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A theoretical study of the all two-photon transitions from initial bound states with ni=2,3 in hydrogenic ions
is presented. High-precision values of relativistic decay rates for ions with nuclear charge in the range 1�Z
�92 are obtained through the use of finite basis sets for the Dirac equation constructed from B splines. We also
report the spectral �energy� distributions of several resonant transitions, which exhibit interesting structures,
such as zeros in the emission spectrum, indicating that two-photon emission is strongly suppressed at certain
frequencies. We compare two different approaches �the line profile approach and the QED approach based on
the analysis of the relativistic two-loop self-energy� to regularize the resonant contribution to the decay rate.
Predictions for the pure two-photon contributions obtained in these approaches are found to be in good
numerical agreement.
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I. INTRODUCTION

Two-photon transitions in hydrogen and hydrogenlike
ions are under investigation since Göppert-Mayer �1� pre-
sented her theoretical formalism in 1931. The early interest
in these transitions from metastable states of hydrogen came
mainly from astrophysics �2,3�, and was recently revived by
Chluba and Sunyaev �4�. Among many applications of recent
two-photon studies, one can cite the determination of the
Rydberg constant �5–7�, measurement of the Lamb shift
�6,8�, and testing Bell’s inequality �9�, as well as various
applications in molecular spectroscopy �10�, tissue imaging
�11�, and protein structure analysis �12�. Another interest in
two-photon transitions is connected to the study of parity-
violation effects in H-like and He-like ions �13,14�. The two-
photon spectral distribution has recently been used for pre-
cise efficiency calibration of solid-state x-ray detector as it
has a known shape for a large distribution of energies �15�.

Similar to single-photon processes, two-photon emission
can be spontaneous or stimulated, whereas two-photon ab-
sorption is only stimulated. However, since each photon car-
ries one unit of angular momentum in the dipole approxima-
tion, certain transitions between atomic energy levels,
forbidden as single-photon processes, are allowed as two-
photon processes. Another important distinction lies in the

fact that the emission spectrum of spontaneous two-photon
transitions is continuous unlike the spectrum in a single-
photon process. A continuous spectrum is possible because
energy conservation requires only that the sum of both pho-
ton energies equals the energy of the transition. For the tran-
sition

�ni, ji� → �nf, j f� + ��1 + ��2, �1�

where �ni , ji� and �nf , j f� denote the principal quantum num-
bers and total angular momenta of the initial and final hydro-
genic states, respectively, and ��1 and ��2 are the energies
of each photon, the conservation of the energy leads to the
condition

Ei − Ef = ��1 + ��2, �2�

where Ei and Ef are the energies of the initial and final ionic
states, respectively.

Because of its importance, the 2s1/2→1s1/2 two-photon
transition rate in hydrogen has been calculated and discussed
many times using different approaches. A historical overview
from both theoretical and experimental points of view can be
found in the 1998 paper by Santos et al. �16�.

Recently, Surzhykov et al. �17� performed a relativistic
calculation to study the angular correlations in the two-
photon decay of hydrogenlike ions, and Labzowsky et al.
�18� evaluated the 2E1 contribution for the 2s1/2→1s1/2 tran-
sition and the E1M1 and E1E2 contributions for the 2p1/2
→1s1/2 transition using an expression similar to the one ob-
tained by Goldman and Drake �19� in the quantum electro-
dynamics �QED� framework. Also in this framework, Nga-
nso and Njock �20� carried out the treatment of the S matrix
for bound-bound transitions.
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In this work, which uses techniques of a previous one
�16�, we study the two-photon decay of several excited states
using two approaches to deal with resonances, the line pro-
file approach �LPA� �21� and the QED approach based on the
analysis of the relativistic two-loop self-energy �TLA�, to
regularize the resonant contribution to the decay rate �22,23�.
We present calculated values for two-photon decay rates ob-
tained with both approaches for one-electron ions with a
nuclear charge of up to 92. This paper is organized as fol-
lows: in Sec. II we give a brief review of the background
theory involved in two-photon emission, in Sec. III we
present the results obtained in this work, and the conclusions
are presented in Sec. IV.

II. THEORY OF RELATIVISTIC RADIATIVE
TRANSITIONS

A. Two-photon spontaneous emission

1. General formalism

The relativistic theory of two-photon transitions is given
in detail in Refs. �16,19,24�. In the present work, therefore,
we report only the most important equations and notations
used.

The basic expression for the differential �in energy of one
of the photons� rate is, in atomic units,

dw

d�1
=

�1�2

�2��3c2��
�

� 	f 
A2
�
��	�
A1

�
i�
E� − Ei + �1

+
	f 
A1

�
��	�
A2
�
i�

E� − Ei + �2
��2

d�1d�2, �3�

where � j is the frequency and d� j is the element of solid
angle of the jth photon, and c is the speed of light. The
frequencies of the photons are constrained by energy conser-
vation Eq. �2�.

For photon plane wave with propagation vector k j and
polarization vector ê j �ê j ·k j =0�, the operators Aj

� in Eq. �3�
are given by

Aj
� = � · �ê j + Gk̂ j�e−ikj·r − Ge−ikj·r, �4�

where � are Dirac matrices and G is an arbitrary gauge pa-
rameter. Among the large variety of possible gauges, Grant
�25� showed that there are two values of G which are of
particular utility because they lead to well-known nonrelativ-
istic operators. If G=0, one has the so-called Coulomb
gauge, or velocity gauge, which leads to the dipole velocity
form in the nonrelativistic limit. If G= ��L+1� /L�1/2, for ex-
ample, G=
2 for E1 transitions �L=1�, one obtains a non-
relativistic expression which reduces to the dipole length
form of the transition operator. The two-photon transitions
gauge invariance was studied by Goldman and Drake �19�.
From the general requirement of gauge invariance the final
results must be independent of G.

The index � stands for all solutions including the discrete
and both negative- and positive-energy solutions of the Dirac
equation. In Eq. �3�, moreover, 
i�= 
ni�imi�, 
��= 
n���m��,
and 
f�= 
nf� fmf� are the well-known solutions of the Dirac

Hamiltonian for a single electron, where n and m stand for
the principal quantum number and the one-electron angular
momentum projection, respectively. The Dirac quantum
number � is defined by

� = �� if j = � − 1/2
− �� + 1� if j = � + 1/2,

� �5�

where � and j are the electron orbital and total angular mo-
menta, respectively.

