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A scheme for generating states of three free electrons entangled with respect to their spins is suggested. It
consists of sequential ejection of two Auger electrons �e2 and e3� in the nonradiative decay of an inner-shell
vacancy created due to the emission of photoelectron e1 from an atom, say A. In the absence of spin-orbit
interaction, the entanglement among the spin angular momenta of the flying �e1 ,e2 ,e3� is generated simply by
the Coulomb interaction experienced by them inside A. Their states are classified according to the hierarchic
structure suggested by Dür, Cirac, and Tarrach �Phys. Rev. Lett. 83, 3562 �1999�; Dür and Cirac, Phys. Rev.
A 61, 042314 �2000��. The generation of fully separable, 1-electron biseparable, fully inseparable, or “1→2
entangled” tripartite �in addition to various kinds of bipartite� states is shown to be completely determined only
by the spin multiplicities of the electronic states of A and of its ionic species �A+�

,A2+�
,A3+� participating in the

suggested scheme. The entanglement of three electrons is Greenberger-Horne-Zeilinger type. The experimental
characterization of these states is fully achieved merely by the measurements of the energies of �e1 ,e2 ,e3�,
without requiring any entanglement witness or other similar protocols hitherto developed in quantum
information.
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I. INTRODUCTION

Some of the protocols, hitherto developed in quantum in-
formation �QI�, require for their successful implementations
entangled states of two or more particles shared among dif-
ferent parties located at distant places �see, for example,
�1–3��. In the case of discrete variable entanglement, each of
these particles must at least be a qubit, i.e., it must have—at
least—two independent states simultaneously accessible to
it. Due to the intense efforts made during the last two de-
cades, the generation, detection, and quantification of bipar-
tite entanglement of two qubits are now well understood—
both experimentally as well as theoretically.

However, our present knowledge of these properties for
the entangled states of three or more particles is yet far from
satisfactory and/or complete. The investigations carried out
hitherto have already shown that the entanglement of more
than two particles is not merely an extension of its bipartite
counterpart but has instead several new as well as different
properties which are advantageous, for example, in super-
dense coding �4�, quantum cloning �5�, teleportation �6�, “1
→N quantum telecloning” �i.e., quantum teleportation with
one sender and N receivers� �7�, etc. Indeed, Koike et al. �8�
already experimentally demonstrated “1→2 quantum tele-
cloning” of optical coherent states. The multipartite en-
tangled states, in addition, are needed also to study QI at
more fundamental levels. Among the experimentally studied
entanglement of three or more qubits in the form of photons
�9�, trapped ions �10�, or cold atoms on an optical lattice
�11�, the parametric down conversion �PDC� �9� is
probably—hitherto—the most successful and widely used
method for producing entangled states of two or more pho-
tonic qubits.

Although, photons are known to be excellent carriers of
information—nothing can travel faster than a photon—they
are, however, not suitable for storing information for a long

time and detection of a photon, in addition, always leads to
its destruction unless one is prepared to perform quantum
nondemolition-type �12� extremely difficult experiments. On
the other hand, particles with nonzero rest mass can interact
and be detected without being destroyed, in addition to being
capable of storing information for long durations. Even, oth-
erwise, it is always desirable to perform the above-
mentioned �4–8� and other similar beautiful experiments
with particles possessing rest mass different from zero.

At the minimum unit of multipartite entanglement, it re-
quires entangled states of three qubits of rest mass different
from zero shared among parties at separately addressable dis-
tant locations. Two of the possible ways for achieving this
are: first, one tries to entangle qubits which are already at
distant places. Son et al. �13� entangled two remote qubits
with the help of a bipartite continuous variable state. Dos
Reis and Sharma �14� proposed this �13� field-mediated ap-
proach to generate shared tripartite entanglement between
two-trapped atoms present together in the same cavity with
one party and a single-trapped atom in a remote laboratory
owned by another party. However, it remains yet to be seen
whether this field-mediated approach can entangle qubits
kept at more than two different locations. The other method
of producing minimum unit of shared multipartite entangle-
ment consists of sending one qubit each to all the three par-
ties from a single source of tripartite entanglement. This, in
fact, is the approach used by Koike et al. �8� for generating
tripartite photonic entanglement of continuous variables
shared by three different remote parties participating in their
1→2 quantum telecloning experiment. The success of this
second approach depends, obviously, on the weakness of the
coupling of the shared tripartite entanglement with the envi-
ronment so that the dissipation and decoherence have mini-
mal effects, while the three qubits are flying away to their
respective destinations from their common source of genera-
tion.

PHYSICAL REVIEW A 79, 062501 �2009�

1050-2947/2009/79�6�/062501�18� ©2009 The American Physical Society062501-1

http://dx.doi.org/10.1103/PhysRevA.79.062501


It has already been proposed �15� that electron spin as a
qubit can be used in quantum computation �1–3�. Conse-
quently, the creation of a solid-state quantum computer based
on spin qubits has already been suggested �1–3,16� in spin-
tronics �i.e., active manipulation of the spin degree of free-
dom of electrons in solid-state environment� �17�. For use of
electrons in quantum communication �1–3,18�, one requires,
on the other hand, two or more entangled—but mobile—
electrons which are separately addressable because of their
spatial separation. In order to have “on-chip” quantum com-
munication, a number of theoretical proposals �18–21� for
electron entanglers have hitherto been made in spintronics.
For example, extractions of a Cooper pair from a supercon-
ductor �20� or of the singlet ground state of a quantum dot
with an even number of electrons �21� are some of the meth-
ods which have already been investigated in spintronics.

There are several processes in atomic and molecular phys-
ics which are capable of producing two or more spatially
separated electrons moving freely in space. These processes
can equally take place in solid, liquid, and gaseous phases of
matter. For example, the presently available synchrotron ra-
diation is very widely and effectively being used for ejecting
an inner-shell electron from matter into the continuum. This
departed electron is called photoelectron. The resulting posi-
tively charged ion �known as photoion� with a vacancy in
one of its inner shells is in a highly unstable state. Auger �22�
discovered that this excited ion relaxes either radiatively by
emitting a photon or nonradiatively in the emission of a sec-
ondary �called Auger� electron. For light elements �atomic
number less than 26�, nonradiative decay is the dominant
process for photoions with a vacancy in their K shell �23�.
The validity of this two-step model �called two-step double
photoionization �2-DPI�� for the sequential emission of a
photoelectron and an Auger electron is well established if the
lifetime of the excited photoion is longer than the time taken
for photoionization or if the kinetic energy of the photoelec-
tron is more than that of the Auger electron. Auger spectros-
copy has since long been in use both in basic research and
material science �24�. The coincidence detection of both
electrons emitted in 2-DPI has proved to be useful in study-
ing solid as well as diluted species and go beyond the two-
step description �25–28�. Yet, the entanglement properties of
the spin state of a photo-Auger-electron pair emitted from an
atom �29� or a rotating linear molecule �30� in 2-DPI were
investigated only very recently.

A vacancy in the first accessible inner shell of matter usu-
ally decays by the emission of a single Auger electron �31�;
but the decay of a vacancy in the deep inner shell may lead
to the emission of two or more Auger electrons. These more
than one secondary electrons are emitted sequentially in a
cascade Auger �CA� decay giving rise to a structured energy
spectrum. Here, each Auger electron has a discrete kinetic
energy—independent of the energy of the ionizing photon—
which is determined from the energy difference between the
initial, intermediate, and final states. The CA emission has
hitherto been observed �32–37� in various kinds of gases
�e.g., in the decay of a vacancy in the 3d �32,33� or 4d
�33–35� shell of Xe, 3d shell of Kr �33�, 2p shell of Ar �36�,
4d shell of Cs �37�, etc.�. The CA decay is usually described
by an extension of the two-step model used for 2-DPI by

introducing consecutive decay steps, each emitting one more
electron until the internal energy of the residual ion is no
longer sufficient to emit further secondary electrons. The va-
lidity of this multistep model for describing CA is, however,
applicable if intermediate levels with sufficiently long life-
time exist. If these intermediate levels do not exist, two or
more secondary electrons have to be simultaneously emitted.
This process was called �38� “double Auger” decay for the
simultaneous emission of two Auger electrons.

In the present paper, we analyze the entanglement prop-
erties of the spin state of three particles consisting of a pho-
toelectron �hereafter called e1� plus two secondary electrons
�e2 and e3� emitted in the CA decay of an atom, say A.
�Unless stated otherwise, hereafter, we call this process as
three-step triple photoionization �3-TPI�.� Thus, this paper
presents a realistic study which can readily be performed in a
laboratory of the spin state of three flying qubits, possessing
rest mass different from zero, generated from a single source.
In addition, we show that there is no coupling at all between
the entanglement of �e1 ,e2 ,e3� and the environment external
to the target atom A. The three electrons �e1 ,e2 ,e3� can,
therefore, be made to fly �with a suitable combination of
electric and magnetic fields� to any locations in any desired
directions �for performing experiments such as 1→2 quan-
tum telecloning �7,8�, etc.� without affecting there entangle-
ment properties due to the harmful effects of dissipation and
decoherence.

The entanglement of �e1 ,e2 ,e3� is analyzed according to
the hierarchic classification suggested in Refs. �39,40� by
calculating the partial transpose �41,42� of their tripartite
state with respect to each of the three electrons and concur-
rences �43,44� of the three density matrices �DMs� obtained
by tracing the tripartite DM over the photoelectron e1 or
either of the two Auger electrons �e2 ,e3�. Simple conditions
based on the spins of the atomic species participating in a
3-TPI process of any generic atom A are developed for iden-
tifying analytically tripartite states of �e1 ,e2 ,e3� which
�39,40� are fully separable, 1-qubit biseparable, fully insepa-
rable, or “1→2 entangled.” Pairs of �e1 ,e2�, �e2 ,e3�, and
�e3 ,e1� in Bell �i.e., pure, maximally entangled�, maximally
chaotic, Werner �i.e., mixed entangled or separable�, and
non-Werner states are also shown to exist. Expressions in-
volving spins of the atomic species are obtained to charac-
terize these states and to calculate their concurrences �43,44�
for quantifying entanglement of a bipartite state formed of
electrons �e1 ,e2�, �e2 ,e3�, or �e1 ,e3�. A brief account of some
of these results was presented in Ref. �45�.

