
Quantum computing with continuous-variable clusters

Mile Gu,1 Christian Weedbrook,1 Nicolas C. Menicucci,1,2,3 Timothy C. Ralph,1 and Peter van Loock4

1Department of Physics, University of Queensland, St. Lucia, Queensland 4072, Australia
2Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
3Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada N2L 2Y5

4Optical Quantum Information Theory Group, Max Planck Institute for the Science of Light and Institute of Theoretical Physics I,
Universität Erlangen-Nürnberg, Staudtstr. 7/B2, 91058 Erlangen, Germany

�Received 18 March 2009; published 17 June 2009�

Continuous-variable cluster states offer a potentially promising method of implementing a quantum com-
puter. This paper extends and further refines theoretical foundations and protocols for experimental implemen-
tation. We give a cluster-state implementation of the cubic phase gate through photon detection, which,
together with homodyne detection, facilitates universal quantum computation. In addition, we characterize the
offline squeezed resources required to generate an arbitrary graph state through passive linear optics. Most
significantly, we prove that there are universal states for which the offline squeezing per mode does not
increase with the size of the cluster. Simple representations of continuous-variable graph states are introduced
to analyze graph state transformations under measurement and the existence of universal continuous-variable
resource states.
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I. INTRODUCTION

Nonstandard models of quantum computation are impor-
tant both practically and conceptually. On the one hand, they
lead to new experimental methods to realize quantum com-
puters; on the other hand, they offer additional insight on the
often counterintuitive properties of quantum information.
Continuous-variable �CV� quantum computation �1� not only
provides a framework for description of interacting quantum
fields �2� but also offers additional realizations of quantum
computers when each CV mode is assigned a suitable qubit
encoding �3,4�. Meanwhile, cluster-state computation �5�
showed that the implementation of many difficult Hamilto-
nians may be avoided by just applying single-qubit measure-
ments on a suitably prepared multiparty entangled resource
state, hence challenging traditional intuition that the imple-
mentation of a general unitary operator requires unitary evo-
lution.

CV cluster-state computation is a fusion of these protocols
�6,7�. In addition to its intrinsic conceptual interest, the for-
malism presents a potential alternative implementation of a
quantum computer. Optical CV cluster states have distinct
advantages over discrete analogs �8�. Any such cluster state
may be generated deterministically through offline squeezing
and passive linear optics �9�, while all multimode Gaussian
transformations performed through the cluster require only
homodyne detection �7�. In addition, via alternative tech-
niques, large CV clusters can be generated in a single step
using just one optical parametric oscillator �OPO� and no
interferometer �10�; some such proposals also have signifi-
cant scaling potential �11,12�. These features of CV cluster
states suggest that they offer a fertile experimental testing
ground for the principles of measurement-based computation
�13�. CV cluster states involving four optical modes have
been demonstrated experimentally �14–16�.

In this paper, we expand and extend the results given in
Ref. �7�. First, we apply the CV stabilizer formalism �4,9,17�

to give simple phase-space and algebraic representations of
CV graph states. We then apply these tools to compute how
graph states transform through quadrature measurements and
show that there exist universal graph states—cluster states—
that can be used as resource states for the implementation of
an arbitrary CV circuit.1

Second, we extend the results in Ref. �9� by bounding the
offline squeezed resources required to construct an arbitrary
graph state to a given precision through passive linear optics.
These results are applied to several graph states of common
interest, including linear graph states and universal cluster
states. We show that the level of squeezing required per mode
does not grow with the size of the cluster state, a necessary
criterion to perform quantum computation efficiently through
offline resources. In addition, we prove that even if online
squeezing is assumed to be as readily available as its offline
counterpart, the generation of CV cluster states via offline
resources remains less costly.

Third, we detail an explicit optical implementation of a
non-Gaussian operator through photon counting and homo-
dyne measurements and thus propose an explicit measure-
ment sequence on CV cluster states that facilitates universal
quantum computation. We also present an alternative formal-
ism such that the embedding of non-Gaussian resource states
allows for universal quantum computation entirely by homo-
dyne measurements alone. Together these results refine many
of the details of the CV formalism, offer tools for further
development of CV cluster-state protocols, and present a va-
riety of potentially promising and viable experiments.

1In this paper, a “graph state” can have an arbitrary graph, while a
“cluster state” must be a member of a family of graph states that is
universal for quantum computation. The reader should be aware
that conventions vary in the literature, and these terms are some-
times used interchangeably. We will, on occasion, use the term
“cluster” on its own, whose meaning at the time should be clear
from the context.
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The structure of the paper is as follows. Section II de-
scribes background material on CV quantum computation
and qubit cluster states that will be useful later in the paper.
Section III introduces graph states for CV modes �qumodes�
and describes their stabilizer and phase-space representa-
tions. Section IV demonstrates that such states, coupled with
single-qumode measurements, are capable of implementing
any specific unitary. Section V explores how CV graph states
transform under measurements and applies these results to
construct a CV cluster state that may be used as a resource
for universal quantum computation. In Sec. VI, the case of
imperfect CV clusters and the resulting distortions are ana-
lyzed and discussed. Section VII discusses the optical imple-
mentation of CV cluster-state computing, including the re-
source requirements for generating arbitrary CV clusters and
explicit implementation of a nonlinear gate that facilitates
universal quantum computation. Section VIII concludes the
paper.

II. PRELIMINARIES

In this section, we review some of the background knowl-
edge relevant to CV cluster-state computation and its optical
implementation. Familiarity with quantum computation and
quantum optics to the level in Refs. �18,19� is assumed. CV
cluster-state computation combines the concepts of CV quan-
tum computation and cluster states. For a more extensive
review of these topics, see Refs. �2,13�.

A. Continuous-variable quantum computation

1. CV state representations

In traditional quantum computation, which uses discrete
quantum variables, the basic unit of information is the qubit,
a system with a two-dimensional Hilbert space with
computational-basis states �0� and �1� and conjugate basis
states �+� and �−�. The two bases are related by the Hadamard
operation H.

The analog for CV quantum computation is the qumode,2

a quantum system with an infinite-dimensional Hilbert space
spanned by a continuum of orthogonal states �s�q for each s
�R, with orthogonality condition �r�q�s�q=��r−s�. The con-
jugate basis states are labeled �s�q. The two bases are related
by a Fourier transform operation,

�s�p =
1

�2�
	

−�

�

dreirs�r�q = F�s�q,

�s�q =
1

�2�
	

−�

�

dre−irs�r�p = F†�s�p. �1�

The unitary operator F is defined by this relation. In quantum
protocols, qumodes may be used to encode qubits �e.g., the
Gottesman-Kitaev-Preskill encoding �4� or a coherent-state
encoding �3�� or they may be employed directly for CV
quantum computation �1,20�.