If the energy of an intermediate state E� is equal to the
energy Ei−�1,2 in the denominators of Eq. �3�, the differen-
tial emission rate has a pole or a resonant behavior at E�.
Physically, this occurs when an intermediate virtual state,
between the initial and final states, coincides with a real state
so that the two-photon transition coincides with the cascade
de-excitation process.

For example, in the 2E1 3s1/2→1s1/2 transition, the shape
of the frequency distribution presents narrow resonances at
energies corresponding to the 3s1/2→2p1/2,3/2→1s1/2 cas-
cade. This effect has been confirmed both experimentally
�26� and theoretically �27�.

The divergent behavior of the resonant denominator in
Eq. �3� is related to the Green’s function used in that expres-
sion, which does not take into account the interaction be-
tween the electron and the vacuum fluctuations of the elec-
tromagnetic field. The LPA allows derivation of the
following expression for the differential emission �21,28�,
which takes partially into account this contribution:

dwLPA

d�1
=

�1�2

�2��3c2��
�

� 	f 
A2
�
��	�
A1

�
i�
V� − Vi + �1

+
	f 
A1

�
��	�
A2
�
i�

V� − Vi + �2
��2

d�1d�2, �6�

where

V� = E� + 	��	�
�e

�� + 	�
�e


��� , �7�

with

	� = �1 if � is a resonant intermediate state

0 otherwise,
� �8�

and 	�
�e
�� and 	�
�e
�� are the electron mean value of the
self-energy �SE� and vacuum polarization �VP� operators in
lowest order for the state �, respectively. Both the mean
value of the self-energy and vacuum polarization operators
have a real part, 
E�, that is a correction to the energy E�.
On the other hand, only the self-energy operator has an
imaginary part, �� /2, which is the width of the state �.

The average decay rate, i.e., the decay rate summed over
the final mf and averaged over initial mi ion magnetic sub-
levels, can be obtained from Eq. �6� as

dWLPA

d�1
= �

L1,�1,L2,�2

dW̄L1,�1,L2,�2

LPA

d�1
, �9�

where the partial decay rates describing the two-photon tran-
sitions of a given type ��� and multipolarity �L� are given by
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dW̄L1,�1,L2,�2

LPA

d�1
=

�1�2

�2��3c2�2ji + 1��j� �
S̄j��2,1�
2 + 
S̄j��1,2�
2

+ 2�
j�

d�j�, j�� 
 �Re�S̄j��2,1��Re�S̄j��1,2��

+ Im�S̄j��2,1��Im�S̄j��1,2���� . �10�

Here we define

d�j, j�� = �− 1�2j�+L1+L2�j, j��1/2� j f j� L1

ji j L2
� , �11�

which represents the angular coupling, and

S̄j�2,1� = �
n�

M̄ f ,n�

��2,L2���2�M̄n�,i
��1,L1���1�

Vn�
− Vi + �1



4��ji, j, j f�1/2

�L1,L2�1/2 �i
��1�� f

��2�


� j f L2 j

1

2
0 −

1

2
�� j L1 ji

1

2
0 −

1

2
� , �12�

with

�k
��t� = �1 if �k + � + Lt + �t = odd

0 if �k + � + Lt + �t = even.
� �13�

S̄j�1,2� is analogously defined. The notation �j ,k , . . .� means
�2j+1��2k+1�¯, �¯ � are the 3j symbols, and �¯ � are the
6j symbols.

The radial matrix elements M̄ f ,i
��,L� in Eq. �12� are defined

by

M̄ f ,i
�1,L� = � L

L + 1
�1/2

��� f − �i�IL+1
+ + �L + 1�IL+1

− �

− �L + 1

L
�1/2

��� f − �i�IL−1
+ − LIL−1

− � , �14�

M̄ f ,i
�0,L� =

2L + 1

�L�L + 1��1/2 �� f + �i�IL
+, �15�

and

M̄ f ,i
�−1,L� = G��2L + 1�J�L� + �� f − �i��IL+1

+ + IL−1
+ �

− LIL−1
− + �L + 1�IL+1

− � . �16�

L is the photon angular momentum and � stands for the
electric ��=1�, magnetic ��=0�, and the longitudinal ��=
−1� terms. We used the notation given by Rosner and Bhalla
�29� for the integrals the IL

���� and JL���. Parity selection
rules �13� follow from the calculation of the reduced matrix
elements expressed in Eq. �3�.

We emphasize that the term �i
��1�� f

��2� in Eq. �12� is not
given explicitly in the paper of Goldman and Drake �19�,
which could lead to some ambiguity in the choice of the

intermediate states for the evaluation of the S̄j�2,1� and

S̄j�1,2� terms in a generic transition.
Usually, it is convenient to express the results in terms of

the electric �E� and magnetic �M� multipole �MP� contribu-
tions. The total decay rate �integrated over the photon en-
ergy� for a transition in which one photon �1L1 and one
photon �2L2 are emitted, where �i=E ,M stand for the elec-
tric and magnetic multipole types, respectively, is given by

W̄�1L1�2L2

LPA = �
��1

,��2

W̄L1,��1
,L2,��2

LPA

= �
��1

,��2

�
0

�t dW̄L1,��1
,L2��2

LPA

d�1
d�1, �17�

with

��i
= − 1,1 if �i = E ,

��i
= 0 if �i = M , �18�

and �t is the energy of the two-photon transition, which is
given, in a.u., by

�t = �1 + �2 = Ei − Ef �19�

using Eq. �2�.
Finally, the total spontaneous emission probability per

unit time for a two-photon transition is obtained by summing
over all allowed multipole components,

WLPA = �
all �1L1,�2L2

t�1L1,�2L2
W̄�1L1�2L2

LPA , �20�

where

t�1L1,�2L2
= �1 if �1L1 � �2L2

1/2 if �1L1 = �2L2.
� �21�

The factor of 1/2 is included to avoid counting twice each
pair, when both photons have the same characteristics.

Another method for dealing with resonances was devel-
oped by Jentschura and Surzhykov �22,23� using a procedure
based on TLA. They obtained an expression similar to Eq.
�3� for evaluating a nonresonant component of the two-
photon decay rate, given by

wTLA = lim
�→0

Re�
0

�t

d�1
�1�2

�2��3c2Sifd�1d�2. �22�

The function Sif is given, as in Ref. �23�, by

Sif = ��
�
� 	f 
A2

�
��	�
A1
�
i�

E� − Ei + �1 − i�
+

	f 
A1
�
��	�
A2

�
i�
E� − Ei + �2 − i�

��2

.