Section II contains preliminaries related to various defini-
tions used in the rest of this paper and introduces the density
operator �DO� for a spin state of �e1 ,e2 ,e3� formed in 3-TPI
of an atom A. A detailed derivation of this tripartite DO is
given in the Appendix of this paper. The Appendix also gives
a simple method for calculating from this DO the �8�8�
DM for a state of the three electronic qubits �e1 ,e2 ,e3�
formed in the 3-TPI of any generic atom A. In Sec. III, we
analyze the properties of this DM and show as to why the
entanglement properties of a tripartite state of �e1 ,e2 ,e3�
generated using the scheme suggested in this paper are not
coupled to the environment external to the atom A and,
hence, immune to dissipation and decoherence effects. The
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classification of these states according to the hierarchic
scheme suggested in �39,40� and calculation of their proper-
ties is presented in Sec. IV. In the last subsection of the Sec.
IV, we suggest experiments on 3-TPI which can realistically
be performed, for example, on Xe �33–35� and Cs �37� atoms
in a laboratory for generating tripartite states of �e1 ,e2 ,e3�
possessing desired properties. Finally, Sec. V contains con-
clusions of the present study.

II. PRELIMINARIES

Let us assume that �0� represents the antisymmetrized ini-
tial electronic state of our atomic target A. If �1�, �2�, and �f�
are taken to be the antisymmetrized electronic states of the
respective excited photoion A+�

, excited dication A2+�
, and of

the triply charged residual positive ion A3+ of this target then
the three well-known consecutive steps in a 3-TPI process
are �32–37�

�r����r� = 1,mr� + A�0� → A+�
�1� + e1��1, û1,k�1� , �1a�

A+�
�1� → A2+�

�2� + e2��2, û2,k�2� , �1b�

and

A2+�
�2� → A3+�f� + e3��3, û3,k�3� . �1c�

Here, in the first step �1a�, �r �with the subscript “r” standing
for radiation� represents the incident photon of frequency �r
and, hence, energy Er=h�r. This photon is absorbed by one
of the inner-shell electrons of the target atom A leading to the
latter’s ionization. For photons possessing such required en-
ergies, it is usually sufficient �46� to treat the ionization step

�1a� in the electric-dipole �E1� approximation. Then, ���r�=1
represents the angular momentum of �r in the E1 approxi-
mation. The parameter mr in �1a� specifies the polarization of
the incident radiation: mr=0 for linear polarization, mr= +1
or −1 for a photon possessing right or left circular polariza-
tion, respectively; unpolarized electromagnetic radiation, on
the other hand, is taken to be an even mixture of the waves
with mr= �1. Further, e1 in Eq. �1a� is the photoelectron and
�e2 ,e3� in Eqs. �1b� and �1c� are the two Auger electrons.

The propagation vector of the emitted i �=1 to 3� th elec-

tron ei is represented herein by k�i= �ki , k̂i��i ,�i�� such that its
kinetic energy is given by 	i=
2ki

2 /2m. Also in Eq. �1�, �i�
=�

1
2 � is the projection of the spin angular momentum of the

ejected electron ei along its own direction of quantization
ûi= ��i ,�i�. Unless stated otherwise, each of the vectors k�i
and ûi and others used in this paper are defined with respect
to the photon-fixed right-handed coordinate system OXYZ
�see Fig. 1� centered at the atom A. The polar axis of this
system is along the direction of the electric field vector if the
photon absorbed in Eq. �1a� is linearly polarized; however,
for circularly polarized or unpolarized ionizing radiation, its
direction of incidence defines the OZ axis of our frame of
reference. Rotations by the Euler angles �48� i= ��i ,�i ,0�
will put the OZ axis along the quantization direction ûi of the
spin of the electron ei emitted in the 3-TPI process �1�.

Let us represent by �E0 ,E1 ,E2 ,Ef� the energies of the
electronic states ��0� , �1� , �2� , �f�� of �A ,A+�

,A2+�
,A3+� par-

ticipating in the 3-TPI process �1�. Energy should obviously
be conserved in each of the three steps of the process �1�
separately. This means, while kinetic energy 	1=h�r− �E1
−E0� of the photoelectron e1 varies with the frequency of the
ionizing radiation in Eq. �1a�; energies 	2= �E1−E2� of the
Auger electron e2 in Eq. �1b� and 	3= �E2−Ef� of the Auger
electron e3 in Eq. �1c� are completely independent of the
energy of the absorbed photon and are totally determined
from those of �A+�

,A2+�
� and �A2+�

,A3+�, respectively.
The incident photon and the target atom are completely

uncorrelated before the interaction between the two takes
place. This, in other words, means that the DO for the com-
bined ��r+A� system in the step �1a� is separable before the
absorption of the photon and is simply a direct product �i
=�0 � �r of the two DOs, �0 of the target atom A, and �r of
the ionizing radiation �r. The DO for the photoionization of
the atom A, taking place in the first of the three-step process
�1�, is given by �see, for example, �49,50��

�1 = Kp1
Fp1

�iFp1

† . �2a�

The photoionization operator Fp1
and the quantity Kp1

�both
in the E1 approximation� are obtained, for example, from
�51�. The DO for the complete three-step process �1� can
now readily be written to be

� f = Ka3
Fa3

�Ka2
Fa2

�1Fa2

† �Fa3

†

= K�Fa3
Fa2

Fp1
���0 � �r��Fa3

Fa2
Fp1

�†. �2b�

Here, �Fa2
,Fa3

� are the operators for the emission of the
Auger electrons �e2 ,e3� in the �second and third� steps of the
three-step process �1�. These operators and their associated
quantities �Ka2

,Ka3
�, occurring in Eq. �2b�, are given else-

where �52�. Although, the explicit forms of none of
�Kp1

,Ka2
,Ka3

� are required for the following discussions, it
should—nevertheless—be mentioned that they depend,
among other things, on the energies �	1 ,	2 ,	3� of electrons
�e1 ,e2 ,e3� but do not involve any of the angle- or spin-
related quantities of �A ,A+�

,A2+�
,A3+� participating in the

process �1�. On the right-hand side of the second equation
�2b�, we have defined—for brevity—K�Ka3

Ka2
Kp1

. The
form �2� of the DO is equivalent to those given elsewhere
�see, e.g., �53�� for other more than two-step processes, e.g.,
three-stage cascade of � rays in nuclear physics, etc.

In order to perform the desired investigations, we need to
calculate a matrix for the DO � f defined in Eq. �2�. Electrons
�e1 ,e2 ,e3� emitted in the 3-TPI may have same �	1=	2

=	3�ie , �k�1�= �k�2�= �k�3��� or different �	1�	2�	3�ie , �k�1�
� �k�2�� �k�3��� energies �subject to satisfying three different
conservation conditions, one for each step in Eq. �1�� and

move in any three directions k̂1, k̂2, and k̂3. Our study re-
quires a density matrix which is diagonal in energies as well
as in the directions of propagation �i.e., diagonal in k�1, k�2,
and k�3�. But this DM must necessarily be nondiagonal with
respect to the components ��1 ,�2 ,�3� along �û1 , û2 , û3� of
the spin angular momenta of �e1 ,e2 ,e3�. The Appendix of
this paper describes the calculation of such a DM without
taking spin-orbit interaction �SOI� into account.
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FIG. 1. Coordinate system showing the photon-fixed frame of reference OXYZ and the propagation directions �k̂1 , k̂2 , k̂3� as well as the
spin-quantization directions �û1 , û2 , û3� of the photoelectron e1 as well as of the first and of the second Auger electrons e2 and e3,
respectively. These three electrons are sequentially ejected from the atom A situated at the origin O of our coordinate system, following the
absorption of a single photon. The OZ axis is the quantization direction for the electronic states ��0� , �1� , �2� , �f�� of the atomic species
�A ,A+�

,A2+�
,A3+� participating in the 3-TPI process �1�. Each electron enters its own Mott detector �47� oriented along

�û1��1 ,�1� , û2��2 ,�2� , û3��3 ,�3�� for �e1 ,e2 ,e3�. These detectors �47� record whether the spin of the ejected electron ei is up or down with
respect to its own quantization direction ûi.
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III. DENSITY MATRIX FOR TRIPARTITE SPIN STATE
OF ELECTRONS (e1 ,e2 ,e3) EMITTED

IN THE 3-TPI PROCESS (1)

The two most important forces experienced by the con-
stituents of an atom are the electrostatic Coulomb interaction
among nucleus and electrons and those which may arise due
to spins of the electrons �in A, A+�

, A2+�
, A3+, and of

�e1 ,e2 ,e3�� participating in one or more of the steps of the
process �1�. Most of the important properties of any atom A
are predominantly determined from its Coulomb interaction
as it is always much stronger in comparison to the weak
perturbative spin-dependent forces �e.g., SOI�. Moreover, al-
most all �32–37�, both experimental and theoretical, studies
of atomic 3-TPI have hitherto been performed by taking only
the Coulomb interactions into account. In our present study
as well, we disregard all the spin-dependent forces which
may exist inside an atom. This, in other words, means that
the entanglement properties of the tripartite spin state of
�e1 ,e2 ,e3� formed in the 3-TPI process �1� in a generic atom
A will due purely be to the electrostatic Coulomb forces
acting among the atomic constituents. It can, therefore, be
called as Coulombic spin entanglement of �e1 ,e2 ,e3�. Thus,
the environment or conditions external to the atom A play no
role whatsoever in the generation of the tripartite entangle-
ment being discussed in this paper. The generated entangle-
ment should, therefore, be free from the harmful effects of
decoherence and dissipation as the three electrons ejected in
the process �1� recede from the residual atomic ion A3+.

Further, both the E1 photoionization and two Auger emis-
sion operators Fp1

and �Fa2
,Fa3

�, respectively, are spin inde-
pendent. In the absence of such spin-dependent interactions
which—in the case of an atom—is primarily SOI, the orbital
and spin angular momenta in each of the three steps of the
process �1� are separately conserved. These conservation
conditions are expressed in Eqs. �A1�–�A3� in the Appendix
of this paper. This, in other words, means that the L-S �i.e.,
Russell-Saunders� coupling �46� naturally becomes appli-
cable in each step of Eq. �1�.