We may now define corresponding observables, position
q̂, and momentum p̂, such that q̂�s�q=s�s�q and p̂�s�p=s�s�p,
with �q̂ , p̂�= i where �=1. Here, p̂ is the generator of positive
translations in position, while −q̂ is the generator of positive
translations in momentum. Thus, we can write an arbitrary
position and momentum eigenstate as

�s�q = X�s��0�q, �s�p = Z�s��0�p, �2�

where X�s�=e−isp̂ and Z�s�=eisq̂ represent displacements in
the computational and conjugate bases, respectively. An ar-
bitrary pure quantum state ��� of a CV system may be de-
composed as a superposition of either �s�p or �s�q.

While the computational basis or its conjugate is uncount-
able, any physical state ��� may nevertheless be decomposed
into a countable infinite basis. For particles in a harmonic
trap or quantum optical fields we can use the Fock basis of
definite particle number 
�0� , �1� , . . .�, where n̂= â†â is the
number operator, with n̂�n�=n�n�, the usual bosonic commu-
tator �â , â†�=1, and â= �q̂+ ip̂� /�2. In the terminology of
quantum optics, q̂ and p̂ are referred to as the “position
quadrature” and ‘momentum quadrature” for a given mode,
respectively.

A qumode is in a minimum uncertainty state if the product
of the quadrature deviations �q̂ and �p̂ is minimized, i.e.,
�q̂�p̂= 1

2 . The ground or vacuum state �0� defined by â�0�
=0 is an example of particular theoretical and practical inter-
est and represents a Gaussian superposition centered about 0
in either the computational or the conjugate basis,

�0� =
1

�1/4	 dse−s2/2�s�q =
1

�1/4	 dse−s2/2�s�p. �3�

The vacuum state is a specific example of a Gaussian state
whose quadratures exhibit Gaussian statistics.

The state of a single qumode can be described by its
Wigner function �21�,

W�x,y� =
1

2�
	 dw�x −

w

2



q

�̂
x +
w

2
�

q

eiwy . �4�

The Wigner function is a useful tool for describing arbitrary
Gaussian states, which are completely determined by the first
and second moments of the quadratures. Any state with a
Gaussian Wigner function is, by definition, a Gaussian state.
For instance, the Wigner function of the vacuum state is
e−�x2+y2� /�, a multivariate Gaussian distribution with a vari-
ance of 1/2 in both quadratures. A multimode state such as a
CV cluster state is described by a multimode Wigner func-
tion, a straightforward extension of Eq. �4�. Multimode
Gaussian states are then given by a second-moment covari-
ance matrix and a first-moment vector �2�.

2. Gaussian transformations

In quantum optics, the Hamiltonians corresponding to the
experimentally most feasible interactions are at most qua-
dratic in q̂ and p̂. Such interactions transform Gaussian states
to Gaussian states and are referred to as Gaussian transfor-
mations or linear unitary Bogoliubov transformations. If we
collect the quadrature operators into an operator-valued vec-2We use the terms “mode” and “qumode” interchangeably.

GU et al. PHYSICAL REVIEW A 79, 062318 �2009�

062318-2



tor v̂= �q̂1 , q̂2 , . . . , p̂1 , p̂2 , . . .�T, then a general Gaussian trans-

formation Û transforms v̂ according to

Û†v̂Û = Lv̂ + c, Det�L� = 1, �5�

where L is a 2n�2n symplectic matrix and c is a vector of
2n constants that represent quadrature displacements. We list
a number of standard single-mode Gaussian transformations
that will be used in this paper along with their associated
Heisenberg action on the quadrature operators.

�a� Rotations: R�	�=ei	�q̂2+p̂2�/2 rotates a state counter-
clockwise in phase space by an angle 	. Rotations are also
referred to as phase shifts. Here

�q̂

p̂
� → �cos 	 − sin 	

sin 	 cos 	
��q̂

p̂
� = MR�	��q̂

p̂
� , �6�

where MR�	� is the rotation matrix describing the linear
Heisenberg action on the quadrature operators. Note that
R�� /2�=F.

�b� Quadrature displacements: Z�s�=eisq̂ displaces a state
in phase space by s in momentum. Here

�q̂

p̂
� → �q̂

p̂
� + �0

s
� . �7�

Similarly, X�s�=e−isp̂ displaces a state in phase space by s in
position. Note the sign in the exponential of each.

�c� Squeezing: S�s�=e−i ln�s��q̂p̂+p̂q̂�/2 squeezes the position
quadrature by a factor of s while stretching the conjugate
quadrature by 1 /s. Here

�q̂

p̂
� → �s 0

0 1/s ��q̂

p̂
� = MS�s��q̂

p̂
� ,

where MS�s� is the squeeze matrix describing the linear
Heisenberg action on the quadrature operators.

�d� Shearing: D2,q̂�s�=eisq̂2/2 shears a state with respect to
the q̂ axis by a gradient of s. The shearing operator eisq̂2/2 is
also referred to as the phase gate. Here

�q̂

p̂
� → �1 0

s 1
��q̂

p̂
� = MD�s��q̂

p̂
� ,

where MD�s� is the shearing matrix describing the linear
Heisenberg action on the quadrature operators.

Operations �a� and �b� correspond to the most readily
available single-mode Gaussian transformations, requiring
only phase shifts and coherent-state sources. To access all
possible single-mode Gaussian transformations, we will need
squeezing interactions to stretch and compress phase-space
uncertainties. Two such operations are given by �c� and �d�.
In experimental quantum optics, such interactions require
nonlinear optical processes �while the Heisenberg in-out re-
lations remain linear�. Typical methods involve optical para-
metric amplification, which allows one to generate squeezed
vacuum states S�s��0�. We refer to such processes as offline
squeezing, solely involving the preparation of squeezed
vacuum states.

Offline squeezing contrasts with the online squeezing,
where the squeezing operator is applied “online” to an arbi-
trary state of the electromagnetic field. In experimental quan-
tum optics, it is common to refer to S�s��0� as a state with
10 log10�s2� dB of squeezing, alluding to the view that
squeezing can be regarded as a physical resource �2�. While
the generation of reasonably high levels �10 dB� of offline
squeezing can be experimentally achieved �22�, online
squeezing �23� is far more demanding and is currently only
experimentally viable for modest values of s, for instance,
online squeezing of 2.5 dB �24� utilizing offline squeezed
ancilla states �25�.

An arbitrary single-mode Gaussian transformation may be
decomposed into �a� rotations, �b� quadrature displacements,
and either �c� squeezing or �d� shearing operations. The ad-
dition of a two-mode Gaussian gate, such as a beam splitter
or CZ=eiq̂� q̂, allows for arbitrary multimode Gaussian trans-
formations. To account for imperfect Gaussian transforma-
tions, e.g., affected by photon losses and thermal excess
noises, Gaussian unitary gates are generalized to Gaussian
operations �Gaussian completely positively maps� �26�.
These also include Gaussian measurements such as homo-
dyne detection. Any quantum evolution consisting solely of
Gaussian operations on Gaussian states may be efficiently
simulated on a classical computer �20�. Therefore, some sort
of non-Gaussian element is required for universal quantum
computation. In fact, at least in principle, any such element
will do �1�.

