well. As mentioned in
Sec. II B, the CSTG SCIVR has been shown to be more
accurate than the WTG at short times �26�. The same is also
true here for the full scattering computation, although the
improvement over the WTG results is not very substantial.
As noted below, since the WTG does not require any
coherent-state averaging it is easier to implement for on the
fly computations.

There is a subtle but significant difference between the
frozen Gaussian and the thawed Gaussian propagators. Both
are exact in the region where the atom is free of the interac-
tion with the surface. However, the Herman Kluk approxi-
mation becomes exact only after integration over the phase
space, while the thawed Gaussian is already exact for each
individual coherent state. In terms of the “correction opera-

FIG. 1. �Color online� The zeroth order semiclassical momen-
tum distribution calculated at an incident scattering angle of 32.5°
using the Wigner thawed Gaussian propagator.
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FIG. 2. �Color online� The scattering angle distributions calcu-
lated at an incident scattering angle of 32.5°. The exact quantum-
mechanical results adapted from Ref. �11� are depicted as sticks.
The top panel displays the results of the Herman-Kluk frozen
Gaussian propagator as solid lines, the frozen Gaussian as the �red�
dotted line, and classical Wigner results as the �blue� dashed line.
The bottom panel displays the results of the Wigner thawed Gauss-
ian as solid lines and the coherent-state thawed Gaussian as �red�
dotted lines.
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tor” used to construct the series representation of the SCIVR,
one finds for a free particle that the potential difference op-
erator vanishes at each point in-phase space for the thawed
Gaussian, while for the HKFG it vanishes only after integra-
tion over the whole phase space. As a result substantially
more averaging is needed in order to obtain the same level of
accuracy for the latter. The conclusion is that while consid-
ering bound-state systems, one should perhaps use the
Herman-Kluk SCIVR, whereas in scattering problems, the
thawed Gaussian form is superior.

The angular distributions obtained at the incidence angles
of 50.5° and 65.5° are presented in Figs. 3 and 4, respec-
tively. Although not shown, their corresponding momentum
distributions display the expected behavior. Here too, we in-
cluded the results of the classical Wigner calculations from
Eq. �15� and the exact quantum-mechanical values as given
in Ref. �11�. The number of Monte Carlo samples need to
obtain convergence for each propagator at the higher inci-
dence angles is the same as those mentioned above for the
case of 32.5°, except a five- and tenfold increase was needed
for the FG approximation at 50.5° and 65.5°, respectively. At
these higher incidence angles, the peak locations calculated
from both of the frozen Gaussian propagators begin to dis-

play a small shift toward higher scattering angles when com-
pared with the exact results. This is particularly evident for
the FG approximation at 65.5°, although it is also observed
at the lower scattering angles and for the HKFG results as
well. Both of the thawed Gaussian SCIVRs still reproduce
the correct location again indicating their superior perfor-
mance over the frozen Gaussian propagators for helium scat-
tering.

IV. DISCUSSION

This work is another demonstration of the ability of the
semiclassical initial value representation to describe quantum
interference effects. In previous work it was shown that the
SCIVR methodology accounts well for interference in a
model of the double slit experiment �45�. At all three inci-
dence angles presented, the semiclassical simulations faith-
fully reproduce the qualitative features of the exact quantum-
mechanical results. The SCIVR calculations yield the same
number and location of peaks as the exact results, but the
intensities are in good agreement only when using the
thawed Gaussian approximations. These results indicate that
the semiclassical description provides a reliable estimate to
the exact angle distributions. Although not reported, similar
behavior of the semiclassical and classical models has been
observed at other energies and for a slightly different form of
the potential as well.

