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We investigate performances of pure continuous variable states in discriminating thermal and identity chan-
nels by comparing their M-copy error-probability bounds. This offers us a simplified mathematical analysis for
quantum target detection with slightly modified features: the object—if it is present—perfectly reflects the
signal beam irradiating it, while thermal noise photons are returned to the receiver in its absence. This model
facilitates us to obtain analytic results on error-probability bounds, i.e., the quantum Chernoff bound and the
lower bound constructed from the Bhattacharya bound on M-copy discrimination error probabilities of some
important quantum states, like photon number states, N-photon maximally entangled (NOON) states, coherent
states and the entangled photons obtained from spontaneous parametric down conversion (SPDC). Comparing
the M-copy error-bounds, we identify that path-entangled states indeed offer enhanced sensitivity than the
photon number state system, when average signal photon number is small compared to the thermal noise level.
However, in the high signal-to-noise scenario, NOON states fail to be advantageous than the photon number
states. Entangled SPDC photon pairs too outperform conventional coherent state system in the low signal-to-
noise case. On the other hand, conventional coherent state system surpasses the performance sensitivity offered
by entangled photon pair, when the signal intensity is much above that of thermal noise. We find an analogous
performance regime in the lossy target detection (where the target is modeled as a weakly reflecting object) in

a high signal-to-noise scenario.
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I. INTRODUCTION

Entangled states generally offer enhanced sensitivity over
unentangled ones in channel discrimination. More specifi-
cally, it is shown that minimum error-probability in distin-
guishing two generalized Pauli channels in any dimension is
achieved by employing maximally entangled states as input
states [1]. Extending these ideas, Lloyd [2] proposed his
quantum illumination scheme for target detection: single
photons (signal) from a maximally entangled pair are trans-
mitted toward the target (which is modeled as a weak reflec-
tor with reflectivity x<<1) immersed in thermal noise. The
received light is then measured jointly with the retained idler
photon. When the object is absent, only thermal radiation is
returned and the presence of the object corresponds to a lossy
return of the signal radiation combined with the thermal
noise. The efficiency of target detection, i.e., the sensitivity
of discriminating the returned light in the two situations,
when the target is absent (channel 0) or present (channel 1)
[3] is established—with the help of quantum Chernoff bound
[4] on error exponents—to be substantially enhanced with an
entangled photon transmitter, when compared with the per-
formance of an unentangled single photon transmitter. How-
ever, the analysis in Ref. [2] was confined to the single pho-
ton regime and more recently [5], a full Gaussian state
analysis confirmed that for noisy Gaussian channels, a low
brightness quantum illumination—using entangled photons
obtained from a continuous wave SPDC—is indeed advanta-
geous compared to that with a coherent light. It is further
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realized that [6] the quantum illumination system of Ref.
[2]—which was restricted to the vacuum plus one photon
manifold—does not improve the performance over that of a
conventional coherent state transmitter in the low-noise re-
gime. The dramatic entanglement induced 6 dB error expo-
nent gain over the classical coherent state transmitter system
[5] however persists in the low brightness, lossy, noisy re-
gime. A receiver design achieving up to 3 dB gain in error
exponent has also been proposed [7] for the quantum illumi-
nation system with a low intensity transmitter operating in a
highly lossy, noisy regime.