3. Universal gate set

We follow the definition of universal CV quantum com-
putation outlined in Ref. �1�. A system is universal if it can
simulate the action of a Hamiltonian consisting of a general
polynomial of p̂ and q̂ to any fixed accuracy.

For a single qumode, all Gaussian operations together
with any single nonlinear �non-Gaussian, at least cubic� in-
teraction are capable of universality �1�. For example, the set
of gates Dk,q̂�s�=exp�isq̂k /k�, for k=1,2 ,3 for all s�R, to-
gether with the Fourier transform F, is sufficient for univer-
sal single-mode quantum computation �that is, this set can be
used to implement any single-mode unitary operation up to
arbitrary accuracy�. Here D1,q̂�s� is a displacement, D2,q̂�s� is
a shear, and D3,q̂�s� is the cubic phase gate �4�. Adding to this
set any nontrivial two-mode interaction allows for universal
quantum computation. For theoretical simplicity, here we
shall use the CZ gate �defined above� to complete the univer-
sal set, while another possibility is a simple beam splitter
interaction.

It should be noted that such statements about universality
do not account for noise. Presently, all general error correc-
tion codes require discretization at some level. Hence, cur-
rently CV quantum computation is only known to be pos-
sible for discretized encodings of CVs.

B. Cluster-state computation

In the qubit-based cluster-state model �5�, quantum com-
putation is implemented by a series of single-qubit measure-
ments on a specially prepared entangled state of many qu-
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bits, most generally, referred to as a graph state �27�. Such
states may be conveniently described by graphs. A graph
G= �V ,E� consists of a vertex set V= 
vi�i=1

n and a set of
edges E. We say that two vertices, vi and v j, are neighbors if
there exists an edge �vi ,v j��E that connects them. For an
introduction to graphs, see Ref. �28�.

For any undirected unweighted graph G= �V ,E� having no
self-loops, we can construct a corresponding graph state as
follows. For each vertex of G, we initialize a qubit in the
state �+�= 1

�2
��0�+ �1��. For every edge in G linking two ver-

tices, we apply a CSIGN gate �which is sometimes called the
CPHASE gate� to the two corresponding qubits. Any unitary
operation can be implemented on a tailor-made graph state
using an appropriate sequence of single-qubit measurements.

The stabilizer formalism �29� offers an efficient way to
represent any graph state. A state ��� is stabilized by an
operator K if it is an eigenstate of K with unit eigenvalue,
i.e., K���= ���. The set of stabilizers forms an Abelian group
under operator multiplication. If such a set exists for a given
state, then we call that state a stabilizer state, and we may use
the generators of its stabilizer group to uniquely specify it.
The stabilizers for qubit graph states are well known. Given
that ��� is an n-qubit graph state with associated graph G
= �V ,E�, it is stabilized by

Ki = Xi �
j�N�i�

Zj , �8�

where N�i� denotes the set of indices that defines the set of
vertices in neighbor vi, i.e., N�i�= 
j � �v j ,vi��E�. The opera-
tors X and Z are the usual Pauli operators for qubits.

There exist universal families of graph states that may be
used to implement any unitary operation solely through the
choice of single-qubit measurements made on it. Originally,
such states are called cluster states, and cluster-state compu-
tation involves the implementation of arbitrary algorithms
solely by an adaptive local measurement scheme. The
scheme involves only single-qubit measurements and is
called “adaptive” because the choice of measurement bases
depends both on the algorithm to be implemented and, in
general, on the measurement outcomes during a cluster com-
putation. Cluster states, when combined with adaptive local
measurements, are thus universal resources for quantum
computation �5�. For more recent developments on possible
resource states for universal quantum computation and their
requirements, see Refs. �30–33�.

III. CONTINUOUS-VARIABLE GRAPH STATES

The concepts of qubit cluster-state computation can be
extended to the continuous-variable regime. We outline CV
graph states �6�, which can be used as resource states for
universal CV quantum computation �7�. We then introduce
nullifiers, a variation in the CV stabilizer formalism �4,9,17�,
and use them to compute how CV graph states transform
under quadrature measurements.

The basic premise of CV graph states may be obtained by
replacing elements of qubit cluster-state computation with
their CV analogs: �+� becomes �0�p, X measurements are re-
placed by measurements of p̂ �and Z with q̂�, and the CSIGN

interaction is replaced by the CZ=eiq̂iq̂j gate, which is used to
entangle nodes i and j. Each CV graph state can also be
defined by a graph G= �V ,E�, where the set of vertices V
corresponds to the individual qumodes and the edge set E
determines which qumodes interact via the CZ operation.

It should be mentioned that one way to generalize the idea
of a CV graph state is to use weighted edges for the graph.
The edge weights specify the strength of the CZ interaction
between the connected nodes: CZ�t�=eitq̂� q̂, where t is the
edge weight. CV weighted graph states have a variety of uses
�10,34,35�, but in this paper we will confine further discus-
sion to unweighted graphs �or, equivalently, graphs whose
edge weights are all +1�.

A. Stabilizers and nullifiers

Analogous to the case for qubit graph states, the stabilizer
formalism for CV systems �4,9,17� can be used to specify
any CV graph state completely �34�. We say that a zero-
momentum eigenstate �0�p is stabilized by X�s� for all s since
it is a +1 eigenstate of those operators. This holds even
though X�s�, being non-Hermitian, is not an observable. No-
tice that if K stabilizes ���, then UKU† stabilizes U���. This
observation, together with the relation eiq̂1q̂2p̂1e−iq̂1q̂2 = p̂1− q̂2,
allows us to write the stabilizers for an arbitrary CV graph
state ��� on n qumodes with graph G= �V ,E�,

Ki�s� = Xi�s� �
j�N�i�

Zj�s�, i = 1, . . . ,n �9�

for all s�R, where N�i� is defined as before in Eq. �8� and
the subscript indicates which qumode the displacement acts
on.

This group is conveniently defined by its Lie algebra, the
space of operators H such that H���=0. We refer to any
element of this algebra as a nullifier of ��� and the entire
algebra as the nullifier space of ���. Being Hermitian, every
nullifier is an observable. Any ideal graph state has a simple
nullifier representation.

Theorem 1. The nullifier space of an n-qumode graph state
��� with graph G= �V ,E� is an n-dimensional vector space
spanned by the following Hermitian operators:

Hi = p̂i − �
j�N�i�

q̂j , i = 1, . . . ,n . �10�

That is, any linear superposition H=�iciHi satisfies H���
=0. Note that �Hi ,Hj�=0 for all �i , j�.

Proof. Every stabilizer from Eq. �9� is the exponential of a
nullifier in this space. Specifically, Ki�s�=e−isHi for all s�R,
with i=1, . . . ,n. �

In Fig. 1, we illustrate this formalism. Note that the nul-
lifier space for a given state does not have a unique set of
nullifiers �a basis� that defines it since linear combinations of
nullifiers give another nullifier. Nevertheless, Eq. �10� is a
standard set that can easily be obtained from a given graph.