�23�

Using this approach one obtains finite results since the
integration over the frequency �1 is displaced by an infini-
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tesimal quantity, �, from the resonance poles, provided the
limit is not permuted with the integration.

If one considers a nonresonant transition such as 2s1/2
→1s1/2, then the limit can be permuted with the integration
and Eq. �22� reduces to Eq. �3�, and both approaches give the
same result.

2. Integration method for resonant intermediate states

For resonant transitions, Eq. �10� produces sharp peaks
near the resonant frequencies, which requires special atten-
tion in the integration over the photon energy �1 in Eq. �17�
to avoid meaningless results for the total decay rate. Near a
resonant frequency �R

j�, Eq. �10� can be written as

dW̄L1,�1,L2,�2

LPA

d�1
= �

j�

gj���1� = �
j�

f j��1�

��1 − �R
j��2 + ��R

j�

2
�2 ,

�24�

where f j��1� is a smooth function; the resonant behavior is
given by the denominator. Consequently, the function f j��1�
can be expanded in a Taylor series around the resonant fre-
quency �R

j�. Notice that the shape in the right-hand side of
Eq. �24� is not a Lorentz profile since f j��1� depends on �1,
and so the peak profile is asymmetric. Subtracting the first
two terms of the expansion on gj��1� we obtain a smooth
function, hLPA��1�, which does not contain a resonant behav-
ior. It is defined as

hLPA��1� = �
j� �gj���1� −

a0
j�

��1 − �R
j��2 + ��R

j�

2
�2

−
a1

j���1 − �R
j��

��1 − �R
j��2 + ��R

j�

2
�2� . �25�

The coefficients a0
j and a1

j are derived from the Taylor ex-
pansion of f j��1� around �R:

a0
j = f j��R� = gj��R���R

j

2
�2

,

a1
j = � d

d�1
f j��1��

�R

= � d

d�1
gj��1��

�R

��R
j

2
�2

. �26�

The expressions of the derivatives of the matrix elements
used to evaluate a1

j are presented in the Appendix.

To obtain the decay rate W̄L1,�1,L2,�2

LPA , we must add to the
integral of the smooth function hLPA the two terms h0

LPA and
h1

LPA evaluated analytically, i.e.,

W̄L1,�1,L2,�2

LPA = hLPA + h0
LPA + h1

LPA, �27�

where

hLPA = �
0

�t

hLPAd�1, �28�

h0
LPA = �

j�

a0
j��

0

�t 1

��1 − �R
j� − i

�R
j�

2
�2d�1

= �
j

2a0
j�

�R
j �arctan�2��1 − �R

j��
�R

j�
��

0

�t

, �29�

h1
LPA = �

j�

a1
j��

0

�t ��1 − �R
j��

��1 − �R
j� − i

�R
j�

2
�2d�1

= �
j

a1
j�

2
ln� ��t − �R

j��2 + ��R
j�/2�2

��R
j��2 + ��R

j�/2�2 � . �30�

We note that a0
j is given approximately �unless we con-

sider the limit �→0, in which case it is given exactly� as

a0
j �

wi→r
�2,L2wr→f

�1,L1

2�
, �31�

where the term wi→f
�k,Lk��� is the decay rate from an initial to a

final state through the emission of one photon, which is
given, in a.u., by �25�

wi→f
�L ��� =

2��j f�
c�L� � j f L ji

1

2
0 −

1

2
�

2


M̄ f ,i
�L
2. �32�

Using this result we can write the term

dh0
LPA

d�1
� �

j�

1

2�

wi→rwr→f

��1 − �R
j��2 + ��R

j�

2
�2 , �33�

and identify h0
LPA as a cascade transition rate contribution.

Applying a similar approach to wTLA given by Eq. �22�,
we obtain a smooth function hTLA as in the LPA. One differ-
ence between the two approaches is in the term of order
���R /2�2, which appears in the denominator of Eq. �25� and
results from considering the infinitesimal quantity � as finite,
i.e., taking the role of a level width ��→��. In the present
evaluation we obtain the function hTLA by replacing �R
→q�R, where q is a parameter that can be made arbitrarily
small. We thus obtain convergence since the difference in
hTLA using q=1 or q=10−2 is in the fifth digit. For q=10−2

and q=10−3 the difference in hTLA is in the ninth digit. So we
conclude that using hLPA defined in Eq. �25� with q=10−2 is
a good approximation for the function hTLA. Another differ-
ence between TLA and LPA is the inclusion of radiative
corrections Re�SE� and VP, which for values of Z as high as
92 changes the value of h from one approach to another in
the second digit. The major difference between the two ap-
proaches is in the integral h0, which in TLA is given by

h0
TLA = �

j�

a0
j�

1

�R
j���R

j� − �t�
, �34�

which comes from the different ways the pole regularization
is done.
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Notice that the terms h0
LPA and h0

TLA are related by

h0
LPA = h0

TLA + �
j�

2�a0
j�

�R
j�

+ O��R
j�� , �35�

which shows that the difference between h0
LPA and h0

TLA is
mainly due to the second term on the left side of Eq. �35�
�since �R

j �1� or by the product of one-photon transitions
�cascade process�.

On the other hand, the integral h1 is given in the TLA
approach by

h1
TLA = �

j�

a1
j� ln��t − �R

j�

�R
j � . �36�

This expression can be obtained from Eq. �30� by taking
�R→0.

Considering that

hTLA = �
0

�t

hTLAd�1, �37�

the decay rate in the TLA, W̄L1,�1,L2,�2

TLA , is given by an expres-
sion similar to Eq. �27�, in which the LPA contributions are
replaced by the corresponding TLA contributions.

As we will see in Sec. III, these differences on the sum of
h and h1 do not carry any sizable difference between the LPA
and TLA methods for low-Z ions, but lead to slight discrep-
ancy for heavier systems.

B. Solution of the Dirac-Fock equation on a B-spline basis set

To make the numerical evaluation we consider that the
atom, or ion, is enclosed in a finite cavity with a radius large
enough to get a good approximation of the wave functions,
with some suitable set of boundary conditions, which allows
for discretization of the continua.

Let us denote by ��n
i �r� , i=1, . . . ,2N� a set of solutions of

the Dirac-Fock equation, where n is the level, i the position
of the solution in the set, and N is the number of functions in
the basis set.