These recent investigations on quantum illumination sys-
tem to detect a low reflectivity target form the motivation to
explore a simpler mathematical model that captures and elu-
cidates the role of continuous variable entanglement in dis-
crimination. To this end, we begin by noting that a d X d pure
maximally entangled state exhibits an unambiguous im-
provement in discriminating the identity and the completely
depolarizing channels over an unentangled d dimensional
state [1]. It would be natural to seek a similar mathematical
model for target detection, where the object (when present)
acts as a perfect mirror with reflectivity k=1 and thus, cor-
responds to identity channel for any input state of radiation,
whereas a thermal channel represents its absence. In this pa-
per, we analyze contrasting regimes of performance for tar-
get detection in this scenario using entangled photons, com-
pared to unentangled ones. With this background, a relook at
full Gaussian analysis [5] of the lossy, noisy situation, em-
ploying coherent and entangled SPDC photon systems re-
veals analogous behavior and it is found that coherent light
outperforms entangled photon system when signal intensity
exceeds far above that of thermal noise.
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The paper is organized in four sections. In Sec. II, pre-
liminary ideas on channel discrimination are given. An ex-
ample demonstrating the performance advantage of dXd
maximally entangled pure state and the Werner state over
that of an arbitrary d-dimensional single party pure state in
discriminating identity and completely depolarizing channels
is discussed. This is followed by Sec. III where discrimina-
tion of thermal and identity channels with pure states of pho-
tons is reported. This serves as a simple model for quantum
target detection, where signal light irradiating the object
(when it is present) is reflected perfectly, i.e., without any
loss, while a thermal radiation is returned in its absence. This
model is useful as it allows explicit analytic results on error
probabilities or upper (quantum Chernoff bound) and lower
bounds on error probabilities when M repeated uses of the
transmitted photon states is considered. We compare the per-
formances of (A) photon number states vs path-entangled
NOON states, and (B) coherent light vs two-mode entangled
photons obtained from SPDC process. The contrasting per-
formance behavior identified in this model prompts us to
include a brief discussion on target detection in a lossy, noisy
scenario with high signal-to-noise ratio. In Sec. IV, we give a
summary of our results.

II. PRELIMINARY IDEAS

Let us consider the problem of quantum state discrimina-
tion, where one has to distinguish between two possible
states pg, p; of a quantum system. When both the quantum
states are equally probable and M copies of the states avail-
able for measurement, the probability of error is given by [8]

1 1
P = 5<1 - EIIPE‘?M—pi@Mlll), (1)
where ||A]|, =Tr[VATA].

The question of distinguishing two channels &, and ®,
with a given input state p can be reformulated in terms of
discrimination of the quantum states p, and p;, when they
turn out to be the output states of the channels 0, 1, respec-
tively. The single-copy error probability for channel dis-
crimination has the form,

1 1 1 1
P = 5(1 - EH(D()(I)) - ¢1(p)||1) = 5(1 - EHPO_le])'
(2)

When the input state is a composite bipartite quantum sys-
tem, with the channel affecting only one part of the state, the
single-shot error-probability is expressed as

1

1
P§1>=—<1—5ll(<bo®1)p—(<b1 ®I)p||1>- (3)

2

In the simple example, where a completely depolarizing
channel and an identity channel—Ilabeled respectively as
channel 0 and channel 1—are to be discriminated using a
pure d dimensional input state | € H,, the output states are
given by

I
=Py(p)=—,
po=Py(p) p
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p1=P,(p) =)yl (4)

The probability of error in distinguishing p, and p; is readily
found to be

-
e re

1( 1“1 ‘ d-lD 1
1= |==1]+—]|)=—. (5)
2\" "2l |4 d 2d

With a maximally entangled d X d input state,

d
1
(W45 = ?2 lka-kp), (6)
Vd k=1

we obtain,

1 I1®1
po= (Do @ D)WW p] = y ® Trp[|WapX(Wapl]= 2

and  p; = (D @ DWWl = |[Wap)(Wapl. (7)

The error probability in discriminating the two channels,
with a maximally entangled state is given by

1
(1) -
P&N’,qg) - 2d2 (8)

So, maximally entangled states [Eq. (6)] reveal an enhanced
performance in the discrimination of completely depolariz-
ing and identity channels [1].

To emphasize this further, let us consider a bipartite
Werner state,

(1-x)
pw = 71 @ I+ x| W )XW ap

; 0=x=1, (9

which is entangled for 1/(d+1)<x=1 [9]. We obtain the
probability of error in discriminating the channels as

d*—x(d*-1

P = #. (10)
The bipartite Werner state clearly shows an advantage over
the d-dimensional single party pure state if x> d%. In other
words, the performance enhancement offered by entangled
states over unentangled ones is brought out explicitly in this
illustrative case of channel discrimination.