B. Wigner representation

The Wigner function can be useful as an extension to the
nullifier formalism. It encapsulates the simplicity of the nul-
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lifier formalism while maintaining the intuition afforded by
an explicit representation of the state and, importantly, con-
tinues to be useful for nonideal CV cluster states. Since the
arguments of a Wigner function behave identically to the
nullifiers under Gaussian transformations, they may also be
written by inspection.

The Wigner function of an ideal n-qumode graph state ���
with graph G= �V ,E� is a function of 2n variables on the
scalar-valued vectors q= �q1 , . . . ,qn� and p= �p1 , . . . , pn�. Ex-
plicitly,

W�q,p� = �
i=1

n


�qi���Hi� , �11�

where Hi, i=1, . . . ,n, are the standard nullifiers of ��� �with
each of the operators q̂i and p̂i replaced by scalar variables qi
and pi, respectively�, ��x� is the Dirac delta distribution, and

�x� is the infinite uniform distribution. Ideal CV graph states
are highly singular, so for all practical purposes, ��x� and

�x� should be considered limits of a normalized Gaussian
whose variance vanishes and extends to infinity, respectively.
For example, the Wigner function of Fig. 1�a� is

�q1�
�q2�
�q3���p1−q2���p2−q1−q3���p3−q2�.

Wigner functions can also be used to define an extended
class of generalized graph states. Whereas an ideal graph
state with associated graph G may be defined by the action of
appropriate CZ gates on n momentum eigenstates, a general-
ized graph state replaces each momentum eigenstate with
some arbitrary quantum state ��i�. If ��i� has a corresponding
Wigner function Wi�qi , pi�, then the Wigner representation of
the resulting generalized graph state is given by

W�q,p� = �
i=1

n

Wi�qi,Hi� . �12�

Such states are used extensively when we perform computa-
tions with graph states and when we extend the graph state
formalism to realistic situations where momentum eigen-
states need to be approximated.

IV. QUANTUM COMPUTATION ON CV GRAPH STATES

CV graph states are a resource for CV quantum computa-
tion. For any given CV unitary U and any given input ���,
there exists an appropriate graph state such that by entan-
gling the graph state locally with ��� and applying an appro-
priate sequence of single-qumode measurements, U��� is
computed.

To justify this statement, we first show that there exists a
���-dependent quantum state on a system of qumodes that
collapses into U��� �modulo known single-qumode Gaussian
operations� when an appropriate sequence of single-qumode
measurements is applied. We then demonstrate that this
���-dependent quantum state can be efficiently constructed
using an appropriate graph state as a resource.

A. Measurement-based CV quantum computation

To implement any unitary operation on k qumodes, we
apply the following algorithm. We first introduce a graph
G= �V ,E�. We designate k vertices of G as input vertices and
another �possibly overlapping� set as output. We call these
sets Vin and Vout. The following algorithm computes U���:

�1� The qumodes corresponding to the vertices in Vin en-
code the input state ���, while the qumodes corresponding to
the other vertices are each initialized in the state �0�p.

�2� For each edge �v j ,vk��E, apply CZ=eiq̂jq̂k between
vertices j and k. Since all CZ operations commute, their order
does not matter.

�3� Measure each vertex vi for all vi�Vout in a basis of
the form Mi=e−if i�q̂�p̂eifi�q̂�, where f i�q̂� is, in general, a poly-
nomial of q̂. The exact form of each f i is dictated by the
unitary we wish to implement and the result of measure-
ments on prior modes. Without loss of generality, we can
label the vertices such that they are measured in numerical
order.

�4� The remaining unmeasured qumodes encode U���,
modulo known single-mode rotations and translations.

The above algorithm may be implemented by using an
appropriate graph state as a resource. This algorithm is uni-
versal. Given any unitary U, there always exists an appropri-
ate graph G= �V ,E� and designations Vin, Vout�V such that
the above algorithm implements U.

B. Proof of universality

To prove the above procedure is universal, we need to
show that it can implement �a� single-mode Gaussian opera-
tions, �b� the cubic phase gate, and �c� the CZ gate. First
observe that �c� may be implemented trivially by a two-
vertex graph where both vertices are designated as both input
and output. No measurements are required.

The implementation of �a� and �b� also each involves a
two-vertex graph. We designate one vertex as input and the
other as output. Consider first the case where the input mode
is measured in the p̂ basis,

���
�0�p

m

X�m�F��� .

• ����p̂

•

FIG. 1. �Color online� Nullifiers give an efficient description of
ideal graph states. The nullifier space of the linear graph state on
three nodes �a� is spanned by p̂1− q̂2, p̂2− q̂1− q̂3, and p̂3− q̂2. The
infinite two-dimensional lattice �b� is nullified by Hi,j = p̂i,j − q̂i−1,j

− q̂i+1,j − q̂i,j−1− q̂i,j+1 for each coordinate �i , j�.
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Given an input ��� � �0�p=�dsf�s��s�q�0�p, the state of the
system after the application of the CZ gate is

CZ���� � �0�p� =	 dsf�s��s�q�s�p. �13�

Measurement of p̂ on the first mode with associated result m,
as shown, collapses this state to

���out �	 dsf�s���m�p�s�q��s�p �	 dsf�s�e−ism�s�p,

���out = e−imp̂	 dsf�s��s�p = X�m�F��� . �14�

The effect of this circuit is to apply the identity operation,
modulo a known quadrature rotation and displacement.
Obviously, a transformed input state of Dq̂���, for any Dq̂

=eif�q̂� diagonal in the computational basis, would result in
output X�m�FDq̂���. However, this same transformation can
be induced by an appropriate measurement. We can see this
immediately by writing out the associated circuit. Since Dq̂
commutes with CZ, the circuit

���

�0�p

Dq̂ − p̂ = m

X�m�FDq̂���

• Dq̂
����p̂

•
must have the desired output. The application of Dq̂ followed
by a p̂ measurement has an identical effect to a measurement
in the rotated basis p̂f�q̂�=Dq̂

†p̂Dq̂. Hence, any unitary diago-
nal in the computational basis can be implemented by a
single measurement of p̂f�q̂�. Measurements on two qumodes
of a three-qumode cluster equate to a repeated application of
this circuit, resulting in the output

���out = X�m2�FDq̂X�m1�FDq̂���

= X�m2�FX�m1�D�q̂+m1�FDq̂���

= X�m2�FX�m1�FD�−p̂+m1�Dq̂��� , �15�

where Dv̂=eif�v̂� for any operator v̂, and we have used the
relations

X�− m�q̂X�m� = q̂ + m , �16�

Z�− m�p̂Z�m� = p̂ + m , �17�

F†�− q̂�F = p̂ , �18�

F†p̂F = q̂ , �19�

the last two of which give

F†Z�m�F = X�m� , �20�

F†X�m�F = Z�− m� . �21�

If, instead of p̂f�q̂� as shown above, we had measured the
second mode in the outcome-dependent basis p̂f�−q̂−m1�, the
output would instead be ���out=X�m2�FX�m1�FDp̂Dq̂���.
Thus, the ability to measure the second mode in the basis
p̂f�−q̂−m1� allows deterministic implementation of Dp̂.