We have derived an expression for the desired DM. Our
derivation, whose details are given in the Appendix of this
paper, is completely general, rigorous, and independent of all
dynamical models �except that it is in the L-S coupling as no
SOI is taken into account� which can be used in a theoretical
study of the 3-TPI process �1� in any atom. The final expres-
sion �A9� for the DM can be written as a product of two
independent terms which describe two entirely different
physical situations. It is obvious from Eq. �A10� that the first

term �i.e., d4��mr� /d	1dk̂1dk̂2dk̂3� on the right-hand side of
the DM �A9� depends upon—among other things—the or-
bital angular momentum �L0 ,L1 ,L2 ,Lf� of each of
�A ,A+�

,A2+�
,A3+�, phase shifts, energies �	1 ,	2 ,	3�, and di-

rections �k̂1 , k̂2 , k̂3� of emission of electrons �e1 ,e2 ,e3�, in-
cluding the polarization �mr� of the photon absorbed in the
first of the three-step process �1�. This term, in addition,
contains both the E1 amplitude �A12a� �determined by the
electronic states �0� of A, �1� of A+�

, and the continuum or-
bital of e1� for photoionization �1a�, as well as the amplitudes
�A12b� and �A12c� �obtained, respectively, from the �elec-

tronic states �1� of A+�
, �2� of A2+�

and continuum orbital of
e2� and �electronic states �2� of A2+�

, �f� of A3+, and con-
tinuum orbital of e3�� for the Auger emissions in steps �1b�
and �1c�, respectively. Thus, d4��mr� /d	1dk̂1dk̂2dk̂3 in Eq.
�A9� very much depends upon both the kinematics and dy-
namics of the three-step process �1�. But it includes neither
the spins nor the quantization directions �û1 , û2 , û3� of any of
the three emitted electrons �e1 ,e2 ,e3� or of the atomic spe-
cies �A ,A+�

,A2+�
,A3+� participating in the 3-TPI process �1�.

Hence, d4��mr� /d	1dk̂1dk̂2dk̂3 �i.e., expression �A10�� in the
DM �A9� describes purely angular correlation between the
three electrons �e1 ,e2 ,e3� in the L-S coupling. Its value is
always positive and it acts merely as a multiplicative factor in
the DM �A9� for a given Auger process �1�.

The second term �i.e., ��S0 ,S1 ,S2 ,Sf ;1 ,2 ,
3��1�2�3;�1��2��3�

� present on the right-hand side of the DM
�A9� is defined in Eq. �A11�. Unlike the angular correlation
in Eq. �A10�, ��S0 ,S1 ,S2 ,Sf ;1 ,2 ,3��1�2�3;�1��2��3�

repre-
sents a �8�8� matrix. It contains neither any of those physi-
cal quantities �e.g., mr ,L0 ,L1 ,L2 ,Lf, k�1, k�2, k�3, etc.� nor any
of the three dynamical amplitudes �A12a�–�A12c� which are

present in the angular correlation d4��mr� /d	1dk̂1dk̂2dk̂3. On
the other hand, ��S0 ,S1 ,S2 ,Sf ;1 ,2 ,3��1�2�3;�1��2��3�

is
completely determined from Eq. �A11� by the spins of all the
seven particles �i.e., A, A+�

, A2+�
, A3+�

, e1, e2, and e3� partici-
pating in the three steps of the process �1�, in addition to the
quantization directions �û1 , û2 , û3� �see Fig. 1�—and the
components ��1 ,�2 ,�3� along these unit vectors—of the
spins of electrons �e1 ,e2 ,e3�. Hence, the second term on the
right-hand side of the DM �A11� describes purely spin cor-
relation between the three electrons �e1 ,e2 ,e3� ejected se-
quentially in the 3-TPI process �1� in the absence of SOI.
Equation �A13� contains simplified expressions for an easy
calculation of this DM.

IV. CHARACTERIZATION OF THE SPIN
ENTANGLEMENT OF (e1 ,e2 ,e3)

A. Methodology

Dür et al. �39� fully classified arbitrary three-qubit mixed
states with respect to their separability and distillability prop-
erties. Later on, Dür and Cirac �40� generalized this �39�
scheme in the form of a hierarchic classification for arbitrary
multi-qubit, mixed states based on the separability properties
of certain partitions. Both of these schemes provide sufficient
conditions for separability and distillability for tripartite �39�
and multipartite �40� arbitrary states of qubits. Sharma and
Sharma �54�, on the other hand, suggested a K-way negativi-
ties approach for characterizing multipartite entanglement of
qubits.

The classification schemes developed in �39,40,54� are
based on the stringent Peres �41�-Horodecki et al. �42� con-
dition of positive partial transposition for the separability of
a bipartite state of two qubits. Although, the partial transpose
�PT� of any operator may be different in different bases,
however, its eigenvalues do not change with a change in the
basis. By using random local operations, one can always
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convert �39,40� any three-qubit state to the form of Eq. �3� in
�39� �or Eq. �6� in �40��. In this paper, we have used the
classification scheme suggested in Refs. �39,40� for charac-
terizing the entanglement properties of a tripartite state of the
flying electronic qubits �e1 ,e2 ,e3� generated in the 3-TPI
process �1�.

It has already been discussed elsewhere in this paper that

d4��mr� /d	1dk̂1dk̂2dk̂3 in Eq. �A9� describes purely angular
correlation of �e1 ,e2 ,e3� in the L-S coupling and always has
a single positive value for a given experimental configura-
tion. Consequently, the properties of the Coulomb generated
spin entanglement among �e1 ,e2 ,e3� in the present case will
completely be determined by the spin-correlation matrix
�A11�. We, therefore, do not write in the following the angu-
lar correlation �A10� explicitly and represent—for brevity—
the tripartite DM simply by the second term present on the
right-hand side of Eq. �A9�. That is, unless stated otherwise,
we imply

�f ;�1, û1,k�1;�2, û2,k�2;�3, û3,k�3�� f�f ;

�1�, û1,k�1;�2�, û2,k�2;�3�, û3,k�3�

⇔ ��S0,S1,S2,Sf ;1,2,3��1�2�3;�1��2��3�
�3a�

and write, for brevity,

��S;��;�� � ��S0,S1,S2,Sf ;1,2,3��1�2�3;�1��2��3�
.

�3b�

Here, and in the following, S��S0 ,S1 ,S2 ,Sf� and each of
 ,� ,�� stands for the triods �1 ,2 ,3�, ��1 ,�2 ,�3�, and
��1� ,�2� ,�3��, respectively. The PT �41� of this DM with re-
spect to the photoelectron e1, first Auger electron e2, and the
second Auger electron e3 are, respectively, given by

�Te1 � �f ;�1, û1,k�1;�2, û2,k�2;�3, û3,k�3�� f
T1�f ;

�1�, û1,k�1;�2�, û2,k�2;�3�, û3,k�3�

= ��S;��1��2�3;�1�2��3�
, �4a�

�Te2 � �f ;�1, û1,k�1;�2, û2,k�2;�3, û3,k�3�� f
T2�f ;

�1�, û1,k�1;�2�, û2,k�2;�3�, û3,k�3�

= ��S;��1�2��3;�1��2�3�
, �4b�

and

�Te3 � �f ;�1, û1,k�1;�2, û2,k�2;�3, û3,k�3�� f
T3�f ;

�1�, û1,k�1;�2�, û2,k�2;�3�, û3,k�3�

= ��S;��1�2�3�;�1��2��3
. �4c�

According to the classification scheme suggested in Refs.
�39,40�, the positivity or otherwise of �Te1, �Te2, and of �Te3

decides about the full separability, biseparability, and full
inseparability of the tripartite spin state ��S ;� of �e1 ,e2 ,e3�
emitted in the 3-TPI process �1�.

It is possible that in a particular experiment, one may be
interested in any two �say, �ei ,ej� with i� j� of the three
�e1 ,e2 ,e3� electrons emitted in the process �1�, or, the party
holding electron ek �with k� i , j� decides not to cooperate
with the other two. Such kinds of situations will be described
by the reduced DOs and DMs

��S;1,2� � Tr3���S;��,

or ��S;1,2��1�2;�1��2�

= 	
�3

��S;��1�2�3;�1��2��3
; �5a�

��S;2,3� � Tr1���S;��,

or ��S;2,3��2�3;�2��3�

= 	
�1

��S;��1�2�3;�1�2��3�
; �5b�

��S;1,3� � Tr2���S;��,

or ��S;1,3��1�3;�1��3�

= 	
�2

��S;��1�2�3;�1��2�3�
�5c�

of the resulting bipartite state. These are the only three bi-
partite states which can be formed from a tripartite state of
�e1 ,e2 ,e3�. Each of the states �5a�–�5c� will determine also
the properties of a two-qubit state formed in a certain bipar-
tite split �39,40� of a tripartite state. In order to study the
properties of each of these three bipartite states, we have
written it, wherever possible, in the form of a Werner state
�55� and calculated its concurrence �43,44�. It has helped us
in studying the properties also of the bipartite part of a
biseparable state of �e1 ,e2 ,e3�. The state �5a� is identical to
that obtained by us in Eq. �A15� in Ref. �29� for studying
spin-entanglement properties of two electrons emitted in
2-DPI. Equations �A17a�–�A17c� herein give explicit expres-
sions for the DMs representing the bipartite states �5a�–�5c�.

B. Results

An application of the rules �46,48� of vector coupling of
angular momenta of three spin-1

2 particles in quantum me-
chanics suggests that the total spin of �e1 ,e2 ,e3� can be j
= 1

2 , 3
2 . How many or which of these two values will contrib-

ute to a given process �1� will be determined from the spin
conservation conditions �A1�–�A3�, as well as from the two
6-j and one 9-j symbols �46,48� present in Eq. �A11�. The
required conditions to be satisfied are �S0−S1�, �S1−S2�, and
�S2−Sf�=1 /2. These, in turn, imply that S0 of A and Sf of A3+

can differ by 1/2 and/or 3/2. Then the DM �A11� will repre-
sent states of �e1 ,e2 ,e3� for all those allowed values of j
which lie in the range �S0−Sf� to �S0+Sf� for given spins
�S0 ,S1 ,S2 ,Sf�. Consequently, there will be states of
�e1 ,e2 ,e3� with j=1 /2 or 3/2 or mixture of states with j
=1 /2 and 3/2.

The rank �3� �i.e., the number of nonzero eigenvalues of
��S ;��;��� of the state �3� of �e1 ,e2 ,e3� with total spin an-
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gular momentum j was always found to be equal to �2j+1�.
In other words, the 3-TPI process �1� can generate spin states
of �e1 ,e2 ,e3� possessing rank two �for j=1 /2�, four �for j
=3 /2�, or six �for j=1 /2 and 3/2�. A pure state is always of
rank one �50�. In other words, �e1 ,e2 ,e3� herein will never be
in a pure tripartite state. However, it is always possible that
one or more of the bipartite state �5� formed in the process
�1� is pure. We will show in the following that all the prop-
erties of a tripartite state of �e1 ,e2 ,e3� relevant to a quantum
information study are readily determined from the spins
�S0 ,S1 ,S2 ,Sf� of �A ,A+�

,A2+�
,A3+� participating in Eq. �1�.