For each n value the set is complete, and �n
i �r� obeys the

equation �30�

�
V�r�

c

d

dr
−

�

R

− � d

dr
+

�

R
� − 2c +

V�r�
c
��n

i �r� =
�n

i

c
�n

i �r� , �38�

where the energy En
i was replaced by �n

i =En
i −mc2. The po-

tential V�r� is given by a Coulomb potential assuming a uni-
form nuclear charge distribution for a finite nucleus and � is
given by Eq. �5�. A complete set spans both positive and
negative solutions. Solutions labeled by i=1, . . . ,N describe
the continuum �n

i �−2mc2 and solutions labeled by i=N
+1, . . . ,2N describe bound states �the few first ones� and the
continuum �n

i �0. For practical reasons, such as easy nu-
merical implementation, this set of solutions is itself ex-
pressed as linear combination of another basis set. We have
chosen the B-spline basis set and we used the derivation of

the solution of Eq. �38� in terms of B splines described by
Johnson et al. �31�.

III. NUMERICAL RESULTS AND DISCUSSION

By taking 	�=0 in Eq. �7� we may calculate the two-
photon decay rates without accounting for radiative correc-
tions. In this case, we have verified with respect to variations
in the gauge parameter �G=0 for velocity gauge and G=
2
for length gauge�, the radius of the cavity �R�, and the basis-
set parameters �the number �ns� and the degree �k� of the B
splines�, the stability and accuracy to six digits on the calcu-
lation of Eq. �10� for a nonresonant states and for a fre-
quency �1.

The parameters used in the calculation of the results pre-
sented in this work are k=9, ns=60, and R=60 a.u.. The
integration over the photon frequency has been performed
using a 15-point Gauss-Legendre algorithm for the nonreso-
nant transitions.

A. Nonresonant transitions

For the nonresonant 2s1/2→1s1/2 and 2p1/2→1s1/2 transi-
tions, we use Eq. �9� for both the decay rate values for vari-
ous multipole combinations ��1L1 ,�2L2� and the frequency
distribution.

The most significant multipole combinations included in
the calculation of the two-photon decay rates of the 2p1/2
→1s1/2 transition are presented in Table I. The magnitudes of
the multipole combinations not listed in this table are, at
least, 4 orders of magnitude smaller than the most significant
E1M1 and E1E2 decay channels.

The values given by Labzowsky et al. in �18� were ob-
tained using expressions similar to the ones used by Gold-
man and Drake �19�. In Ref. �32�, the results were obtained
using nonrelativistic Coulomb Green’s function, which for

TABLE I. MP contributions included in the present calculation
of the total two-photon rate for the 2p1/2→1s1/2 transition and com-
parison between the values obtained in this work �Eq. �17�� and
other theoretical values.

MP

Contribution �s−1�

Z=1 Z=40 Z=92

E1M1 9.676654
10−6 6.027323
107 3.863302
1010

9.667
10−6 a 6.020
107 a 3.859
1010 a

9.677
10−6 b 6.341
107 b 4.966
1010 b

E1E2 6.61179
10−6 4.092020
107 2.358404
1010

6.605
10−6 a 4.088
107 a 2.357
1010 a

6.673
10−6 b 4.374
107 b 3.425
1010 b

M1M2 3.827877
10−17 5.602320
102 7.689142
106

E2M2 9.385470
10−17 1.521687
103 2.834065
107

E2E3 4.095985
10−18 6.608612
101 1.177403
106

Total 1.628845
10−5 1.01195
108 6.225309
1010

aLabzowsky et al. �18�.
bLabzowsky et al. �32�.
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high values of Z such as 92 leads to inaccurate values. The
relative difference between our results and the results in Ref.
�18� is in the range of 0.1–0.4 %. We observe that for the
three studied Z values, more than 99% of the total decay rate
is due to the multipole contributions E1M1 �about 60%� and
E1E2 �about 40%�. The fact that the two multipole combi-
nations E1M1 and E1E2 give almost the same contribution
is somewhat expected since M1 and E2 have the same order
of magnitude in the decomposition of the photon field �24�.
On the other hand, a comparison between the listed most
significant �E1M1� and less �E2E3� significant contributions
reveals that the relative importance of the latter increases
with Z, being 12, 5, and 4 orders of magnitude smaller than
the former for Z=1, Z=40, and Z=92, respectively.

In Table II, we report the two-photon total decay rates for
2p1/2→1s1/2 and 2s1/2→1s1/2 transitions. Enough multipoles
have been included in the calculation of the total two-photon
decay rates to reach an accuracy of six digits. The values for
the 2s1/2→1s1/2 transition differ slightly from the ones in our
previous work �16� due to use of the most recent values of
physical constants �33�, such as the fine-structure constant.

It should be mentioned that the interest in the transition
2p1/2→1s1/2, and other two-photon-forbidden transitions, is
only academic since the transition is suppressed by selection

rules and this channel is in direct competition with an al-
lowed one-photon transition.

To present the spectral �or frequency� distribution for a
specific value of Z, it is convenient to express the results in
��y ,Z� as suggested by Spitzer and Greenstein �2�,

dW

dy
= � 9

210��Z��n��y,Z� Ry, �39�

where y=� /� fi is the fraction of the photon energy carried
by one of the photons and � fi is the energy of the transition.
In case of an even→even �or odd→odd� transition, the ma-
jor multipole contribution 2E1 scales as Z6 and, conse-
quently, n=6. For a even→odd �or odd→even� transition,
both E1M1 and E1E2 scale as Z8.

In Fig. 1, the frequency distributions of the multipole con-
tributions E1M1, M1E1, E1E2, and E2E1 for the transition
2p1/2→1s1/2 are presented. Although each one of these four
most significant contributions is asymmetric, the sum of each
of the pairs �E1M1,M1E1� and �E1E2,E2E1� is symmetric
around y=0.5. Therefore, the total frequency distribution is
also symmetric around the y=0.5 value, as can be seen in
Fig. 2, in which we also notice the Z dependence of the
shape predicted by Goldman and Drake �19� for the
2s1/2-1s1/2 transition.