By concatenating this circuit a sufficient number of times,
any single-mode operation can be implemented deterministi-
cally by alternating application of Dq̂ and Dp̂ �with generally
different D’s each time� �1�. Note that the measurements re-
quired to implement these gates �beyond the first one� are
necessarily adaptive—that is, our choice of the measurement
basis is generally dependent on previous measurement re-
sults. Also notice that the final result is modified by a
measurement-dependent Gaussian operation �X�m2�FX�m1�F
in the simple case illustrated�. This need not be corrected. As
long as we keep track of it, it can instead be considered as
just a change in basis for the final state.

Another useful way of approaching the question of uni-
versality in the CV context is to consider implementing
Gaussian operations and then, separately, non-Gaussian op-
erations. Single-mode Gaussian operations require the ability
to implement eisq̂ �quadrature displacements� and eisq̂2/2

�shears� for all s�R plus the Fourier transform F.
The Fourier transform is obtained for free simply through

the Gaussian correction applied with each measurement. Dis-
placements eisq̂ are easily implemented as well: just measure
p̂sq̂= p̂+s, which is the same as measuring p̂ and adding s to
the result.3 In this case, dependence on previous measure-
ment outcomes is trivial since p̂s�q̂+m� is also equal to p̂+s,
and thus, no adaptation is required at all.

Shearing transformations eisq̂2/2 correspond to measure-
ments in the basis p̂sq̂2/2= p̂+sq̂. In the case that adaptation
for previous measurements is required, the new measurement
basis would be of the form p̂s�q̂ + m�2/2= p̂+sq̂+ms, which dif-
fers from the original basis only by a measurement-
dependent constant. This can be accounted for trivially by
measuring in the original basis and adding ms to the result.

Since the “adaptation” required for previous measurement
outcomes is trivial for all measurements necessary to imple-
ment Gaussian operations, such measurements may be made
in any order—or simultaneously. This property is known as
parallelism �7�. Qubit cluster-state computation has an analo-
gous property with the same name, whereby measurements
that implement Clifford group operations can be performed
in any order �13�.

The above measurements allow for any Gaussian opera-
tion to be implemented. But universality requires non-
Gaussian operations as well �20�. The cubic phase gate eisq̂3/3

allows implementation of all single-mode non-Gaussian op-
erations �1� and may be implemented via a measurement in
the basis p̂sq̂3/3= p̂+sq̂2. The difference with this gate is that
when an adaptive implementation is required, the physical
basis is now different, p̂s�q̂ + m�3/3= p̂+sq̂2+ 2

3msq̂+ 1
3m2s, due

to the presence of the noncommuting m-dependent term
2
3msq̂. Accounting for this difference requires physically
changing the basis of measurement �unlike the last term

3There is a sign error in the corresponding derivation in Ref. �7�.

GU et al. PHYSICAL REVIEW A 79, 062318 �2009�

062318-6



1
3m2s, which can be eliminated simply by shifting the result�.
As with qubit quantum computation, a general CV quantum
computation will require adaptive measurements for the non-
Gaussian �non-Clifford� part of the computation. What these
measurements are in an experimental context will depend on
the choice of the physical implementation. In Sec. VII, we
propose one possible method that uses photon counting.

A sequence of single-qumode unitaries and wires is
implemented by a sequence of measurements on a linear
graph state. CZ gates are implemented by edges between lin-
ear clusters �Fig. 2�. Thus, we may apply the algorithm de-
scribed to implement any given CV unitary on an arbitrary
input state. This proves universality.

C. Graph states as resources

Observe that steps 1 and 2 generate a special class of
generalized CV graph states. Each of the input qumodes is
initially set to encode the inputs of the desired quantum com-
putation rather than the standard momentum eigenstates. The
resulting cluster has the Wigner representation

W�q,p� = �
i�I

Wi�qi,Hi��
j�I


�qj���Hj� , �22�

where I= 
i �vi�Vin� is the set of indices that corresponds to
the input qumodes.

To see that the standard graph state with graph G�V ,E�
may be used as a resource for the algorithm, we show that it
may be used to efficiently generate clusters of the form given
by Eq. �22�. Let the input state be initially encoded on k
qumodes, which we label 
u1 ,u2 , . . . ,uk�, and the input ver-
tices of the graph state given by Vin= 
v1 ,v2 , . . . ,vk�. We pro-
ceed as follows:

�1� Apply a CZ operation between each qumode pair,
�ui ,vi�, for each i=1, . . .k.

�2� Measure each of the modes ui, resulting in measure-
ment results mi, i=1, . . . ,k.

The resulting cluster state is identical to Eq. �22�, modulo
known single-mode quadrature displacements and rotations
on each vi that can be accounted for throughout the remain-
der of the computation.

Thus, the circuit of Fig. 2�a� may be implemented by
using a standard graph state with the graph shown in Fig.
2�b�. We refer to such graph states as CV brickwork states,
alluding to similar results in qubit cluster-state computation
�36�.

V. UNIVERSAL CLUSTER STATES

So far, we have discussed the construction of specific
graph states tailored for a specific quantum computation.
Like qubit clusters, there exist classes of universal CV graph
states that may be used to implement an arbitrary CV opera-
tion. This is of more than theoretical interest since it facili-
tates the development of physical systems that are tailored to
generate one particular state. This state can then be used as a
universal resource.

To prove the existence of such universal resources, we
explore how CV graph states transform under single-mode
quadrature measurements. These tools are then applied to
show that there exists a universal CV graph state, which,
when appropriate quadrature measurements are applied, col-
lapses to the specific CV brickwork state that implements
any given quantum circuit. Such universal graph states are
called CV cluster states.

A. Graph state transformations

The nullifier formalism is ideal for computing how graph
states transform through quadrature measurements. In this
formalism, we describe a measurement p̂i on the ith qumode,
with measurement result mi, as follows. We first rewrite
the nullifiers in a basis such that only one element, say Hi,
does not commute with our basis of measurement. Hi is
then replaced with p̂i−mi, and in all other nullifiers, p̂i is
replaced with mi. Measurements in the q̂i basis are treated
analogously. The details of this formalism are outlined in
Appendix.

FIG. 2. �Color online� �a� Any unitary on multiple qumodes
may be written as a quantum circuit consisting of CZ and single-
qumode unitaries diagonal in either the position or momentum basis
�1�. �b� Any such circuit may be directly translated into an appro-
priate graph state. Here the arrowed qumodes are measured in the
appropriate basis that implements their corresponding single-
qumode unitary. All other nonoutput qumodes are measured in the p̂
basis.
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1. Vertex removal

A computational-basis measurement on a qumode re-
moves it, along with all edges that connect it, from the clus-
ter. Consider a measurement q̂i on the ith mode of ���. Equa-
tion �10� indicates that Hi is the only noncommuting basis
element. Therefore a measurement with result mi transforms
Hi into q̂i−mi and replaces q̂i with mi in all others. Explicitly,
for each j� i,

Hj → Hj�q̂i→mi
= � p̂j − �

�vj,vk��E,k�i

q̂k − mi if �v j,vi� � E

p̂j − �
�vj,vk��E

q̂k if �v j,vi� � E .�
�23�

The resulting state corresponds to the graph state of G with
vertex vi removed, modulo known quadrature displacements.
This operation is useful for creating a CV graph state that
corresponds to the subgraph of some original resource state.
In addition, it functions as a handy “delete” button and can
be used to “amputate” corrupted parts of a cluster state. To
summarize, if ��� is the graph state defined by a graph G
= �V ,E�, a q̂ measurement on a mode i results in the graph
state with associated graph G \ 
vi�, modulo known correc-
tions, i.e., the graph resulting from removal of vertex vi
along with all edges connecting to vi. Thus, a computational
measurement removes a given node from the cluster.