We have calculated the tripartite states ��S ;� defined in
Eq. �3�, for a large number of 3-TPI process �1� with differ-
ent permissible values of �S0 ,S1 ,S2 ,Sf�. Before studying
these states according to the schemes suggested in �39,40� or
elsewhere �e.g., in Refs. �56,57��, we would like to first men-
tion some general rules based on the allowed values of
�S0 ,S1 ,S2 ,Sf�, specifying the properties of the bipartite state
�5� formed from a given tripartite state of �e1 ,e2 ,e3�. It is
useful because, in addition to other reasons, almost all the
procedures �39,40,54,56,57� hitherto suggested for investi-
gating entanglement of a three-qubit state are mostly based
on the properties of its bipartite states which can be formed
according to the procedure explained in Eq. �5�.

1. Properties of the bipartite states formed by any two
of the three electrons (e1 ,e2 ,e3)

Any bipartite state �5� formed of the qubits �ei ,ej� can, in
general, be represented by

��S;i, j� = pij�1�i, j� + �1 − pij��0. �6�

Here, �1�i , j� is a pure maximally entangled singlet state
�i.e., one of the four Bell states �1–3�� of the ith and jth
spin-1

2 particles defined in Eq. �A18�; whereas, �0= I /4, with
I a �4�4� unit matrix, is a maximally chaotic state �58�
which is also called the white-noise states �59�. The pij ��1
always� present in Eq. �6� is called a mixing parameter as it
determines the amount of �0 mixed with �1. Thus,
��S ;i , j� in Eq. �6� becomes the Bell state �1�i , j� for
pij =1 or the maximally chaotic state �0 if pij =0. For 0
� pij �1, on the other hand, Eq. �6� represents a Werner state
�55�; otherwise, i.e., with pij �0, ��S ;i , j� is a non-
Werner state. Electrons �ei ,ej� in the state �6� are always
entangled if pij �1 /3. The eigenvalues of the bipartite state
�6� and of its PT are �29�

�1 − pij�/4,�1 − pij�/4,�1 − pij�/4,�1 + 3pij�/4 �7a�

and

�1 + pij�/4,�1 + pij�/4,�1 + pij�/4,�1 − 3pij�/4, �7b�

respectively.
It is obvious that a value of the mixing parameter pij will

very much depend upon the spin quantum numbers
�S0 ,S1 ,S2 ,Sf� of the electronic states ��0� , �1� , �2� , �f�� of
�A ,A+�

,A2+�
,A3+� participating in the 3-TPI process �1�. The

mixing parameter p12 in Eq. �6� for the bipartite state

��S ;1 ,2� �defined in Eqs. �5a� and �A17a�� formed of the
photoelectron e1 and first �i.e., e2� of the two Auger electrons
is given by

p12 = S1/�3�S1 + 1�� for S0 = S2 = S1 +
1

2
, S1 � 0,

�8a�

p12 = �S1 + 1�/�3S1� for S0 = S2 = S1 −
1

2
, S1 �

1

2
,

�8b�

p12 = −
1

3
for�S0 − S2� = 1. �8c�

Similarly, for the bipartite state ��S ;2 ,3� �defined in Eqs.
�5b� and �A17b�� consisting of both Auger electrons �e2 ,e3�,
we have

p23 = S2/�3�S2 + 1�� for S1 = Sf = S2 +
1

2
, S2 � 0,

�9a�

p23 = �S2 + 1�/�3S2� for S1 = Sf = S2 −
1

2
, S2 �

1

2
,

�9b�

p23 = −
1

3
for �S1 − Sf� = 1. �9c�

The mixing parameter for the remaining bipartite state
��S ;1 ,3� specified by Eqs. �5c� and �A17c� and consisting
of the photoelectron e1 and the second Auger electron e3 is

p13 = �
S0S1
1

2
��
S1S2

1

2
��
S2Sf

1

2
�

�
1

3
�1 − �0S1

��1 − �0S2
�P13. �10�

Here, P13 and � are given by Eqs. �A14� and �A15�, respec-
tively, while, �ab �48� is the Kronecker delta function.

It is interesting to find that each of the mixing parameters
p12 in Eq. �8� and p23 in Eq. �9� is determined by the spins of
only three of the four atomic species �A ,A+�

,A2+�
,A3+� par-

ticipating in the 3-TPI process �1�. Namely, the former con-
tains �S0 ,S1 ,S2� of �A ,A+�

,A2+�
� and the latter involves

�S1 ,S2 ,Sf� of �A+�
,A2+�

,A3+�. But, the mixing parameter p13
in Eqs. �10� and �A14� contains spins of all the four atomic
particles present in Eq. �1�. Equations �8b� and �9b� are the
respective conditions for each of the pairs �e1 ,e2� and �e2 ,e3�
to form an entangled state; otherwise, both or either of the
states ��S ;1 ,2� and ��S ;2 ,3� is separable which may
�for 0� pij �1 /3 from Eq. �8a� or Eq. �9a�� or may not �for
pij �0 from Eq. �8c� or Eq. �9c�� be a Werner state. Simi-
larly, one can determine from a value of p13 calculated from
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Eqs. �10� and �A14�, whether ��S ;1 ,3� is an entangled or
separable Werner state, or a product non-Werner state of
electrons �e1 ,e3�.

Furthermore, the concurrence �43,44� for the entangled
state �6� of electrons �e1 ,e2� with mixing parameter �8� is

C12 = �2S1�−1. �11a�

In the case of the mixing parameter �9�, the concurrence of
the state �6� representing Auger electrons �e2 ,e3� becomes

C23 = �2S2�−1. �11b�

The concurrence for the bipartite state �5c� of the pair of
electrons �e1 ,e3� is, on the other hand, obtained from

C13 = max�0,
3p13 − 1

2
 �11c�

with p13 given by Eq. �10�. Substitution in Eq. �11c� of the
mixing parameters p12 from Eq. �8b� or of p23 from Eq. �9b�
will give us the concurrence �11a� or Eq. �11b�, respectively.

Table I contains a summary of the properties of all the

three bipartite spin state �5� which can be formed from a
given tripartite state �3� of �e1 ,e2 ,e3� emitted in the 3-TPI
process �1�.

2. Fully separable states of (e1 ,e2 ,e3)

Our studies showed that for all the states of �e1 ,e2 ,e3�
with �S0−Sf�=3 /2, each of the three PTs defined in Eqs.
�4a�–�4c�, �Te1, �Te2, and �Te3 �0. These are the states of
rank four. Their bipartite reduced DMs �5a�–�5c� are ob-
tained on taking pij =−1 /3 in Eq. �6� for �i , j�= �1,2�, �2, 3�,
or �1, 3�. It has already been discussed elsewhere in this
paper that although Eq. �6� is not in the form of a Werner
state �55� with this value of the mixing parameter, it, never-
theless, describes a mixed, separable, and bipartite spin state
of any two of the three electrons �e1 ,e2 ,e3� ejected in the
3-TPI process �1�. Thus, all rank four states generated in the
process �1� with �S0−Sf�=3 /2 are of the fully separable form
�39,40� �e1� � �e2� � �e3�.

In addition to this, we found that tripartite states of
�e1 ,e2 ,e3� generated in Eq. �1� for �S0−Sf�=1 /2 and S0+Sf
�3 /2 provided S0�S1 and S2�Sf were also fully separable.
Rank of these states is six because now the total spin angular

TABLE I. Properties of the bipartite states �6� which can be formed from a given tripartite state �3� of electrons �e1 ,e2 ,e3� generated in
the 3-TPI process �1�.

��S ;1 ,2� of
electrons �e1 ,e2�

��S ;2 ,3� of
electrons �e2 ,e3�

��S ;1 ,3� of
electrons �e1 ,e3�

�i , j� in Eq. �6�
and in Eq. �A18� �1, 2� �2, 3� �1, 3�

Maximally
chaotic state �0

Eq. �8a�: p12=0;
S0= 1

2 , S1=0, S2= 1
2

Eq. �9a�: p23=0;
S1= 1

2 , S2=0, Sf =
1
2

Eq. �10�: p13=0;
�S0 ,S1 ,S2 ,Sf� with

Eqs. �A1�–�A3�

Bell state: Eq. �A18�,
singlet state of
two spin-1

2 particles

Eq. �8b�: p12=1;
Eq. �11a�: C12=1;

�1�1 ,2�;
S0=0, S1= 1

2 , S2=0

Eq. �9b�: p23=1;
Eq. �11b�: C23=1;

�1�2 ,3�;
S1=0, S2= 1

2 , Sf =0

Eq. �10�: p13=1;
Eq. �11c�: C13=1;

�1�1 ,3�;
�S0 ,S1 ,S2 ,Sf� with

Eqs. �A1�–�A3�

Separable
Werner state

0� p12�
1
3 ;

Eq. �8a�:
p12=S1 / �3�S1+1��;

S0=S2=S1+ 1
2

with S1�0

0� p23�
1
3 ;

Eq. �9a�:
p23=S2 / �3�S2+1��;

S1=Sf =S2+ 1
2

with S2�0

0� p13�
1
3 ;

Eq. �10�: p13;
�S0 ,S1 ,S2 ,Sf� with

Eqs. �A1�–�A3�

Nonseparable
Werner state

1
3 � p12�1;
Eq. �8b�:

p12= �S1+1� / �3S1�;
Eq. �11a�: C12=1 / �2S1�;

S0=S2=S1− 1
2

with S1�
1
2

1
3 � p23�1;
Eq. �9b�:

p23= �S2+1� / �3S2�;
Eq. �11b�: C23=1 / �2S2�;

S1=Sf =S2− 1
2

with S2�
1
2

1
3 � p13�1;

Eq. �10�: p13;
Eq. �11c�: C13;

�S0 ,S1 ,S2 ,Sf� with
Eqs. �A1�–�A3�

Separable
non-Werner state

Eq. �8c�: p12=− 1
3 ;

�S0−S2�=1
Eq. �9c�: p23=− 1

3 ;
�S1−Sf�=1

Eq. �10�: p13�0;
�S0 ,S1 ,S2 ,Sf� with

Eqs. �A1�–�A3�
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momentum j of �e1 ,e2 ,e3� can simultaneously be 1/2 and
3/2. However, unlike in the case of the fully separable states
of rank four, the bipartite state �5� formed from the presently
generated states of �e1 ,e2 ,e3� can be of Werner type as
well—including also the white-noise state �58,59� �0 present
in Eq. �6�. These states are as follows:

�a� S0=S2=S1+1 /2=Sf −1 /2. Auger electrons �e2 ,e3� are
again in the state �6� with p23=−1 /3, i.e., a non-Werner state.
But, each of two pairs formed with the photoelectron e1 �i.e.,
�e1 ,e2� and �e1 ,e3�� is in a state usually different from that of
�e2 ,e3� with the mixing parameters given by the respective
Eqs. �8a� and �10� which, in the present case, are equal, i.e.,
p12= p13. Thus, each of the three pairs of emitted electrons in
the present case is in a product state and, hence, �e1 ,e2 ,e3�
are in a fully separable state �39,40�. For example, for �S0
=S2=1 /2,S1=0 ,Sf =1�, the two pairs �e1 ,e3� and �e1 ,e2� are
in the maximally chaotic bipartite state �0. For �S0=S2
=1 ,S1=1 /2,Sf =3 /2�, on the other hand, the state of �e1 ,e3�
and of �e1 ,e2� is Eq. �6� with p13= p12=1 /9 obtained from
Eq. �8a� or Eq. �10�, while �e2 ,e3� continue to be in the states
�6� and �9c�.