Four different semiclassical propagators and a classical
Wigner approximation were used to calculate the scattering
angle distribution. Although in many situations the Herman-
Kluk propagator is seen to be the most accurate SCIVR, here
we found that the thawed Gaussian approximations produce
more accurate results and converge much more quickly. The
particular choice of coherent-state width parameter does not
strongly influence the accuracy of the HKFG. Only small
changes in the peak heights were observed for variations of
� over 2 orders of magnitude. The frozen Gaussian approxi-
mation does account for interference effects but it is inferior
when compared to the other semiclassical methods. Although
cheaper, the classical Wigner simulations are completely in-
adequate and produce qualitatively incorrect angle distribu-
tions. At all incidence angles studied, the Wigner calcula-
tions display a minimum at the specular angle, although this
is often the most intense peak in the spectrum. The structure
seen in the angle distributions arises from quantum-
mechanical interferences which the classical Wigner model
is not able to reproduce.

Introducing the intermediate momentum distribution re-
sults in several computational and analytical simplifications.
Taking this approach instead of directly calculating the angle
distribution allows one to calculate other energy-dependent
quantities without the need for any additional semiclassical
simulations. From a computational perspective, the reduced
number of phase-space integrations that result at each order
in an SCIVR series representation of the exact propagator
leads to much more amenable simulations.

In this work, the surface phonons were ignored. It is in
principle straightforward to include a harmonic phonon bath
in the SCIVR framework. However, the resulting semiclas-
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FIG. 3. �Color online� Scattering angle distributions at an inci-
dent angle of 50.5°. The other notation is the same as in Fig. 2.
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FIG. 4. �Color online� Scattering angle distributions at an inci-
dent angle of 65.5°. The other notation is the same as in Fig. 2.
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sical expression is no longer as simple. To obtain the final
system momentum distribution in the presence of a bath, one
introduces a generalized distribution as before

P�p̄x, p̄z;t� = �
−�

�

dpBP�p̄x, p̄z,pB;t� . �20�

An integration over any other suitable bath variables can be
used instead of the momenta. For this example the semiclas-
sical momentum distribution becomes

P�p̄x, p̄z;t� = �
−�

�

dpB Tr
 e−ĤB

ZB
������K̂0

†�t�

���p̄x − p̂x���p̄z − p̂z���pB − p̂B�K0�t��
�21�

=�
−�

�

dpBdYB�
j=1

NB


 j exp
−

 j

2�� j
�pj

2 + � j
2xj

2��
� ��

−�

�

dYS�p̄x, p̄z,pB�g�Y;t��

��g�YS����R�Y;t�exp
 i

�
W�Y;t���2

, �22�

where the coherent-state representation of the Boltzmann op-
erator has been used and 
 j =e��j −1 �51�. In the case of
scattering, the assumption of factorized initial conditions
used here is exact since the helium atom and the surface are
initially uncoupled. Equation �22� has the advantage that
when integrating over the bath variables, one has a positive
integrand. On the other hand, in this approach one must com-
pute the overlap function for each choice of the initial bath
variables and this may become costly. As we have seen in
this paper, converging a single overlap function using the

thawed Gaussian typically requires 104–105 Monte Carlo
trajectories. Averaging over the bath would presumably take
an additional 100–1000 samples.

Alternatively one could use the forward-backward formal-
ism in its discretized �52� or continuum form �53�. In the
former one has only a single phase-space integration over the
bath variables and there is no need for the added bath mo-
mentum integration. In the latter one has only a phase-space
integration over the system and an averaging with respect to
the noise realizations. However, the quantum memory func-
tions can be long, making such a computation also rather
costly. A comparison of the different methodologies will be
reported elsewhere �54�.

As mentioned in the Introduction, the computations re-
ported here are a precursor to the computation of He atom
scattering from more realistic surfaces using on-the-fly meth-
ods. The results here indicate that on the fly computations, at
least for frozen surfaces should be feasible when using the
Wigner thawed Gaussian propagator. To implement the
Wigner thawed Gaussian propagator one does need the Hes-
sian of the potential-energy surface and this is rather expen-
sive. In this context, it is worth mentioning the development
of graphics processor units for use in the Monte Carlo com-
putations needed in the SCIVR methodology. Our prelimi-
nary computations for the classical Wigner and frozen
Gaussian SCIVR using the CUDA software of NVIDIA show
that a single �TESLA� GPU can lead to a 30- to 50-fold
enhancement in speed. This added speed may overcome the
long time needed to compute a single trajectory using on the
fly methods.
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