2. Wire shortening

Sometimes we may also wish to remove a given vertex
but still preserve the connections of its neighbors. This trans-
formation is useful, for example, when we wish to shorten
linear graph states. Consider p̂ measurements on the two
inner nodes of the four-node linear graph, which has nullifier
basis


p̂1 − q̂2, p̂2 − q̂1 − q̂3, p̂3 − q̂2 − q̂4, p̂4 − q̂3� . �24�

Since we will be making measurements of p̂2 and p̂3, we
want a new basis in which only one nullifier fails to com-
mute with p̂2 and only one other fails to commute with p̂3.
We construct this basis out of linear combinations of the
original basis elements, resulting in


p̂1 − q̂2, p̂2 − p̂4 − q̂1,− p̂1 + p̂3 − q̂4, p̂4 − q̂3� . �25�

Measurements of p̂2 and p̂3, with outcomes m2 and m3, re-
spectively, collapse the cluster into a new graph state with
nullifiers 
m2− p̂4− q̂1 ,m3− p̂1− q̂4�. This is equivalent to the
graph state of the two-qumode cluster, modulo a known
quadrature displacement and a reflection in phase space
about one of the nodes. Thus, measurements in the momen-
tum basis allow us to effectively “shorten” linear graph
states.

B. Universal resource state

Recall that any quantum circuit may be implemented by a
sequence of measurements on a specifically tailored brick-
work state �see Fig. 2�b��. The graph for such states is always

a subgraph of a sufficiently large two-dimensional square
lattice �see Fig. 1�b��. The two transformations outlined
above allow us to carve out an appropriate graph state for
simulating any given circuit �Fig. 3�. The graph state that
corresponds to a planar square lattice is thus a resource for
universal CV quantum computation and is therefore a CV
cluster state.

In practice, of course, lattices are always of finite size,
just as are all quantum circuits. Therefore the complexity of
the quantum computation one wishes to perform is con-
strained by the size of the original resource state. Since the
size of the required cluster grows linearly with the number of
fundamental one- and two-qumode gates and also grows lin-
early with the number of qumodes, CV cluster-state compu-
tation is efficient. As in the case of qubits, any algorithm of
polynomial gate complexity can also be implemented by a
resource state of polynomial size.

VI. EFFECTS OF FINITE SQUEEZING

The ideal framework of CV quantum computation in-
volves the use of momentum eigenstates. Such states cannot
be normalized and are thus an idealized abstraction. Any
practical implementation must necessarily approximate these
states. One way to do so is by replacing each zero-
momentum eigenstate with a vacuum state that has been fi-
nitely squeezed in the momentum quadrature. In this section,
we detail the resulting distortions imposed on any quantum
computation that uses cluster states made from these ap-
proximate states.

Suppose we use states of finite squeezing, i.e., S�s��0�
�where �0� represents the vacuum� for some large s, in place
of momentum-quadrature eigenstates. The resulting graph
state obtained will not be ideal. Formally, we say that the
resulting graph state ���s�� is of accuracy s. Such states are
generalized CV cluster states, and Eq. �12� allows us to write
down their Wigner representation,

FIG. 3. �Color online� Any CV graph state may be generated by
appropriate single-mode measurements. Computational-basis mea-
surements �blue orbs� remove unwanted nodes. Momentum-basis
measurements �green orbs� are then employed to shorten the
“wires” within the cluster.
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W�q,p� = �
j=1

n

Gs�qj�G1/s�Hj� , �26�

where Gs�q�= ��s2�−1/2 exp�−q2 /s2� represents a Gaussian
distribution with variance s2 /2 and 
Hj� are the nullifiers of
���s�� from Eq. �10�. Thus, these generalized CV cluster
states are Gaussian states. Observe that Gs converges to a
uniform distribution and G1/s to a �-peaked distribution in
the limit of large s, in agreement with the Wigner function
for an ideal graph state �Eq. �11��.

To analyze the resulting distortions, we first consider the
special case of simple state teleportation, where only p̂ mea-
surements are made and the input state propagates through
the cluster without any intended manipulation. This result
may then be extended to arbitrary measurements and the
implementation of universal gates.

A. Distortions in state propagation

Consider the state resulting from a p̂ measurement on a
two-qumode cluster, with input state ��� specified by the
Wigner function Win�q , p�. In terms of the circuit model, this
is represented by

���

S�s��0�

m

X�m�F����

• ����p̂

• �27�

where ���� is a distorted version of ���, which will be speci-
fied below. We can analyze this circuit as follows. After en-
tangling the input, the state of the system is given by

Win�q1,p1 − q2�Gs�q2�G1/s�p2 − q1� . �28�

A p̂1 measurement with outcome m yields the output state

P�m�Wout�q,p� = Gs�q�	 d�Win��,m − q�G1/s�p − ��

= Gs�q���Win�1G1/s��p,m − q�� , �29�

where �1 denotes a convolution with respect to the first ar-
gument of W and P�m� is the probability of measurement
outcome m. P�m� multiplies the resulting, normalized pure
state Wout to give the actual expression on the right-hand
side.

What we would like to know from this toy example is
how the imperfect squeezing affects the encoded state under
the cluster-state implementation of the identity gate. A good
way to see this effect is to undo the unitary correction X�m�F
and compare the result Win� to the original input state Win,

P�m�Win� = Gs�m − p���Win�1G1/s��q,p�� . �30�

The Wigner function Win� �q , p� corresponds to ���� in circuit
�27�. This means that with respect to the quantum informa-
tion to be teleported, the Gaussian envelope is dependent on
the measurement outcome m. Some values of m will result in
an envelope that overlaps the �non-negligible� support of
Win, while other more extreme values of m will result in a
strongly shifted envelope that cuts off large portions of the
support of Win. Thus, the actual success of any instance of

teleportation depends strongly on the measurement outcome
m.