�b� S1=Sf =S0−1 /2=S2+1 /2. Now, Eq. �6�, with p12=
−1 /3, happens to be a state of the qubits �e1 ,e2�, while the
separable states �6� and �9a� or Eqs. �6� and �10� describe
each of the pairs �e2 ,e3� and �e1 ,e3�. For example, the latter
two pairs are in the state �6� with p13= p23=0 or 1/9 for
�S0 ,S1 ,S2 ,Sf�= �1,1 /2,0 ,1 /2� or �3/2, 1, 1/2, 1�, respec-
tively; whereas, �e1 ,e2� are always in the non-Werner state
�6� and �8c� in each of these two and other similar situations.

3. One-qubit biseparable states of (e1 ,e2 ,e3)

These are the tripartite state �3� of �e1 ,e2 ,e3� which have
only one of the three PTs �4a�–�4c� positive �39,40�. We
found that some of the states of rank two �i.e., j=1 /2� and
some of rank six �i.e., j=1 /2 and 3/2�, while none of rank
four �i.e., j=3 /2� has this property. We discuss, in the fol-
lowing, all the three possibilities �39,40� which may arise in
this case.

�a� �Te1 �0. All tripartite state �3� generated in the 3-TPI
process �1� with S1=Sf =S0−1 /2=S2−1 /2 have this charac-
teristic. These states �39,40� can be written as e1-�e2 ,e3�. The
entangled Werner state of �e2 ,e3� is Eqs. �6� and �9b�. Here,
for example, with �S0 ,S1 ,S2 ,Sf�= �1 /2,0 ,1 /2,0�, �e2 ,e3� are
in the Bell state �A18�; whereas, each of the remaining two
pairs �e1 ,e2� and �e1 ,e3� is in the maximally chaotic state �0
�i.e., p12 �Eq. �8a�� =0= p13 �Eq. �10���. For �S0 ,S1 ,S2 ,Sf�
= �1,1 /2,1 ,1 /2�, on the other hand, the respective states of
�e2 ,e3�, �e1 ,e3�, and �e1 ,e2� are obtained from Eqs. �6� and
�9b� with p23=2 /3 �i.e., a mixed, entangled Werner state�,
Eqs. �6� and �10� with p13=−2 /9 �i.e., a mixed, separable
non-Werner state�, and from Eqs. �6� and �8a� with p12
=1 /9 �i.e., a mixed, separable Werner state�. According to
�40�, the mixed entangled state ��S ;2 ,3� can be distilled
to the Bell state �1�2 ,3� because, in the present case, both
�Te2 are �Te3 are negative.

�b� �Te3 �0. These are e3-�e1 ,e2� states produced when-
ever S1=Sf =S0+1 /2=S2+1 /2 in the 3-TPI process �1�.
Equations �6� and �8b� represent the nonseparable state of
�e1 ,e2�. On taking �S0 ,S1 ,S2 ,Sf�= �0,1 /2,0 ,1 /2� in the pro-

cess �1�, for example, one will generate Bell state �1�1 ,2�
�Eq. �A18�� for electrons �e1 ,e2� and white-noise states �0
for the remaining two pairs �e2 ,e3� and �e1 ,e3� of ejected
electrons; but, 3-TPI with �S0 ,S1 ,S2 ,Sf�= �1 /2,1 ,1 /2,1�
will give us states ���S ;1 ,2� ,��S ;2 ,3� ,��S ;1 ,3��
with p12=2 /3 �Eqs. �6� and �8b��, p23=1 /9 �Eqs. �6� and
�9a��, and p13=−2 /9 �Eqs. �6� and �10��. The presence of the
PTs �Te1, �Te2 �0 suggests �40� that one can distill
��S ;1 ,2� from a mixed to a maximally entangled pure
state of �e1 ,e2�.

�c� �Te2 �0. Except in the case of fully separable tripartite
states of �e1 ,e2 ,e3� already discussed herein in the Sec.
IV B 2, �Te2 was always less than zero for any 3-TPI process
�1�. This, in other words, means �39,40� that the process �1�
is incapable of generating tripartite states of �e1 ,e2 ,e3� which
are one qubit biseparable to the form e2-�e1 ,e3�.

4. Fully inseparable states of (e1 ,e2 ,e3)

In all other cases, the tripartite states of �e1 ,e2 ,e3� have
all the three PTs ��Te1 ,�Te2 ,�Te3� negative. According to �40�,
one can now distill a Greenberger-Horne-Zeilinger �GHZ�
�60� state �GHZ�. Here, the reduced DMs �5a�–�5c� showed
that entangled bipartite states are either of the photoelectron
e1 with the Auger electrons �e2 ,e3�, or of e3 with �e1 ,e2�.
Thus, one can connect �61� either ���S ;1 ,2� ,��S ;1 ,3��
or ���S ;1 ,3� ,��S ;2 ,3�� to produce a �GHZ� state �60�.
This also means that the first Auger electron e2 is never si-
multaneously entangled with �e1 ,e3�.

These correspond to the situation wherein one electron is
entangled with the remaining two electrons present in a tri-
partite state of �e1 ,e2 ,e3�. Properties of such states was dis-
cussed by Dür �56� and by Lohmayer et al. �57�. It is related
also to the concept of entanglement splitting suggested by
Bruß �62� and has a direct relevance to 1→2 quantum tele-
cloning �7,8�. It can further be viewed �62� as a channel
bifurcation with one input side and two output sides.

The 3-TPI process �1� is capable of producing tripartite
states of rank two �i.e., j=1 /2� or of rank six �i.e., j=1 /2
and 3/2� with 1→2 entanglement. It completely depends on
the spins �S0 ,S1 ,S2 ,Sf� of the electronic states
��0� , �1� , �2� , �3�� of the species �A ,A+�

,A2+�
,A3+� participat-

ing in a given process �1�. In addition, the 1→2 entangle-
ment will be present whether in ��e1 ,e2� , �e1 ,e3�� or in
��e1 ,e3� , �e2 ,e3��, as well as concurrences of each pair, are
also decided by the spins �S0 ,S1 ,S2 ,Sf� only.

�a� 1→2 entanglement for �e1 ,e2� and �e1 ,e3�. Process
�1� generates tripartite states ��S ;� of �e1 ,e2 ,e3� with this
property for S0=S2=S1−1 /2=Sf +1 /2. Here, the state
��S ;2 ,3� of the two Auger electrons �e2 ,e3� is always
separable and non-Werner with p23=−1 /3 �Eqs. �6� and
�9c��. But, both ��S ;1 ,2� and ��S ;1 ,3� are in the
Werner state �6� with the mixing parameters p12 �Eq. �8b��,
=p13 �Eq. �10��, and �p1, say. Consequently, the concur-
rences of these two states are also equal and are given by the
respective Eqs. �11a� and �11c�, i.e., C12=C13= �2S1�−1�C1,
say. On account of the above-mentioned conditions to be
satisfied by �S0 ,S1 ,S2 ,Sf� in the present case, the minimum
permissible value of the spin S1 of A+�

participating in the
process �1� is now one. This gives, as shown in �44�, C12
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+C13
2 = �2S1

2�−1�1. The entanglement molecule �56�, in the
present case, can obviously be either linear of the shape
e2-e1-e3 �e.g., CO2� or in the form of H2O with photoelectron
e1 at the position of the oxygen atom and one each of the
Auger electrons �e2 ,e3� situated at the locations of two hy-
drogen atoms.

For example, for a rank-two tripartite state �3� generated
on taking �S0 ,S1 ,S2 ,Sf�= �1 /2,1 ,1 /2,0� in the process �1�,
p1=2 /3 and C1=1 /2. Similarly, with �S0 ,S1 ,S2 ,Sf�
= �3 /2,2 ,3 /2,1�, one generates a rank-six tripartite state of
�e1 ,e2 ,e3� with p1=1 /2 and C1=1 /4. Thus, in the present
case, the amount of the pure maximally entangled states
�1�1 ,2� and �1�1 ,3�, contributing to the respective
Werner states ��S ;1 ,2� and ��S ;1 ,3�, as well as the
strength of their entanglement, decreases with an increase in
the spin S1 of the electronic state �1� of A+�

participating in
the process �1�.

�b� 1→2 entanglement for �e1 ,e3� and �e2 ,e3�. Here, the
second Auger electron e3 forms entangled bipartite states
with the photoelectron e1 and with the first Auger electron e2.
The entanglement molecule �56� can, therefore, be either of
the shape e1-e3-e2 or in the form of an isosceles triangle
whose two equal sides are e3-e1 and e3-e2, wherein e1 and e2
remain unconnected �i.e., not entangled�. For it to happen in
the 3-TPI process �1�, one should have S1=Sf =S0+1 /2=S2
−1 /2. Then, each of the two pairs of entangled electrons
�e2 ,e3� and �e1 ,e3� is in identical Werner state �6� with the
mixing parameter p23 �Eq. �9b�� =p13 �Eq. �10�� �p3, say.
These states have concurrences C23 �Eq. �11b�� =C13 �Eq.
�11c�� �C3, say. On the other hand, product states �6� and
�8c� of the first two emitted electrons is always non-Werner.
A 3-TPI process �1� with �S0 ,S1 ,S2 ,Sf�= �0,1 /2,1 ,1 /2� will
produce a rank-two 1→2 entanglement state of this kind
with p3=2 /3 and C3=1 /2. In addition to this, some of the
examples of rank-six tripartite states possessing this property
are �S0 ,S1 ,S2 ,Sf�= �1 /2,1 ,3 /2,1� and �1, 3/2, 2, 3/2� with
�p3 ,C3�= �5 /9,1 /3� and �1/2, 1/4�.

The properties of the tripartite states of �e1 ,e2 ,e3� dis-
cussed in Sec. IV B herein are summarized in the Table II.

C. Some possible experiments for producing various tripartite
states of (e1 ,e2 ,e3)

One can give numerous realistic examples, which can
readily be implemented in a laboratory, for generating vari-
ous kinds of tripartite states of flying electronic qubits using
the 3-TPI process �1�. In this subsection, we analyze two of
those experiments �32–37� wherein CA decay, following
inner-shell photoionization, has been observed in contexts
totally different from those considered in this paper. The fol-
lowing two examples are for 3-TPI in a closed-shell atom
and in an open-shell atom.