B. Resonant transitions

After this brief discussion of the nonresonant 2s1/2
→1s1/2 and 2p1/2→1s1/2 two-photon transitions, we now
turn to the evaluation of the differential total decay rates for
the higher excited ionic states. In Fig. 3, for example, we
display the spectral distribution for the 3s1/2→1s1/2 transi-
tion. We notice several features that are not found in the
corresponding plot for the 2s1/2→1s1/2 transition. In particu-

TABLE II. Total two-photon decay rates �s−1� for the transitions
2s1/2→1s1/2 and 2p1/2→1s1/2 and comparison between the values
obtained in this work �Eq. �20�� and other theoretical values.

Total decay rate �s−1�

Z=1

f

i

2s1/2 2p1/2

1s1/2 8.229059 1.628845
10−5

8.2202a 1.6272
10−5 a

1.6350
10−5 b

Z=40

f

i

2s1/2 2p1/2

1s1/2 3.198851
1010 1.01195
108

3.1954
1010 a 1.010
108 a

1.071
108 b

Z=92

f

i

2s1/2 2p1/2

1s1/2 3.835978
1012 6.225309
1010

3.8216
1012 a 6.216
1010 a

8.391
1010 b

aLabzowsky et al. �18�.
bLabzowsky et al. �32�.

FIG. 1. �Color online� Spectral distribution functions ��y ,Z�,
defined by Eq. �39�, of the M1E1 �dotted line�, E2E1 �long-dashed
line�, E1M1 �thin solid line�, E1E2 �short-dashed line�, M1E1
+E1M1 �thick solid line�, and E2E1+E1E2 �dash-dotted line� con-
tributions for the transition 2p1/2→1s1/2 at Z=40. The variable y
=� /� fi is the fraction of the photon energy carried by one of the
two photons. Both ��y ,Z� and y are dimensionless quantities.
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lar, the �3s1/2→1s1/2
�y ,Z� function exhibits sharp peaks, which

are due to the 3s1/2→2p1/2,3/2→1s1/2 cascade. Furthermore,
we observe that at Z=92 each of the two resonances splits
into two due to the spin-orbit interaction and the frequency
gap in each pair is exactly equal to the difference between
the states 2p3/2 and 2p1/2, respectively. In addition, besides
the zeros at the end points, there are two more minima at y
=0.219 733 and 0.780 267. Such minima were observed in
two-photon spectra by Tung et al. �34,35�, and they were
referred to as “transparencies.” In Table III we list the trans-
parencies for several two-photon transitions obtained in this
work by other authors. Their relative differences are smaller
than 0.01% for Z=1. To the best of our knowledge, there are
no published data for other Z values. In Fig. 4 we plot the

transparency frequency ytransp of the transition 3s1/2→1s1/2
as function of Z. We notice that the transparency values scale
with Z2 as the transition energy.

In contrast to the 3s1/2→1s1/2, the spectral distribution for
the 3d3/2→1s1/2 transition, plotted in Fig. 5, exhibits only the
resonant behavior as mentioned in Ref. �34�, which is due to
the fine-structure splittings between 2p1/2 and 2p3/2 and 3p1/2
and 3d3/2 states.

In Fig. 6, we plot the frequency distribution of the multi-
pole E1M1 contribution for the 2p3/2→1s1/2 transition.
Along with the resonances, the shape of the curve is similar
to the one in Fig. 1 for the 2p1/2→1s1/2 transition. In the
E1M1 case, the resonance in the low-frequency side occurs
when the energy of one of the photons is equal to the energy
difference E2p3/2

−E2s1/2
, while the resonance in the high-

frequency side occurs when the energy of one of the photons
is equal to the energy difference E2p3/2

−E2p1/2
.

The list of the radiative corrections contributions for some
states, which were included in Eq. �12� to achieve an accu-

FIG. 2. �Color online� Spectral distribution functions ��y ,Z�,
defined by Eq. �39�, for the transition 2p1/2→1s1/2 at Z=1 �solid
line�, 40 �dashed line�, and 92 �dotted line�. The variable y
=� /� fi is the fraction of the photon energy carried by one of the
two photons. Both ��y ,Z� and y are dimensionless quantities.

FIG. 3. �Color online� Spectral distribution functions ��y ,Z�,
defined by Eq. �39�, of the 2E1 contribution for the transition
3s1/2→1s1/2 at Z=1 �solid line�, 40 �dotted line�, and 92 �dashed
line�. The variable y=� /� fi is the fraction of the photon energy
carried by one of the two photons. Both ��y ,Z� and y are dimen-
sionless quantities.

TABLE III. Transparencies for several two-photon transitions.
The variable y=�1 /� fi is the fraction of the photon energy carried
by one of the two photons.

Transition y�Z=1� y�Z=40� y�Z=92�

3s1/2→1s1/2 0.780267 0.77628 0.7518

0.7803a

0.7802b

0.7803c

4s1/2→1s1/2 0.737322 0.73273 0.7034

0.7373a

0.7373c

6s1/2→1s1/2 0.703220 0.70497 0.6725

0.7098a

0.7079b

0.7098c

aFlorescu et al. �44�.
bQuattropani et al. �45�.
cTung et al. �34�.

FIG. 4. Transparency frequency ytransp of the transition 3s1/2
→1s1/2 as function of the atomic number Z.
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racy of at least six digits, is included in Table IV. The values
for the real part of self-energy and vacuum polarization were
obtained from the MCDF code developed by Desclaux , In-
delicato, and collaborators �36–38�. The level width �� is
equal to the sum of the one-photon partial level widths, given
by Eq. �32�.

As seen from Eq. �17�, by performing the integration of
the differential transition probabilities over energy of the
emitted photon, we may finally obtain the total two-photon
decay rates. Equation �27� shows that these rates can be
traced back to h functions. In Table V, we list the sums of the
terms hLPA and h1

LPA given by Eqs. �28� and �30�, required
for the evaluation of the decay rates for transitions from
bound states with ni=3 in the LPA, including the most rel-
evant multipoles, radiative corrections, and using q=1. The
corresponding values obtained in TLA are listed in Table VI.
By comparing the values in these two tables, we conclude
that they differ less than 0.001% for Z=1, 2.3% for Z=40,
and 10% for Z=92, which shows the importance of the ra-
diative effects.