On the other hand, we can instead talk about the average
state �a mixed state� that results from teleportation when we
average over all possible measurement results m using their
corresponding probabilities P�m�. This state is easily calcu-
lated using Eq. �30�,

Wavg = �Win� � =	 dmP�m�Win� = Win�1G1/s. �31�

Thus, the average effect on the quantum information due to
teleportation using finitely squeezed resources is just the ad-
dition of a variance of 1 / �2s2� noise units on the q̂ quadra-
ture. Repeated application gives us the resulting average dis-
tortion when a chain of p̂ measurements is used to teleport an
initial state Win down a linear cluster,

Wavg = Win�1G1/s�2G1/s�1G1/s�2 ¯ , �32�

In summary, when propagating quantum information through
a chain of finite accuracy s, in every single shot, pure con-
ditional output states are created with Gaussian envelopes
applied to the input state in alternating quadratures and with
the measurement results 
mi� determining their respective
centers. More typical, when CV quantum information is tele-
ported through a chain of finite accuracy s, on average,
1 / �2s2� units of noise are added alternately between the two
quadratures resulting, in general, in a mixed output state.
Whether a single shot or an average picture is applicable
depends on the actual experimental implementation and the
encoding of the signal states.

B. Distortions in universal gate teleportation

The distortions derived above, caused by finite squeezing,
apply to all single-qumode measurements. To see this, con-
sider the application of an arbitrary single-qumode unitary D,
diagonal in the computational basis, by measuring in the
D†p̂D basis. Since D and CZ commute, this is equivalent to
standard teleportation with input D���, i.e.,

D��� m

S�s��0� X�m�F�D�����

• ����p̂

•
Thus, the resulting output state is again the expected output
state in the limit of ideal graph states, subjected to the dis-
tortion given by Eq. �30�. Therefore, the use of finite squeez-
ing results universally in the addition of Gaussian noise that
“blurs out” the details in the momentum and position quadra-
tures, alternating between them at each step. The magnitude
of this noise is inversely proportional to the accuracy of the
cluster and grows linearly with the length of the cluster. This
noise can potentially be reduced by the use of redundant rails
�9�. However, such redundant multiple-rail encoding requires
a larger amount of squeezing resources for creating the cor-
responding graph state. We will get back to this point in the
following sections on optical cluster-state generation and
computation.
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VII. OPTICAL CLUSTER STATES

The optical implementation of CV cluster states holds par-
ticular promise and features a number of advantages over its
discrete-variable counterpart �8,37�. With optical qubit clus-
ter states, the entangling operation that is used to generate a
cluster state is highly nonlinear, and its proposed implemen-
tations are nondeterministic. This results in significant over-
head and presents an impediment to the generation of large-
scale clusters. While challenging nonlinear operations are
still required for universal quantum computation, the genera-
tion of CV cluster states with current technology is entirely
deterministic. In particular, see the following:

�1� Any CV graph state can be prepared completely via
the interaction of squeezed vacuum states through a network
of linear optical elements. Not only we do avoid the need for
nonlinear interactions but online squeezing is also unneces-
sary.

�2� Once the cluster state is prepared, any multiqumode
Gaussian operation may be implemented entirely by quadra-
ture measurements �homodyne detection�.

�3� The addition of photon counting allows for universal
quantum computation.

Indeed, CV clusters of up to four qumodes have already
been experimentally realized �14–16�. In addition, recent re-
sults show that the network of linear optical elements may be
eliminated entirely in favor of frequency-encoded qumodes
and a single OPO �10–12�. Such a method would be able to
create a CV cluster state in just one step and in a single beam
of light. Some such proposals also have significant scaling
potential �11,12�. What follows, however, will focus on the
method described in item �1� and discussed in detail in Ref.
�9�. Item �2� suggests that once such clusters are available,
they can be immediately tested by implementing protocols
involving information distribution and other Gaussian opera-
tions. For example, this result immediately offers an experi-
mentally viable method to use offline squeezed resources to
perform squeezing operations online; such an online CV gate
operation using offline CV resource states can then be not
only “universally” applied to arbitrary optical signal states
�24,25,38� but would also no longer require adjustment of
the offline resources to achieve different squeezing gates as
the CV cluster states provide a universal resource for Gauss-
ian computation together with homodyne detectors �39�. Fi-
nally, while accurate photon counting remains experimen-
tally challenging, item �3� implies that universal quantum
computation is nevertheless possible.

A. Cluster-state generation

The naive canonical method to generate a given CV clus-
ter state would be to apply the theoretical definition directly,
i.e., apply CZ interactions to a collection of squeezed states.
While this method is conceptually simple, it is not very prac-
tical. The CZ operation does not conserve photon number and
requires the use of two single-mode online squeezers �40�.

In a more practical approach, in Ref. �9�, it was shown
that online squeezers are not needed at all. Any desired CV
graph state of accuracy s is a pure multimode Gaussian state,
and hence the only necessary online components are passive

linear optics �9,40�. To make this precise, consider the gen-
eration of a graph state ���s�� corresponding to some graph
G. Recall that ���s�� is defined by application of an appro-
priate sequence of CZ gates to a collection of squeezed states
S�s��0�.

The sequence of Gaussian transformations that take a col-
lection of vacuum states to ���s�� is represented succinctly in
the Heisenberg picture. Let v̂ denote the vector of quadrature
operators: v̂= �q̂1 , q̂2 , . . . , p̂1 , p̂2 , . . .�. In the Heisenberg pic-
ture, the quadratures are transformed according to

v̂ → CS�s�v̂ = M�s�v̂ , �33�

where S�s� represents the squeezing of each vacuum mode to
form the state S�s��0� and C represents application of CZ
operations in accordance with the desired graph. Mathemati-
cally, these operations can be defined by their action on the
quadrature operators

S�s�q̂i = sq̂i, Cq̂i = q̂i,

S�s�p̂i = p̂i/s, Cp̂i = p̂i + �
�vj,vi��E

q̂j . �34�

Concatenation of the two operations gives an explicit form
for M�s�. We refer to M�s� as the generation matrix for
���s��, which defines the Gaussian operation that generates
���s�� from the vacuum. The singular value decomposition
for this matrix then provides an explicit recipe for how it
may be generated using only linear optics and offline squeez-
ing �40� �see Fig. 4�. We refer to this method as the decom-
positional method.4

4In Ref. �9�, the term “canonical” cluster states was reserved for
those states that are obtained by directly applying a network of CZ

gates onto momentum-squeezed states. These canonical states can
then also be created, after Bloch-Messiah decomposition, with of-
fline squeezing and linear optics. In this sense, the decompositional
scheme is equivalent to the canonical scheme based on online CZ

gates. In addition to those schemes resulting in the canonical cluster
states, in Ref. �9�, an alternative protocol was derived �independent
of the Bloch-Messiah reduction�, where offline squeezed states are
sent through passive linear optics under the constraint that the out-
going multimode state satisfies the quadrature nullifier conditions in
the limit of infinite squeezing. In this case, for finite squeezing,
there exist output states different from the canonical cluster states.
This larger family of cluster states was referred to as cluster-type
states, including many “noncanonical” cluster states, nonetheless
satisfying the nullifier conditions in the limit of infinite squeezing.
With regard to experiments, an important feature of these general-
ized states is that the antisqueezing components are suppressed by
construction �15�. In the present paper, in order to make a compari-
son between the scheme based on Bloch-Messiah reduction and that
using direct CZ gates, the former is here referred to as the “decom-
positional method,” while the latter shall be named the “canonical
method.” Later, in order to make this comparison, no distinction
will be made between offline and online squeezings.
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1. Simple example