1. Xe 3d or 4d photoionization

Xe�3s23p63d104s24p64d105s25p6 1S� is one of the most
widely studied �32–35� atoms for CA decay. Electron spectra
of Xe has been measured both for 3d �32,33� and 4d �33–35�
photoionization. The process �1� involving �3d10 1S, 3d−1 2D,
4d−15p−1 1P �or 4d−15p−1 1D, or 4d−15p−1 1F�, 5p−3 2P �or

5p−3 2D�� states of �Xe, Xe+�
, Xe2+�

, and Xe3+� belongs to
Sec. IV B 3�b� with �Te3 �0. Herein, �e1 ,e2� are in the Bell
state �1�1 ,2� �Eq. �A18�� and each of the two remaining
pairs is in the maximally chaotic state �0. On the other
hand, transitions involving the states �3d10 1S, 3d−1 2D,
4d−15p−1 3P �or 4d−15p−1 3D, or 4d−15p−1 3F�, 5p−3 2P �or
5p−3 2D�� generate, according to Sec. IV B 4�b�, the fully
inseparable state of �e1 ,e2 ,e3�. Here, while �e1 ,e2� are in the
non-Werner states �6� and �8c�, each of the two remaining
pairs �e1 ,e3� and �e2 ,e3� forms mixed, entangled Werner
state �6� with p3=2 /3 �Eq. �9b�� and C3=1 /2 �Eq. �10��. This
process, therefore, produces 1→2 entanglement of the form
e1-e3-e2. The two entangled bipartite states ��S ;1 ,3� and
��S ;2 ,3� can be connected �40�, if desired, to form a
GHZ state. However, with �Xe, Xe+�

, Xe2+�
, and Xe3+� par-

ticipating in the 3-TPI process �1� with the states �3d10 1S,
3d−1 2D, 4d−15p−1 3P �or 4d−15p−1 3D, or 4d−15p−1 3F�,
5p−3 4S� one will have �e1 ,e2 ,e3� in a fully separable state of
rank four discussed in the Sec. IV B 2.

2. Cs 4d photoionization

Osmekhin et al. �37� very recently observed CA decay in
Cs 4d ionization. Unlike the inert gas atoms Xe, Kr, and Ar,
whose electron spectra for the 3-TPI process �1� have earlier
been experimentally observed �32–36�, Cs atom has an un-
filled outer most orbital in its electronic configuration. The
states of �Cs, Cs+�

, Cs2+�
, and Cs3+� involved in the 3-TPI

process �1� are �37�

�4d105s25p66s1 2S,4d−15s25p66s1 1D,

4d105s05p66s1 2S,4d105s−15p−16s0 1P� .

It is an example of Sec. IV B 3�a� wherein both of the Auger
electrons �e2 ,e3� are in the �1�2 ,3� Bell state �A18�, but
each of the two remaining bipartite states ��S ;1 ,2� and
��S ;1 ,3� is maximally chaotic. The other possibility is
with the states

�4d105s25p66s1 2S,4d−15s25p66s1 1D,

4d105s05p66s1 2S,4d105s−15p−16s0 3P�

participating in Eq. �1�. This will generate, according to Sec.
IV B 2�a�, a fully separable tripartite state in which �e1 ,e2� as
well as �e1 ,e3� form white-noise state �0, but �e2 ,e3� are in
the non-Werner state �6� with p23=−1 /3. Yet, one more pos-
sibility is with the transitions

�4d105s25p66s1 2S,4d−15s25p66s1 3D,

4d105s05p66s1 2S,4d105s−15p−16s0 1P� .

In this case, �e1 ,e2 ,e3� form a fully inseparable state dis-
cussed in Sec. IV B 4�a� with 1→2 entanglement of the pho-
toelectron e1 with each of the two Auger electrons e2 and e3
such that p1=2 /3 �Eq. �8b� or Eq. �10�� and C1=1 /2 �Eq.
�11a� or Eq. �11c�� for the mixing parameter and concurrence
of the entangled bipartite states ��S ;1 ,2� and
��S ;1 ,3�. The two Auger electrons �e2 ,e3� are now in a
non-Werner state with p23=−1 /3. Another 3-TPI process,
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possible in the present target, is �Cs, Cs+�
, Cs2+�

, and Cs3+�
participating in Eq. �1� with the states

�4d105s25p66s1 2S,4d−15s25p66s1 3D,

4d105s05p66s1 2S,4d105s−15p−16s0 3P� .

According to Sec. IV B 3�b�, it is a one-qubit biseparable
state of the form e3-�e1 ,e2�. Accordingly, the entangled state
of �e1 ,e2� is Eqs. �6� and �8b�; whereas, �e2 ,e3� are in the
separable Werner states �6� and �9a�, but electrons �e1 ,e3� are
in the non-Werner states �6� and �10�. One may also have

�Cs, Cs+�
, Cs2+�

, and Cs3+� participating in Eq. �1� with the
states

�4d105s25p66s1 2S,4d−15s25p66s1 3D,

4d105s05p66s1 4S,4d105s−15p−16s0 3P� .

Here again, �e1 ,e2 ,e3� are in a fully inseparable state dis-
cussed in Sec. IV B 4�b�. In the present case, however, the
second Auger electron forms entangled bipartite states
��S ;1 ,3� and ��S ;2 ,3� with p3=5 /9 and C3=1 /3. The
bipartite, product state of photoelectron e1, and first Auger

TABLE II. Properties of the tripartite states �3� of electrons �e1 ,e2 ,e3� generated in the 3-TPI process �1�.

Partial transpose
�Eq. �4��

States of rank two
�j a = 1

2 �:
�S0−Sf�=

1
2 ,

S0+Sf =
1
2

States of rank four
�j a = 3

2 �:
�S0−Sf�=

3
2 ,

S0+Sf �
3
2

States of rank six
�j a = 1

2 and 3
2 �:

�S0−Sf�=
1
2 ,

S0+Sf �
3
2

�Te1, �Te2,
�Te3 �0:b

None Allc Those withd or withe

�Te1 �0�with �Te2,
�Te3 �0�: 1-qubit
biseparable states
�39,40�e1-�e2 ,e3�

S1=Sf =S0�= 1
2 �− 1

2 =S2− 1
2 :

�e2 ,e3� in the Bell
state �A18�; �e1 ,e2� and

�e1 ,e3� in white noise �0

None

S1=Sf =S0�� 1
2 �− 1

2=
S2− 1

2 : �e2 ,e3� in the entangled,
Werner state ��6� and �9b�� with

concurrence �11b�; �e1 ,e2� in
��6� and �8a�� and �e1 ,e3�

in ��6� and �10��
separable bipartite states

�Te3 �0
�with �Te1, �Te2 �0�:
1-qubit biseparable
states �39,40�e3-�e1 ,e2�

S1=Sf =S0�=0�+ 1
2 =S2+ 1

2
: �e1 ,e2� in the Bell state

�A18�; �e2 ,e3� and
�e1 ,e3� in white noise �0

None

S1=Sf =S0��0�+ 1
2=

S2+ 1
2 : �e1 ,e2� in the entangled,

Werner state ��6� and �8b�� with
concurrence �11a�; �e2 ,e3�

in ��6� and �9a�� and �e1 ,e3�
in ��6� and �10��

separable bipartite states

�Te2 �0:f None None None

�Te1, �Te2, �Te3 �0:
Fully inseparable
states �39,40�

1→2 entanglement:
�a�g S0�= 1

2 �=S2

=S1− 1
2 =Sf +

1
2 ;

�b�h S1�= 1
2 �=Sf

=S0+ 1
2 =S2− 1

2

None

1→2 entanglement:
�a�g S0�� 1

2 �=S2

=S1− 1
2 =Sf +

1
2 ;

�b�h S1�� 1
2 �=Sf

=S0+ 1
2 =S2− 1

2

aTotal spin angular momentum j= �� 1
2
��1+ � 1

2
��2+ � 1

2
��3� of electrons �e1 ,e2 ,e3� ejected in 3-TPI process �1�.

bFully separable states �39,40�.
c�e1 ,e2�, �e2 ,e3�, �e1 ,e3� in the product, non-Werner, state �6� with p12, p23, p13=− 1

3 ;.
dS0=S2=S1+ 1

2 =Sf −
1
2 : �e2 ,e3� in the product, non-Werner states ��6� and �9c��; but, each of �e1 ,e2� and �e1 ,e3� is in the same separable,

Werner states ��6� and �8a�� or ��6� and �10��.
eS1=Sf =S0− 1

2 =S2+ 1
2 : now the separable state of �e1 ,e2� is ��6� and �8c��, i.e., non-Werner; whereas, both �e2 ,e3� and �e1 ,e3� belong to the

same separable Werner states ��6� and �9a�� or ��6� and �10��.
fOne-qubit biseparable state e2-�e1 ,e3�. The 3-TPI process �1� is incapable of generating such states.
g�e1 ,e2� and �e1 ,e3� in identical, entangled Werner states ��6� and �8b�� or ��6� and �10�� with concurrence �11a� or �11c�; �e2 ,e3� in product,
non-Werner states ��6� and �9c��.
h�e2 ,e3� and �e1 ,e3� in identical, entangled Werner states ��6� and �9b�� or ��6� and �10�� with concurrence �11b� or �11c�; �e1 ,e2� in product,
non-Werner states ��6� and �8c��.
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electron e2 is non-Werner corresponding to p12=−1 /3. Fi-
nally, the transitions with the states

�4d105s25p66s1 2S,4d−15s25p66s1 3D,

4d105s05p66s1 4S,4d105s−15p−16s0 5S�

generate �e1 ,e2 ,e3� in a fully separable mixed state of rank
four discussed in Sec. IV B 2 of this paper.

V. CONCLUSIONS

This paper presents the study of entanglement generation
and characterization of three flying electronic qubits
�e1 ,e2 ,e3� from a single atomic source A. These electrons are
sequentially produced in the inner-shell photoionization and
in the CA decay of the consequent vacancy. The entangle-
ment properties are generated purely due to the Coulomb
interaction experienced by �e1 ,e2 ,e3� inside the atom and,
hence, have no coupling at all with the environment external
to it. Thus, the generated entanglement is least prone to the
harmful effects of dissipation and decoherence while
�e1 ,e2 ,e3� fly away from the residual triply charged positive
ion A3+. A simple expression for the �8�8� DM has been
derived for a tripartite state of �e1 ,e2 ,e3�. This DM is shown
to be completely determined merely from the spins
�S0 ,S1 ,S2 ,Sf� of the electronic states ��0� , �1� , �2� , �f�� of the
species �A ,A+�

,A2+�
,A3+�, as well as of the electrons

�e1 ,e2 ,e3� participating in this three-step process. Although,
DM involves also the directions of quantization of the spins
of �e1 ,e2 ,e3�, the entanglement properties of the generated
tripartite states of electronic qubits are totally independent of
these directions.