In the next section this analysis is extended to investigate
a simple mathematical model for quantum target detection,
where we explore the sensitivity of entangled photon states
vs unentangled ones in the detection of a perfectly reflecting
target—which in turn reduces to discriminating thermal and
identity channels.

062320-2



QUANTUM TARGET DETECTION USING ENTANGLED PHOTONS

II1. DISCRIMINATION OF THERMAL AND IDENTITY
CHANNELS WITH PHOTONS

Let us imagine a quantum target-detection experiment,
where an optical transmitter sends light toward a region
where a perfectly reflecting object is suspected to be present.
The object, when present, reflects light falling on it to the
receiver end. When the object is absent, the signal light
passes through the region undeflected and a thermal noise
radiation is returned to the receiver. Subsequently, the re-
turned light is processed by the receiver to decide between
the two hypotheses, Hy: object not there and H,: object there.
In other words, the receiver has to distinguish between two
quantum states of light—one, the output of a thermal channel
(object not there) and the other, that of an identity channel
(object there). The states at the receiver are

Hypothesis 0 (object not there):

N
Po= Pu(Np) = 2

1)k+
=(1-eP) e
k=0
e B
where Np= m,
Hypothesis 1 (object there):
P1 = Pins (1 1)

where p;, denotes the input state.

With M copies of the states available, the probability of
making an incorrect decision takes its minimum value [see
Eq. (1)] when a joint optimal measurement involving projec-
tors on the positive and negative eigenspaces of the operator
pM—pi™ could be performed. If this measurement results
in negative eigenvalues, the decision is in favor of p; (object
present); otherwise, it is concluded that p, is the received
state (object not there). Keeping aside the question on ex-
perimental feasibility of such optimal joint detection leading
to maximum sensitivity of making a correct decision be-
tween the two hypotheses, it is in fact a hard computational
task to evaluate the trace norm ||p5™ —pi™||; in order to es-
timate the probability of error. The method often followed in
decision theory is to establish bounds on the error probability
PEM) in order to get an insight on how the probability of
making an incorrect decision declines with number of copies
M. The error probability is upper bounded by the quantum
Chernoff bound [4]

PO < pln)

¢.OCB ( mln Tr[pop M, (12)

1
2
which gives the asymptotic exponential error decline
limy,_.., P(M ~ %e‘MfQCB with Epcp=—ming,<,
In Tr[pop1 *] representing the logarithmic quantum Chernoff
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bound. Further, a computable lower limit on probability of
error is established as

Piip= ‘(1 1= (ol 2p}/2)2) = P, (13)

which is related to the Bhattacharya bound—a weaker upper
bound, obtained by substituting s=1/2 in Eq. (12).

In the special case, when both the states to be discrimi-
nated are pure, i.e., py=|o){| and p;=|4;){(1|, one obtains
an exact result for error probability [10],

PEM) = —(1 =1 = [eol)*). (14)

| =

With only one of the states, say p;, iS pure, the quantum
Chernoff bound is related to the fidelity,

1
P = Plgen= 5 (hlpolv), (15)

(equality sign holds when the states commute with each
other).

Coming back to quantum target detection with a perfectly
reflecting object, it would be useful to restrict here to optical
transmitters sending pure states of photons, as this scenario
is more amenable to obtaining analytic results and lead to a
better insight into exploring performances of some important
quantum states of photons in target detection.

A. Photon number states vs NOON states

Employing an optical transmitter, which sends photon
number states |n) to shine the object, we obtain [see Eq.