In Tables VII and VIII, we list the most relevant multipole
combinations included in the calculation of the two-photon
decay rate for the 2p3/2→1s1/2 and 3s1/2→2s1/2 transitions.
We notice that for Z=1 the decay rate values of some mul-
tipole contributions, such as the E1M1 and the E1E2, listed
in Table VII, are similar to the corresponding ones for the
transition 2p1/2→1s1/2. Nevertheless, this is not the case for
Z=40 and Z=92. This is due to the fact that the energy
separation between 2p3/2 and 2s1/2 increases with Z and, con-
sequently, the decay rate contribution from the cascade pro-
cess also increases. This aspect is also evident in Fig. 7,
where the multipole combination E1M1 decay rate WE1M1,
obtained in the LPA and TLA, is plotted as a function of the
atomic number Z for the 2p1/2,3/2→1s1/2 transitions.

The resonant behavior of the 2p3/2→1s1/2 transition is
strongly suppressed for low Z values. We notice that for
lower Z values both solid �LPA� and dotted �TLA� lines have
similar values, which is a consequence of the fact that non-
resonant contribution �related to integral of “background”� in
both transitions �M1E1 in Figs. 1 and 6� is much higher than
the cascade term �dashed line�. For higher values of Z, we
notice that the solid line follows the dashed line. This could
be explained by the different Z scalings of the two contribu-
tions. The background scales as Z8 and the cascade term,
given by 2p3/2→2s1/2→1s1/2, scales as Z10. The dash-dotted
�decay rate of 2p1/2-1s1/2� and dotted lines are almost coin-
cident in low-Z region and diverge from about Z=40, which
is evidence of the relativistic effects in the np1/2 and np3/2.

In Table IX we report two-photon total decay rates for
transitions from initial level with ni=3, obtained in the LPA
considering the most relevant multipole combinations in Eq.
�20�. The results of Tung et al. �34�, presented in this table,
were calculated using the analytical formulas described in
Ref. �34�, which were obtained through the so-called implicit
technique that describes the intermediate states by a differ-
ential equation. We restrict ourselves to listing the two-
photon decay rates obtained in the LPA because in some
cases they are very different from the TLA ones when the
cascade term in Eq. �35� dominates.

One important aspect concerning total decay rates of reso-
nant transitions is the calculation of the nonresonant decay
rate without interference from resonant intermediate states.
Cresser et al. �39�, using a fourth-order perturbation term
development, obtained an expression similar to Eq. �35.21�
of Ref. �24�, where the sum over the intermediate states con-
siders only the states above the initial one, avoiding in this
way the resonant denominators, and found the value of
8.2197 s−1 for the 3s1/2→1s1/2 transition rate. Florescu �40�,
using the same procedure, obtained the value of
8.225 81 s−1. The nonrelativistic limit of Eq. �3� in the Cou-
lomb gauge gives the same expression as the one reported by
Cresser et al. �39� and, consequently, the same result.

Jentschura et al. �41� pointed out that the procedure of
Cresser et al. �39� is not gauge invariant since in a second-
order evaluation the sum over the complete spectrum of in-
termediate states is required to have equivalence between
two different gauges. �More details are given in the appendix
of Ref. �19�.�

Chluba and Sunyaev �42� developed another method to
isolate the nonresonant contribution. In their method, the

FIG. 5. �Color online� Spectral distribution functions ��y ,Z�,
defined by Eq. �39�, of the 2E1 contribution for the transition
3d3/2→1s1/2 at Z=1 and 92. For the legend, see Fig. 3 caption.

FIG. 6. �Color online� Spectral distribution functions ��y ,Z�,
defined by Eq. �39�, of the E1M1 contribution for the transition
2p3/2→1s1/2 at Z=1, 40, and 92. For the legend, see Fig. 3 caption.
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sum over all the intermediate states is split up into resonant
and nonresonant states. Although one can make conclusions

for the difference between a pure cascade process, i.e., con-
sidering only the resonant states with a Lorentzian profile,

TABLE IV. Radiative corrections for several states in a.u.

Z=1

2s1/2 2p1/2 2p3/2 3s1/2 3p1/2 3p3/2

Re�SE�+VP=
En 1.5867
10−7 −1.9542
10−9 1.9095
10−9 4.7376
10−8 −5.5003
10−10 6.4103
10−10

Im�SE�=�n /2 1.9905
10−16 1.5162
10−8 1.5162
10−8 1.5281
10−10 4.5911
10−9 4.5911
10−9

Z=40

2s1/2 2p1/2 2p3/2 3s1/2 3p1/2 3p3/2

Re�SE�+VP=
En 8.6991
10−2 −1.4913
10−3 7.0905
10−3 2.6401
10−2 −1.3587
10−4 2.3058
10−3

Im�SE�=�n /2 1.4690
10−6 3.9208
10−2 3.8037
10−2 4.6373
10−4 1.1689
10−2 1.1627
10−2

Z=92

2s1/2 2p1/2 2p3/2 3s1/2 3p1/2 3p3/2

Re�SE�+VP=
En 1.7995 2.4965
10−1 3.2252
10−1 5.7911
10−1 9.3654
10−2 1.1027
10−1

Im�SE�=�n /2 4.7468
10−3 1.1417 9.5531
10−1 2.7061
10−2 3.1125
10−1 3.0444
10−1

TABLE V. Sums of the terms hLPA and h1
LPA, given by Eqs. �28� and �30�, respectively, for transitions

from bound states with ni=3. These values were obtained using the radiative corrections in Table IV and
q=1.

Z=1

f

i

3s1/2 3p1/2 3p3/2 3d3/2 3d5/2

1s1/2 2.342758 3.966941
10−6 3.230044
10−6 3.706845 3.706854

2s1/2 6.452435
10−2 4.925801
10−8 4.926319
10−8 7.762447
10−4 7.750004
10−4

2p1/2 2.894796
10−8 4.660148
10−2 4.414498
10−4 3.890718
10−8 3.049476
10−9

2p3/2 5.789457
10−8 8.832671
10−4 4.704893
10−2 1.326766
10−8 4.912187
10−8

Z=40

f

i

3s1/2 3p1/2 3p3/2 3d3/2 3d5/2

1s1/2 7.813052
109 2.872804
107 2.002016
107 1.436349
1010 1.441446
1010

2s1/2 2.247363
108 2.812583
105 3.395829
105 6.369235
106 −1.183514
106

2p1/2 1.756667
105 1.797278
108 3.117290
106 3.012475
105 2.478360
104

2p3/2 3.370367
105 8.545466
106 2.168435
108 8.878266
104 3.231816
105

Z=92

f

i

3s1/2 3p1/2 3p3/2 3d3/2 3d5/2

1s1/2 −5.316586
1010 3.647738
1010 2.048248
1011 1.646524
1012 1.637676
1012

2s1/2 7.443297
109 1.683735
108 6.928218
108 1.135193
1010 6.013487
109

2p1/2 9.548939
107 2.314262
1010 3.637390
109 4.841719
108 1.534768
107

2p3/2 1.554405
108 5.312377
109 5.376493
1010 1.660640
108 3.122434
108
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and the two-photon emission given by all intermediate states
�resonant and nonresonant�, the definition of a nonresonant
two-photon emission is unclear from the physical point of
view.