Here, one is able to generate—depending upon the spins
�S0 ,S1 ,S2 ,Sf�—fully separable, 1-qubit biseparable, fully in-
separable, and 1→2 entangled tripartite states of �e1 ,e2 ,e3�.
The last of these can be connected to produce a GHZ state.
Extremely simple analytical expressions have been given in
terms of the spins �S0 ,S1 ,S2 ,Sf� to characterize the proper-
ties of these tripartite states as well as of the bipartite state
which can be formed when any party holding one of the
three electrons �e1 ,e2 ,e3� refuses to cooperate with the other
two. A bipartite state so formed can be any thing from a
maximally chaotic to a Bell state, including mixed entangled
Werner states, or mixed separable Werner/non-Werner states.
The properties �e.g., mixing parameter, concurrence, etc.� of
these bipartite states too are completely determined from the
spins �S0 ,S1 ,S2 ,Sf� using the expressions given herein. We
have suggested also several realistic three-step processes in
Xe and Cs atoms which can be the basis of a potential ex-
periment for generating in a laboratory these tripartite states
of �e1 ,e2 ,e3�. Such entangled states can be used for imple-
menting quantum communication protocols �e.g., 1→2
quantum telecloning, etc.� and for quantum computation with
particles possessing rest mass different from zero.

The present paper, thus, provides an entanglement factory
for generating various kinds of tripartite �as well as bipartite�
states of flying electronic qubits. Experimental characteriza-
tion of these states does not require use of any protocols
�1–3� hitherto developed in quantum information. Merely

measurements of the energies of these qubits using three dif-
ferent electron spectrometers is sufficient to determine the
electronic states ��0� , �1� , �2� , �f�� and, hence, spin multiplici-
ties, in the L-S coupling of �A ,A+�

,A+�
,A3+� participating in

a given 3-TPI process �1�. With this knowledge of the spins
�S0 ,S1 ,S2 ,Sf�, the expressions derived herein are sufficient
to completely specify all the relevant entanglement proper-
ties of a spin state of �e1 ,e2 ,e3�.
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APPENDIX: DENSITY MATRIX FOR THE TRIPARTITE
STATE OF A PHOTOELECTRON AND TWO AUGER

ELECTRONS EMITTED SEQUENTIALLY
FROM AN ATOM IN THE ABSENCE

OF SPIN-ORBIT INTERACTION

This appendix contains a derivation of the DM explained
in Sec. III and used in the discussion in Sec. IV of this paper.
In order to analyze the nonlocal spin-correlation �i.e., spin
entanglement� of the tripartite state formed by the photoelec-
tron e1 and two Auger electrons �e2 ,e3�, it is necessary that
our DM for the three-step process �1� be both angle and spin
resolved. In the following derivation, we take SOI into ac-
count neither in the bound electronic states ��0� , �1� , �2� , �f��
of �A ,A+�

,A2+�
,A3+� nor in the continuum of any of the

ejected electrons �e1 ,e2 ,e3�. Only the electrostatic Coulomb
forces for particles participating in 3-TPI process �1� are thus
included. In addition, neither the photoionization operator
Fp1

in the E1 approximation nor any of the Auger emission
operators �Fa2

,Fa3
� depend upon any spin variables. In such

situations, L-S coupling �46� becomes applicable. Conse-
quently, orbital and spin angular momenta are individually
conserved in each of the three steps �1a� and �1c� of the
process �1�. We, therefore, have

��r + L�0 = L�1 + ��1, S�0 = S�1 + s�1�=
1

2
�

1
 , �A1�

L�1 = L�2 + ��2, S�1 = S�2 + s�2�=
1

2
�

2
 , �A2�

L�2 = L� f + ��3, S�2 = S� f + s�3�=
1

2
�

3
 . �A3�

Here, �L�0 ,L�1 ,L�2 ,L� f� and �S0��S�0� , S1��S�1� , S2��S�2� , Sf

��S� f�� are the respective orbital and spin angular momenta

of �A ,A+�
,A2+�

,A3+�; whereas, ���1 ,��2 ,��3� and �s1��s�1� , s2
��s�2� , s3��s�3�� are those of the electrons �e1 ,e2 ,e3� partici-
pating in the 3-TPI process �1�. Further, we use the symbols
ML0

, ML1
, ML2

, MLf
, MS0

, MS1
, MS2

, MSf
for repre-

senting, along our quantization �i.e., OZ-� axis �shown in Fig.
1�, projections of the corresponding angular momenta de-
fined in Eqs. �A1�–�A3�. One can now readily write �46�
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�0� = �L�0S�0ML0
MS0

� , �A4a�

�1� = �L�1S�1ML1
MS1

� , �A4b�

�2� = �L�2S�2ML2
MS2

� , �A4c�

�f� = �L� fS� fMLf
MSf

� , �A4d�

for the electronic stats of A, A+�
, A2+�

, and A3+, respectively,
in the L-S coupling.

Further, in Eq. �1� and elsewhere in this paper,
���1û1k�1�− , ��2û2k�2�− , ��3û3k�3�−� are the continuum spin or-
bitals of the ejected electrons �e1 ,e2 ,e3�. Here, a minus su-
perscript means that these orbitals individually satisfy

asymptotic incoming wave boundary conditions �63� appro-
priate for photoionization �1a� as well as for Auger emissions
�1b� and �1c�.

In order to calculate the desired DM, we first need to
know the DO �i present in Eq. �2�. It, for a noninteracting
system of an unpolarized atom �in the L-S coupling� plus a
polarized photon, is given by �see, for example, �64��

�i = �0 � �r =
1

�2L0 + 1��2S0 + 1� 	
ML0

MS0

�0;1mr��0;1mr� ,

�A5�

where we have defined �0;1mr���0��1mr�. An element
�which is diagonal in ûi and k�i but nondiagonal in �i, with
i=1 to 3� of the DO defined in Eq. �2b� is

�f ;�1, û1,k�1;�2, û2,k�2;�3, û3,k�3�� f�f ;�1�, û1,k�1;�2�, û2,k�2;�3�, û3,k�3�

= K 	
MLf

MSf

�f ;�1, û1,k�1;�2, û2,k�2;�3, û3,k�3��Fa3
Fa2

Fp1
��i�Fa3

Fa2
Fp1

�†�f ;�1�, û1,k�1;�2�, û2,k�2;�3�, û3,k�3� . �A6�

In this expression, we have summed over all the degenerate Zeeman components �46� of the electronic state �f� of the residual
triply charged positive stable ion A3+ formed in the final step �1c� after the sequential emission of �e1 ,e2 ,e3� in the process �1�.
On substituting Eq. �A5� and using the completeness of the electronic state �1� of A+�

and �2� of A2+�
, the above DM becomes

�f ;�1, û1,k�1;�2, û2,k�2;�3, û3,k�3�� f�f ;�1�, û1,k�1;�2�, û2,k�2;�3�, û3,k�3�

=
K

�2L0 + 1��2S0 + 1� 	
ML0

ML1
ML1

� ML2
ML2

� MLf

MS0
MS1

MS1
� MS2

MS2
� MSf

�f ;�3, û3,k�3�Fa2
�2��2;�2, û2,k�2�Fa1

�1��1;�1, û1,k�1�Fp1
�0;1mr�

��0;1mr�Fp1

† �1�;�1�, û1,k�1��1��Fa1

† �2�;�2�, û2,k�2��2��Fa2

† �f ;�3�, û3,k�3� . �A7�

Here, we have abbreviated �1����L�1S�1ML1
� MS1

� � and �2����L�2S�2ML2
� MS2

� � for the states of the excited photoion A+�
and excited

dication A2+�
, respectively. These are degenerate to the states defined in the respective Eqs. �A4b� and �A4c�. Further in Eq.

�A7�, �1;�1 , û1 ,k�1�=A��1���1 , û1 ,k�1�−� is an antisymmetrized state of the excited photoion A+�
and of the photoelectron e1, and

so on.
Expression �A7� represents an eight-dimensional matrix for a system of three qubits which contains, among other things,

complete information on photoelectron e1 and both Auger electrons �e2 ,e3� ejected sequentially in the 3-TPI process �1� taking
place in the L-S coupling in the absence of SOI. The nondiagonal ��i���i� elements in Eq. �A7� represent the coherent effects;
whereas, diagonal ��i�=�i� elements describe angular distribution of spin resolved �e1 ,e2 ,e3�. It is obvious that the DM �A7�
is Hermitian, i.e.,

�f ;�1, û1,k�1;�2, û2,k�2;�3, û3,k�3�� f�f ;�1�, û1,k�1;�2�, û2,k�2;�3�, û3,k�3�

= �f ;�1�, û1,k�1;�2�, û2,k�2;�3�, û3,k�3�� f�f ;�1, û1,k�1;�2, û2,k�3;�3, û3,k�3��. �A8�

In order to proceed further, one needs to evaluate the matrix elements of the E1 photoionization operator Fp1
and of both

of the Auger emission operators Fa2
and Fa3

present on the right-hand side of Eq. �A7�. The procedures to be used for
evaluating the matrix elements of Fp1

and of Fa2
have already been explained in detail in the appendix of �29�b��. The final

results given in Eqs. �A9� and �A11� therein �29�b�� can directly be used in the present case as well for the matrix elements of
these two operators with, of course, a proper change in notations. A procedure, identical to that used for calculating a matrix
element of Fa2

in Ref. �29�, needs to be adopted for the second Auger operator Fa3
as well. These three matrix elements and

their respective Hermitian conjugates are then substituted in the DM �A7�. The consequent expression is simplified with a
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heavy use of Racah algebra �48�. Finally, the DM for the 3-TPI process �1� can be shown to reduce to the following form:

�f ;�1, û1,k�1;�2, û2,k�2;�3, û3,k�3�� f�f ;�1�, û1,k�1;�2�, û2,k�2;�3�, û3,k�3� =
d4��mr�

d	1dk̂1dk̂2dk̂3

��S0,S1,S2,Sf ;1,2,3��1�2�3;�1��2��3�
.