(1],
= |n)nl. (16)

Substituting Eq. (16) in Eq. (15) and simplifying, we obtain
the exact result [[11]] for error probability,

w_L _ Np
2 (14Nt

po=pu(Np), and p,
Mo
=5(1—e_B)Me_M”B. (17)

On the other hand, entangled pair of photons sharing a NOON
State

[ Xoon) = 5[|2n,0>+ (18)

with average photon number {alag)=(aja;)=n per both sig-
nal (S) and idler (I) modes, results in the following states to
be distinguished by the receiver:

po=Pm(Np) ® Trs[|q'N00N Woonl]

= piu(Np) ®

|\I,NOON><\I,NOON (19)

We evaluate the quantum Chernoff bound on the M-shot
error-probability as follows:
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FIG. 1. (Color online) Upper, lower bounds (dashed curves) on M-copy error probability with NOON states and photon number state’s
error probability (solid curve) for a thermal noise 8=0.05; photon numbers in (a) n=100 and in (b) n=20. The lower bound lies above the
number state error probability in (a) implying that NOON states are not advantageous over photon number states. But, with smaller number
of photons [as illustrated in (b)], entangled NOON states indeed offer an enhanced sensitivity over number state system.

M
P JOCBNOON = 5 |:<“PN()ON {pth(NB) ® %[|0><0| |2n><2n|]}|\PNOON ]

il
T2\ (1+Np)"™ 4

1
= 5(1 - e_B)Me_M"ﬁ(

A comparison of Egs. (17) and (20) indicates that entangled
NOON states do offer enhanced sensitivity over photon num-
ber states of same signal intensity n, when cosh(nB) <2 as
P%)>P£ Q)CB Noon 1N this case. However, the situation ap-
pears to get reversed if the signal intensity n is much larger
(for a given thermal noise B) such that cosh(nB)>2, in
which case the upper bound Pi{ngB,NOON on NOON state’s
M-copy error probability is greater than photon number
state’s error probability P%). Note that the underperfor-
mance of NOON state system holds as an exact result in the
limit M — . One has to verify if the lower bound on error-
probability [see Eq. (13)] with NOON state system too con-
firms this observation. In order to identify this, we first
evaluate Tr[p(l,/zp{n] for the output states [Eq. (19)] to be
discriminated, i.e.,

Trlp /%]

= (¥oon { i/ 2(Np) @ _—[|O><0| + |2n><2n|]}|\PNOON
Ng

1 n
=—F——| 1+
2\r’1+NB|: <N3+1> ]

“nB(1 — ¢ B
= %cosh(mﬂ&).

1)

to obtain the lower bound on M-copy error-probability with
NOON states as

L) (1)

M
cosh(np) ) 20)
2
|
P . LB NOON
[ B — o P 2|
= %ll - \/1 - ( % cosh(n,B/Z)) |
= PMox- (22)

In Fig. 1, we compare the photon number state’s error-
probability P ) given by Eq. (17) Wlth upper (quantum
Chernoff bound) and lower bounds on Pe Noon ©f NOON state
[see Egs. (20) and (22)] in two different cases (a) n=100 (b)
n=20, for a fixed thermal noise 8=0.05 (which corresponds
to average number of thermal photons Nz~ 20). We find that
the error-probability bounds corresponding to NOON state are
higher in magnitude than the photon number state error prob-
ability for large values of n and this provides clear evidence
that NOON states do not offer any performance enhancement
over unentangled photon number states. On the other hand,
NOON states offer enhanced sensitivity compared to number
states, when low photon numbers 7 [such that cosh(nB) <2]
are considered (here, the lower bound P%L,NOON on NOON
state’s error-probability is smaller in magnitude, when com-
pared with the error-probability P%) of the photon number
state—as illustrated in Fig. 1(b)-bringing out the advantage
of NOON states over photon number states in this regime).

B. Coherent light vs two-mode entangled photons
from SPDC process

Let us consider an optical transmitter sending coherent
photons in the quantum state,
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FIG. 2. (Color online) Logarithms of upper and lower bounds (dashed curves) on M-shot error probability with entangled photon pairs
from SPDC source and that of coherent state system (solid curves) for (a) thermal noise Nz=0.75 and Ng=0.5 and in (b) Nz=2, Ng=30,
plotted as a function of log;o[M]. The target detection with Ng<<Ny in (a) is illustrative of the regime where entangled photon pairs show
enhanced performance sensitivity over coherent light. But, it is seen from (b) that when N¢> N coherent state system is more advantageous

than entangled SPDC photon pairs.