The values listed in Table VI were used to calculate the
nonresonant radiative corrections presented in Table X �set-
ting q=10−3�. We notice that for the 3s1/2→1s1/2 transition
the values calculated in this work differ from the values ob-
tained by Jentschura �22� by 0.01% for Z=1 and 0.1% for
Z=40.

The reason for some values in Table X being negative,
such as the 3s1/2→1s1/2 transition correction for Z=92, is
due to the evaluation of the two-loop self-energy, which can
be negative as any negative correction to the decay rates
�22�. In Fig. 8, we represent the values of the nonresonant
radiative correction for several values of atomic number.

IV. CONCLUSIONS

By applying a finite basis set constructed from B splines
to solve the Dirac equation, we have been able to calculate

TABLE VI. Sums of the terms hTLA and h1
TLA, given by Eqs. �37� and �36�, respectively, for transitions

from bound states with ni=3. These values were obtained without radiative corrections, using q=10−2 and
following the approach of Jentschura �22�.

Z=1

f

i

3s1/2 3p1/2 3p3/2 3d3/2 3d5/2

1s1/2 2.342751 3.966941
10−6 3.230044
10−6 3.706845 3.706854

2s1/2 6.452428
10−2 4.925765
10−8 4.926337
10−8 7.762447
10−4 7.750004
10−4

2p1/2 2.894793
10−8 4.660148
10−2 4.414498
10−4 3.890718
10−8 3.049476
10−9

2p3/2 5.789453
10−8 8.832670
10−4 4.704892
10−2 1.326766
10−8 4.912188
10−8

Z=40

f

i

3s1/2 3p1/2 3p3/2 3d3/2 3d5/2

1s1/2 7.799875
109 2.872822
107 2.000453
107 1.436350
1010 1.441394
1010

2s1/2 2.246945
108 2.802618
105 3.400453
105 6.369529
106 −1.180529
106

2p1/2 1.756241
105 1.797280
108 3.116223
106 3.080467
105 2.477876
104

2p3/2 3.369973
105 8.514049
106 2.167575
108 8.872957
104 3.233897
105

Z=92

f

i

3s1/2 3p1/2 3p3/2 3d3/2 3d5/2

1s1/2 −5.843073
1010 3.632557
1010 2.037502
1011 1.648325
1012 1.637187
1012

2s1/2 7.703355
109 1.624996
108 7.340967
108 1.135843
1010 6.400342
109

2p1/2 9.552389
107 2.313307
1010 3.630875
109 4.857978
108 1.528289
107

2p3/2 1.556356
108 5.270175
109 5.351656
1010 1.655470
108 3.134378
108

TABLE VII. Same as Table I for the transition 2p3/2→1s1/2.

MP

Contribution �s−1�

Z=1 Z=40 Z=92

E1M1 9.700994
10−6 3.547078
108 2.938208
1012

E1E2 6.612242
10−6 4.597372
107 1.113120
1011

E1M3 1.761532
10−16 3.264236
103 1.216566
108

M1M2 2.450145
10−15 4.265433
104 1.129082
109

E2M2 7.227055
10−17 1.337970
103 4.923824
107

E2E3 4.096369
10−18 7.718214
101 1.216566
108

Total 1.631323
10−5 4.007255
108 3.050699
1012

TABLE VIII. Same as Table I for the transition 3s1/2→2s1/2.

MP

Contribution �s−1�

Z=1 Z=40 Z=92

2E1 6.452436
10−2 3.167606
108 1.850546
1012

E1M2 6.725935
10−14 1.150220
103 3.359725
108

2M1 1.038556
10−14 1.241685
102 1.031596
106

2E2 1.456030
10−14 1.584123
102 8.482772
105

2M2 1.901242
10−27 6.068107
10−5 4.479357
103

Total 6.452436
10−2 3.167620
108 1.85088
1012
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the decay rates in the line profile and QED based on the
two-loop self-energy approaches for all two-photon transi-
tions from initial states with n=2 and 3 for a set of hydro-
genlike ions with nuclear charge ranging from Z=1 to Z
=92. In these calculations the most significant multipoles
contributions were considered, such as the 2E1, E1M1, and
2M1. We have also studied the spectral distributions of sev-
eral transitions, which exhibit specific structures, such as
resonances and transparencies. The latter reveal that two-
photon emission is not possible at certain frequencies. The
numerical results obtained in this work are in good agree-
ment with other nonrelativistic and relativistic theoretical re-
sults.

The QED approach gives a better contribution for a pure
coherent nonresonant two-photon emission than the methods
of Cresser et al. �39� and Chluba and Sunyaev �42�, not only
because it is derived from physical arguments, but also due
to the fact that it can be obtained from the line profile ap-
proach by removing the cascade process and setting the ra-
diative corrections to zero. Therefore, it is a useful technique
in theoretical evaluations that require a coherent two-photon

FIG. 7. �Color online� Multipole combination E1M1 decay rate
values WE1M1, obtained in the LPA and TLA, as functions of the
atomic number Z for the transitions 2p1/2→1s1/2 �dot-dashed line�
and 2p3/2→1s1/2 �solid and dotted lines�. The cascade term in LPA
is represented by the dashed line.

TABLE IX. Total two-photon decay rates �s−1� in the LPA, given by Eq. �20�, for transitions from bound
states with ni=3.