�A9�

Here,

d4��mr�

d	1dk̂1dk̂2dk̂3

= �− 1�L0+L2+Lf+mr
�2L1 + 1��2L2 + 1�K

�4��3/2�2L0 + 1� 	
�1�1�C1�1CLr

�2�2�C2�2L

�3�3�C3�3L�

�− 1��1+�2+C+C3+L�+�1

��2C + 1��2Lr + 1���2C1 + 1��2C2 + 1��2C3 + 1�
 1 1 Lr

mr − mr 0
�
�1 �1� C1

0 0 0
�

�
�2 �2� C2

0 0 0
�
�3 �3� C3

0 0 0
�
C2 C3 C

�2 �3 �1
�
C1 C Lr

�1 − �1 0
��1 1 Lr

L L� L0
���3 �3� C3

L2 L2 Lf
�

���1 �1� C1

L1 L1 C

L L� Lr
���2 �2� C2

L2 L2 C3

L1 L1 C
�Pe1�L1�1;L01;L��Pe1�L1�1�;L01;L����

�Ae2�L2�2;L1��Ae2�L2�2�;L1���Ae3�Lf�3;L2��Ae3�Lf�3�;L2����YC1

�1�k̂1����YC2

�2�k̂2����YC3

�3�k̂3���, �A10�

and

��S0;S1;S2;Sf ; û1, û2, û3��1,�2,�3;�1�,�2�,�3�
= �− 1�S0−S1−S2+Sf+�1�+�2�+�3�−1/2�2S1 + 1��2S2 + 1� 	

P1P2P3p1p2p3

p1�p2�p3�

�− 1�P1+P3�2P1 + 1��2P2 + 1�

��2P3 + 1�� 1

2

1

2
P1

�1 − �1� p1
�� 1

2

1

2
P2

�2 − �2� p2
�� 1

2

1

2
P3

�3 − �3� p3
�
P1 P2 P3

p1� p2� p3�
�

�� 1

2

1

2
P1

S1 S1 S0
�� 1

2

1

2
P3

S2 S2 Sf
��

S1 S1 P1

1

2

1

2
P2

S2 S2 P3

��Dp1p1�
P1 �1����Dp2p2�

P2 �2����Dp3p3�
P3 �3���.

�A11�

Further, in the expression �A10�

Pe1�L1�1;L01;L� = �− i��1ei��1�− 1��1�2L + 1��2�1 + 1��L1�1�L�Fp1
��L01�L� �A12a�

is the photoionization matrix element in the E1 approximation for the first step �1a� in the 3-TPI process �1�; whereas,

Ae2�L2�2;L1� = �− i��2ei��2�− 1��2�2�2 + 1��L2�2�L1�Fa2
�L1� �A12b�

and

Ae3�L3�3;L2� = �− i��3ei��3�− 1��3�2�3 + 1��Lf�3�L2�Fa3
�L2� �A12c�

are the respective amplitudes for the emission of Auger electrons e2 and of e3 in the second step �1b� and third step �1c� of Eq.
�1�.

A very good check on the accuracy of the procedure used in this appendix is that when the second Auger electron �i.e., e3�
remains unobserved �i.e., on integrating over k̂3 and summing over �3�, relations �A9�–�A11� herein reduce to those obtained
earlier in Eqs. �A14� and �A15� in Ref. �29�b�� for studying spin entanglement between a photo-Auger-electron pair in the
absence of SOI in 2-DPI.

The following expressions provide a simple method for calculating Eq. �A11� for any values of the spins �S0 ,S1 ,S2 ,Sf�:
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��S0,S1,S2,Sf ;1,2,3��1�2�3;�1��2��3�

= �
S0S1
1

2
��
S1S2

1

2
��
S2Sf

1

2
��1

8
I8 + �− 1�S0−S2�2S1 + 1�

3

2�S0
1

2
S1

1 S1
1

2
��S2

1

2
S1

1 S1
1

2
���1,2�

+ �− 1�S1−Sf�2S2 + 1�
3

2�S1
1

2
S2

1 S2
1

2
��Sf

1

2
S2

1 S2
1

2
���2,3�

+ �− 1�S0+Sf−1/2�2S1 + 1��2S2 + 1�
3

2�S0
1

2
S1

1 S1
1

2
��Sf

1

2
S2

1 S2
1

2
��1

2
S1 S2

1 S2 S1
���1,3�� �A13a�

=�
S0S1
1

2
��
S1S2

1

2
��
S2Sf

1

2
��1

8
I8 +

1

4
P13��1,3� + �3

4
+ S1�S1 + 1� − S0�S0 + 1��3

4
+ S1�S1 + 1� − S2�S2 + 1�

��4S1�S1 + 1��−1��1,2� + �3

4
+ S2�S2 + 1� − S1�S1 + 1��3

4
+ S2�S2 + 1� − Sf�Sf + 1��4S2�S2 + 1��−1��2,3� , ,

�A13b�

with

P13 = �3

4
+ S1�S1 + 1� − S0�S0 + 1��3

4
+ S2�S2 + 1� − Sf�Sf + 1��S1�S1 + 1� + S2�S2 + 1� −

3

4
�2S1S2�S1 + 1��S2 + 1��−1

�A14�

and ��S0S1
1
2 �, etc., express the triangular condition �48� to be satisfied by the three angular momenta �S0 ,S1 , 1

2 �, etc. Namely
�48�,

�
S0S1
1

2
� = �1 if �S0 − S1� �

1

2
� S0 + S1

0 otherwise.
� �A15�

Further in Eq. �A13�, each of I8 , ��1 ,2� , ��2 ,3� , ��1 ,3� is a �8�8� matrix. While I8 is a unit matrix, but

��1,2��1,�2,�3;�1�,�2�,�3�
= ��3�3�

�− 1��1�+�2� 	
nm1m2

�− 1�n� 1

2

1

2
1

�1 − �1� m1
�� 1

2

1

2
1

�2 − �2� m2
��Dm1n

1 �1����Dm2,−n
1 �2���,

�A16�

with similar expressions for the remaining ��2 ,3� and ��1 ,3� present in both Eqs. �A13a� and �A13b�, is a nondiagonal
matrix.

Equation �A13� can be used to calculate also the PT �4a�–�4c� of the DM ��S ;��;�� with respect to any of the three
electrons �e1 ,e2 ,e3� emitted in the 3-TPI process �1�.
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The analysis of the entanglement properties of a tripartite state of �e1 ,e2 ,e3� occasionally requires a knowledge also of the
reduced DMs which can be formed from ��S ;��;��. Each of the three reduced DMs, which are possible in the present case,
are defined in Eqs. �5a�–�5c� herein. On substituting in Eq. �5a� any of the Eqs. �A11� and �A13a�, or Eq. �A13b�, the reduced
DM for the photoelectron e1 and the first Auger electron e2 are obtained to be

��S;1,2��1�2;�1��2�
� ��S0,S1,S2;1,2��1�2;�1��1�

= �− 1�S0+S2−2S1+�1�+�2��2S1 + 1� 	
Ppp1p2

�− 1�P+p�2P + 1�
1/2 1/2 P

�1 − �1� p1
�
1/2 1/2 P

�2 − �2� p2
��1/2 1/2 P

S1 S1 S0
�

��1/2 1/2 P

S1 S1 S2
��Dp1,p

P �1����Dp2,−p
P �2���. �A17a�

With a proper identification of the present spin quantum numbers �S0 ,S1 ,S2� with those �S0 ,Se ,Sf� used in Ref. �29� for
studying entanglement in 2-DPI, the above expression �A17a� becomes—of course—identical to that derived earlier in Eq.
�A15� �29�b��.

Substitutions of any of the forms �A11� and �A13a� or Eq. �A13b� of the spin-correlation DM in Eqs. �5b� and �5c� give us
the reduced DMs

��S;2,3��2�3;�2��3�
� ��S1,S2,Sf ;2,3��2�3;�2��3�

= �− 1�S1+2S2+Sf+�2�+�3��2S2 + 1� 	
Ppp2p3

�− 1�P+p�2P + 1�
1/2 1/2 P

�2 − �2� p2
�
1/2 1/2 P

�3 − �3� p3
��1/2 1/2 P

S2 S2 Sf
�

��1/2 1/2 P

S2 S2 S1
��Dp2,p

P �2����Dp3,−p
P �3��� �A17b�

and

��S;1,3��1�3;�1��3�
� ��S0,S1,S2,Sf ;1,3��1�3;�1��3�

= �− 1�S0+Sf−1/2+�1�+�3��2S1 + 1��2S2 + 1� 	
Ppp1p3

�− 1�p�2P + 1�
1/2 1/2 P

�1 − �1� p1
�
1/2 1/2 P

�3 − �3� p3
�

��1/2 1/2 P

S1 S1 S0
��1/2 1/2 P

S2 S2 Sf
��S1 S1 P

S2 S2
1

2
��Dp1,p

P �1����Dp3,−p
P �3���, �A17c�

respectively. Here, the DM �A17b� describes the bipartite state of electrons �e2 ,e3� and Eq. �A17c� that of �e1 ,e3�.
Each of the reduced DMs �A17a�–�A17c� can be expressed in the form of the Werner state �6� with �i , j�= �1,2�, �2, 3�, and

�1, 3�, respectively. Equations �8a�–�8c�, �9a�–�9c�, and �10� give the mixing parameters p12, p23, and p13 for the bipartite state
�A17a� of �e1 ,e2�, Eq. �A17b� of �e2 ,e3�, and Eq. �A17c� of �e1 ,e3�, respectively.

We finally give, for completeness and for the convenience of the reader of this paper, the explicit form of the pure
maximally entangled bipartite state �1�i , j� of electrons �ei ,ej� present in the expression �6� herein. It is one of the Bell
states of two qubits. In the present case, it is a singlet state of two spin-1

2 particles. The following expressions are adapted from
Eqs. �9� and �10� in Ref. �29�b�� wherein they were originally derived:
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4�1�i, j�=

�i,� j/�i�,� j�→
1

2
,
1

2

1

2
,−

1

2
−

1

2
,
1

2
−

1

2
,−

1

2

⇓
1

2
,
1

2
1 − ûi · ûj cisj − sicjc sicj − cisjc �1 − cicj�c − sisj

− isis + isjs − i�ci − cj�s
1

2
,−

1

2
cisj − sicjc 1 + ûi · ûj − �1 + cicj�c − sisj − sicj + cisjc

+ isis + i�ci + cj�s − isjs

−
1

2
,
1

2
sicj − cisjc − �1 + cicj�c − sisj 1 + uî · uĵ − cisj + sicjc

− isjs − i�ci + cj�s + isis

−
1

2
,−

1

2
�1 − cicj�c − sisj − sicj + cisjc − cisj + sicjc 1 − ûi · ûj

+ i�ci − cj�s + isjs − isis

�A18a�

with the definitions

s � sin�� j − �i�, c � cos�� j − �i� ,

i � ��− 1�, ûi · ûj = cicj + sisjc ,

si � sin �i, sj � sin � j, ci � cos �i, cj � cos � j . �A18b�
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