la) = el |2/22

2
1=0 \'l' (23)

The quantum Chernoff bound on the error probabilities is
simplified as follows:

Pg Q)CB coh = <a|pth(NB)|a>M

Nk M
__<2|< | >|2 )k+1>

~MNg/Ng+1

le
2 e )" .

|a|2=Ns-

The lower bound [Eq. (13)] with coherent light too can be
readily evaluated following similar procedure as above and
we obtain,

P, on= —(1 —V1—(alpl/ 2(Np)|a)™)

e—ZMNS(l—\NB/(NBH)))
25
(Np+ )M (23)

Employing entangled pair of photons from SPDC, char-
acterized by the quantum state,

Nk
ﬁ lks. ks,

SPDC> E

(26)

where Ny denotes the average number of photons per each
mode, the quantum Chernoff bound on M-shot error prob-
ability is evaluated below,
M
P E,Q)CB,SPDC

= ~(¥pcl(pa(NVp) ® Trg | ¥ LN Winc DIWehna)™

<\I,SPDC|plh(NB) ® pi(Ng) | Wppe)

1 1 NENE M
T2 (Ng+ 12N+ 1) (Ng+ 1)H(Ng + 1)

— l ! " (27)
T 2| (Ng+1)2(Ny+ 1) — N2Ny

We similarly obtain lower bound on P%i)nc as

Pc LB,SPDC

= _(1 - \/1 (Wibnclod/ *(Ng) ® pi (N[ Webpe)™™)

1 2M
I
VNg+ D3 (Ng+ 1) = VN3N,

(28)

In Fig. 2 we compare the target-detection error-probability
bounds of coherent state system [given by Egs. (24) and
(25)] with that of SPDC photon pair system [as in Egs. (27)
and (28)]. We identify two different regimes of performance:
(a) Ng<Nj; The error-probability upper bound is smaller in
magnitude than the coherent state system’s lower bound con-
firming enhanced performance of entangled SPDC photon
pair over coherent light [5]. On the other hand, coherent state
system outperforms entangled photon pair system when (b)
Ng¢> Np, as the lower bound on target-detection error prob-
ability with entangled photons is larger in magnitude com-
pared to the upper bound on error of the coherent state sys-
tem.

At this point, it would be pertinent to take a closer look at
two extreme limits, one with very bright thermal noise, Ny
— and the other, the weak noise limit Nz — 0. In the first
case, the thermal channel acts as a completely depolarizing

channel, sending equiprobable  random  mixtures
lim p[h(NB)—> E|k><k| as output states. The M-shot error
NBHOO

probability of target detectlon with coherent states ap-

proaches the value Piﬁf(),h 2NM On the other hand, the quan-

tum Chernoff bound with entangled SPDC photons tends to-

ward Piﬂgag SPDC 21;”4#1)2’”’ which is c]early smaller

than the coherent state error-probability ZNM in the bright
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FIG. 3. (Color online) A comparison of single-copy error prob-
ability achievable with coherent state system (solid curve) with cor-
responding upper and lower error-probability bounds (dashed
curves) with entangled photon pair system, in the weak thermal
noise limit Nz— 0, plotted as a function of average signal photon
number Ng. Coherent state system is more advantageous compared
to entangled photon pair system when the average signal photon
number Ng> 1, as the lower bound on entangled photon single-copy
error probability exceeds the error probability ch)oh of coherent
state in the weak noise limit.

noise limit. This establishes unequivocally the performance
enhancement of entangled photon pairs over coherent light in
the bright noise limit.