Total decay rate �s−1�

Z=1

f

i

3s1/2 3p1/2 3p3/2 3d3/2 3d5/2

1s1/2 6.382020
106 3.431055
101 3.431043
101 7.213121
107 7.212970
107

2s1/2 6.452436
10−2 4.925806
10−8 4.965339
10−8 7.762774
10−4 7.751032
10−4

6.4527
10−2 a 7.7589
10−4 a

2p1/2 2.894796
10−8 4.6601485
10−2 4.414514
10−4 3.890719
10−8 3.070354
10−9

4.7484
10−2 a

2p3/2 5.789457
10−8 8.832671
10−4 4.704893
10−2 1.326768
10−8 4.912603
10−8

Z=40

f

i

3s1/2 3p1/2 3p3/2 3d3/2 3d5/2

1s1/2 1.940069
1013 1.465902
1011 1.459393
1013 1.909365
1014 1.846466
1014

2s1/2 3.167620
108 1.249212
106 6.204266
106 4.239616
108 1.256275
109

2p1/2 2.488771
105 1.797286
108 2.342989
107 4.767668
105 1.268419
106

2p3/2 3.370367
105 8.545466
106 2.648671
108 4.278490
105 3.734221
105

Z=92

f

i

3s1/2 3p1/2 3p3/2 3d3/2 3d5/2

1s1/2 1.067206
1015 5.649957
1013 4.187334
1013 6.170663
1015 5.175621
1015

2s1/2 1.850884
1012 4.581582
1010 1.219838
1011 5.062691
1012 1.123469
1013

2p1/2 8.893987
109 2.336202
1010 2.576780
1011 9.697069
109 5.543826
1010

2p3/2 1.554405
108 5.312377
109 1.059702
1012 1.959473
1010 1.239531
109

aTung et al. �34�.
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decay rate rather than the sum of this term along with the
sequential one-photon decay rate �cascade process�.

We conclude that the line profile approach is the most
suitable for comparison with experimental results since it
includes the terms associated with cascade process as well as
radiative corrections.

We end this conclusion by emphasizing that the method of
integration used to obtain one-electron decay rates �in both
approaches and for both nonresonant and resonant transi-
tions� can be adapted perfectly to ions with two or three
electrons.
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APPENDIX

In order to make the task of deriving the matrix elements
less cumbersome, further simplifications can be done in the

TABLE X. Total nonresonant two-photon corrections �s−1� in the TLA, given by Eq. �20�, for transitions
from bound states with ni=3 and comparison between the values obtained in this work and other theoretical
values.

Total nonresonant correction �s−1�

Z=1

f

i

3s1/2 3p1/2 3p3/2 3d3/2 3d5/2

1s1/2 2.082562 2.981766
10−6 2.98676
10−6 1.042768 1.042835

2.082853a 1.042896b

2s1/2 6.452428
10−2 4.925721
10−8 4.926293
10−8 7.762407
10−4 7.749962
10−4

6.4530
10−2 a

2p1/2 2.894793
10−8 4.6601486
10−2 4.414498
10−4 3.890718
10−8 3.049476
10−9

2p3/2 5.789453
10−8 8.832670
10−4 4.704892
10−2 1.326767
10−8 4.912188
10−8

Z=40

f

i

3s1/2 3p1/2 3p3/2 3d3/2 3d5/2

1s1/2 6.560351
109 2.224659
107 1.885681
107 3.456276
109 3.874677
109

1s1/2 6.554
109 c

2s1/2 2.245669
108 2.793230
105 3.395425
105 5.920457
106 −2.764917
106

2p1/2 1.755215
105 1.797280
108 3.088316
106 3.078375
105 2.349043
104

2p3/2 3.369973
105 8.514049
106 2.166915
108 8.842254
104 3.233689
105

Z=92

f

i

3s1/2 3p1/2 3p3/2 3d3/2 3d5/2

1s1/2 −3.842113
1011 2.891626
1010 7.976296
1010 8.916260
1010 3.271857
1011

2s1/2 5.570205
109 1.258571
108 7.132981
108 7.613467
109 −5.085413
109

2p1/2 8.535648
107 2.313315
1010 3.386706
109 4.767493
108 −5.866950
107

2p3/2 1.556356
108 5.270175
109 5.253150
1010 1.539227
108 3.127867
108

aJentschura �22�.
bJentschura �46�.
cJentschura and Surzhykov �23�.

AMARO et al. PHYSICAL REVIEW A 79, 062504 �2009�

062504-12



matrix elements �Eqs. �14� and �16�� by noticing that the
longitudinal part of the operator ãLM

��� �43�,

�ãLM
�−1��� =

c

i�
� · ��L,M , �A1�

can be written using a commutation relation as

�ãLM
�−1��� =

c

i�
�HD,�L,M� , �A2�

where HD stands for the Dirac Hamiltonian and �L,M are the
components of the spherical tensor of rank L resulting from
the multipole expansion of the potential Aj

�. The reduction of
Eq. �A2� to radial integrals along with the scalar term of the
potential Aj

� leads to the following expression for the radial

element matrix M̄ f ,i
�−1,L�:

M̄ f ,i
�−1,L� = G�2L + 1��� + � fi

�
�J�L�, �A3�

where � fi is the energy of the one-photon transition. This
term is gauge independent for one photon, as demonstrated
by Grant �25�, since � fi=−�. Considering Eq. �A2�, the ra-

dial matrix element M̄ f ,i
�1,L� can also be rewritten as

M̄ f ,i
�1,L� =

�2L + 1�

L�L + 1�

�− �� f − �i�IL−1
+ + LIL−1

− + L
� fi

�
JL� .

�A4�

The explicit expressions of the derivatives of the matrix
elements �Eqs. �A4�, �15�, and �A3�� are given by

d

d�
�M̄ f ,i

�1,L����� =
2L + 1


L�L + 1�
��� f − �i��IL

R +
IL−1

+

�
�

− L
IL−1

−

�
−

� fi

�2 L�L + 2�J�L�� , �A5�

d

d�
�M̄ f ,i

�0,L����� =
2L + 1


L�L + 1�
�� f + �i��IL−1

R −
�L + 1�

�
IL

+� ,

�A6�

and

d

d�
�M̄ f ,i

�−1,L����� = G�2L + 1���� + � fi

�
�JR

�L−1�

−
1

�2 ��L + 1�� + �L + 2�� fi�J�L�� ,

�A7�

where the integrals JR
�L� and IL

R are defined by

IL
R =

1

c
�

0

�

�PfQi + PiQf�rjL��r

c
�dr , �A8�

JR
�L� =

1

c
�

0

�

�PfPi + QfQi�rjL��r

c
�dr . �A9�

Using these expressions, along with the definitions given
by Eq. �26�, we were able to obtain the coefficients a0

j and a1
j

listed in Table XI for the transition 3s1/2→1s1/2 for ions with
Z=1, 40, and 92.
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