In the weak noise limit, the output of the thermal channel
is a pure state lim py(Ng)—|0)0|. The error probability

Np—0

with coherent statBe system in this limit is obtained [using Eq.
(14)] as, sz())hﬂé[l—\f 1—e ?MNs]. The quantum Chernoff
bound with SPDC photon pair system approaches the value
PS}QCB,SPDC*) %W whereas error-probability lower
bound goes as PM7), sone— 3[1-V1=1/(Ng+1)**] in the
low-noise limit. Figure 3 compares the low-noise-limit
single-copy error bounds of coherent state and entangled
photon pairs. We find that the entangled photon pair system
is unlikely to offer enhanced performance over conventional
coherent state system in the weak noise limit, when the av-
erage signal photon number Ng> 1 (as depicted in Fig. 3, the
error-probability lower bound corresponding to entangled
photons increases in magnitude beyond the coherent state
error-probability for Ng>1).

Having analyzed performance regimes where entangled
SPDC photon pair system is likely or unlikely to be advan-
tageous in quantum target detection compared to conven-
tional coherent state system in this simpler mathematical
model, it is worth revisiting the lossy, noisy scenario (where
the object is modeled as a weak reflector) with a high signal-
to-noise ratio. The evaluation of error-probability bounds is
much involved and requires a full Gaussian analysis [5,12] in
this situation. Without going into the detailed evaluation of
the error-probability bounds, we illustrate here the highlight-
ing features in Fig. 4. We find that the coherent state’s error-
probability upper bound (i.e., quantum Chernoff bound—
which turns out to be the Bhattacharya bound [5]) is lower
than the entangled SPDC photon pair’s lower bound [ob-
tained by evaluating the bound given in Eq. (13) for the joint
idler-return-mode mixed Gaussian state under both hypoth-
eses Hy and H,] only when the signal intensity exceeds far
above the thermal noise level (Ng/Nz=2000 in Fig. 4). So,
in the lossy (k<< 1), noisy (N> 1) target-detection scenario,
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FIG. 4. (Color online) A comparison of M-shot quantum Cher-
noff bound on error-probability achievable with coherent state sys-
tem (solid curve) with the corresponding lower bound (dashed
curve) associated with entangled photon pair system in the lossy
(reflectivity xk=0.01), noisy (average thermal noise photons N
=20) target-detection scenario using highly intense signals (with
signal to noise ratio Ng/Nz=2000). It may be seen that the lower
bound on entangled photon error probability lies above the upper
bound on coherent state error probability revealing that coherent
state system turns out to be more advantageous compared to en-
tangled photon pair system, with very high signal-to-noise ratio.

the coherent state system can surpass the performance sensi-
tivity achievable by entangled SPDC photon pair system,
when a bright signal (with a large signal-to-noise ratio) is
employed—this being a feature revealed by the simple math-
ematical model discussed above.

IV. SUMMARY

In the light of recent investigations [2,5-7] on the advan-
tage offered by maximally entangled SPDC photons over
conventional coherent light in target detection in the lossy,
noisy scenario employing low brightness signal, we have ex-
plored a simpler mathematical model elucidating the perfor-
mances of pure continuous variable states in distinguishing
thermal and identity channels by evaluating the
discrimination-error-probability bounds. This offers as a
simple mathematical model for quantum target detection,
where the object (when present) acts as a perfect mirror with
reflectivity k=1, corresponding to identity channel for any
input state or light, whereas a thermal channel signifies the
absence of the object. This model facilitates analytic results
on exact M-copy error-probabilities or upper (quantum Cher-
noff bound) and lower bounds on error probabilities, which
are explicitly evaluated here for photon number states, NOON
states, coherent states, and the entangled photons obtained
from spontaneous parametric down conversion (SPDC). It is
shown that NOON states are not advantageous over photon
number states when mean number of signal photons is larger
than thermal noise photons. But in the low brightness re-
gime, NOON states indeed offer enhanced sensitivity com-
pared to the photon number state system. Entangled SPDC
photon pair is also shown to outperform conventional coher-
ent photons in the low signal-to-noise scenario—while a
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contrasting behavior (i.e., coherent state system beating the
performance sensitivity offered by entangled photon pair) is
identified when the signal intensity exceeds far above that of
the thermal noise. We have identified a similar performance
regime in the lossy, noisy target detection [5], where conven-
tional coherent radar system achieves improved sensitivity
over that of the entangled photon pair system, in high signal-
to-noise scenario.
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