We illustrate the basic principles of this process by con-
sidering the explicit generation of the two-mode graph state,
with generation matrix

M�s� =�
s 0 0 0

0 s 0 0

0 s s−1 0

s 0 0 s−1
� . �35�

The four singular values of this matrix are given by 
1=
2
=
+, 
3=
4=
−, where


� =
�1 + 2s4 � �1 + 4s8

�2s
. �36�


� specifies the amount of offline squeezing required to gen-
erate the two-mode graph state to an accuracy s �notice that

−=
+

−1�. That is, two squeezed states of magnitude 
+ �i.e.,
S�
+��0��, together with passive linear optical elements, may
be used to generate this simple cluster state. Since we have
transferred the online squeezing of the CZ operation into ex-
tra squeezing during the preparation process, 
+ is generally
greater than s. To generate the two-mode cluster to the same
accuracy, our initial resources must be squeezed to a greater
extent. In the case of the two-qumode cluster,


+ � �2s, s � 1. �37�

Thus in the usual case where high accuracy is desired, we
need to begin with states with a factor �2 more squeezing to
achieve a graph state of the same accuracy. This factor is
known as the squeezing overhead.

Since online squeezing generally represents a much
greater experimental challenge than its offline equivalent, the
decompositional method has a clear advantage over the ca-
nonical approach �9�. However, it is also fair to ask whether
this method is superior in all situations. To test this, we con-
sider the limiting case where offline squeezing is assumed to
be as costly as online squeezing. One answer to this �in the
affirmative� was already given in Ref. �9�, wherein it is
shown that extra local squeezing is required to obtain a ca-
nonically generated CV cluster state from an N-mode Gauss-

ian state in standard form �41�. We will revisit this result
from another angle. In this case, the measure of the resource
requirements is the total amount of squeezing required—
whether online or offline—measured additively in units of
dB.

We consider the toy case of the two-mode cluster here and
follow with the general case in Sec. VII A 2. To generate this
state up to accuracy s, the canonical method has two actions
where squeezers are required:

�a� Squeezing two vacuum states to S�s��0�, which re-
quires two squeezers 10 log�s2� dB each.

�b� Application of a single CZ gate �quantum nondemoli-
tion �QND� interaction�, which requires two online squeezers
of 4.18 dB each �40�.

In contrast, the decompositional method requires squeez-
ing in the following two steps:

�a� Squeezing two vacuum states to S�s��0�, as before.
�b� Squeezing these two states further by 10 log�2�

�3 dB each in order to account for the required squeezing
overhead of �2.

Thus the decompositional method saves �2 modes�
� �4.18 dB /mode−3 dB /mode�=2.36 dB of squeezing for
all values of s. In Sec. VII A 2, we show that the superiority
of this method extends to general cluster states.

2. Resource requirements for general graph states

The above example motivates a general question: how
much offline squeezing is required to create a graph state to
accuracy s? In the case where CZ gates are directly applied,
we would need n squeezed states of magnitude s. To generate
such a state entirely by offline squeezing up to equal accu-
racy, the initial nodes would necessarily need to feature
greater squeezing. The practicality of the decompositional
method hinges on the size of this overhead.

In this section, we show that there exist classes of univer-
sal cluster states whose squeezing overhead per mode does
not increase with the size of the cluster. In addition, as in the
case of two-mode clusters, the decompositional method re-
mains superior even if squeezing arbitrary states �online
squeezing� was as easy as squeezing the vacuum �offline
squeezing�. This is facilitated by a succinct method that com-

FIG. 4. �Color online� A CV graph state can be generated by a Gaussian unitary acting on a collection of vacuum states �9�. The
Heisenberg action of this Gaussian is given by a symplectic linear operator L acting on the phase space of quadrature operators
�q̂1 , q̂2 , . . . , p̂1 , p̂2 , . . .�. This linear action can always be decomposed into the passing of offline squeezed states through a network of passive
linear optical elements �40�.
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putes the offline squeezing required to generate any given
graph state.

Theorem 2. We may generate an n-mode graph state with
graph G to an accuracy s by passing n squeezed vacuum
states—S�si��0�, with i=1, . . . ,n—through a network of lin-
ear optical gates. Let A be the adjacency matrix of G �28�. In
the limit of large squeezing �s�1�, the level of squeezing
required for each mode, si, depends linearly on s, such that

si = s�1 + ki
2, �38�

where ki are the singular values of A. Thus, the squeezing
overhead is bounded above by �1+ki

2.
Proof. Consider a particular graph state with generation

matrix M�s�. When the 1 /s terms can be neglected, the n
largest singular values of M�s� then coincide with the sin-
gular values of the block-column matrix

s�In

A
� , �39�

where In denotes the n�n identity matrix. The result fol-
lows. �

Thus, the squeezing overhead of a given graph state is
determined completely by the structure of its underlying
graph. This theorem allows us to compute the exact re-
sources required to generate any graph state. In certain situ-
ations, it is sufficient to know an upper bound on the amount
of squeezed resources required.

Theorem 3. To generate an n-mode graph state with graph
G to an accuracy s �s�1�, the maximal amount of squeezing
required for any individual resource mode is bounded above
by �Ks�, where

K = �1 + max deg2�G� �40�

and where max deg�G� denotes the maximum degree of G,
i.e., the maximum number of edges connected to a single
vertex.

Proof. Consider first the case where G is an m-regular
graph �i.e., each of its vertices has degree m�. Let A be its
adjacency matrix. Each row and column of A then sums to
m. Therefore A may be written as the sum of m permutation
matrices, P1 , P2 , . . . , Pm. Noting that the largest singular
value of a given matrix is its spectral norm �denoted � · ��, we
have

ki � �A� � �
j=1

m

�Pj� � m , �41�

in agreement with Eq. �40�. Alternatively, this inequality can
be thought of as a special case of the Perron-Frobenius theo-
rem �42�. To generalize this result to an arbitrary graph state
G� with adjacency matrix A� and maximum degree m, ob-
serve that any graph of maximum degree m may be obtained
by removing edges from an m-regular graph G. The spectral
norm of an adjacency matrix strictly decreases with the re-
moval of an edge, so we have �A��� �A��m. �

This theorem immediately implies that the squeezing
overhead for universal cluster states of any fixed accuracy is
bounded. Such states have maximal degree of 4 and hence

feature a squeezing overhead of �17. Thus, to guarantee the
generation of a universal cluster to accuracy s, one would
need to �a� generate a lattice of optical modes, each of which
is squeezed up to 10 log�s2� dB and �b� proceed to squeeze
each mode by a further 12.31 dB. Meanwhile, quantum wires
would require a maximum overhead of �5 and hence an
additional 6.99 dB of squeezing.

To see that the decompositional method is superior to the
canonical method, recall that each CZ gate requires two 4.18
dB squeezers. In the case of a universal square lattice, the
ratio of edges to vertices is 2:1. Thus, while the decomposi-
tional approach requires at most an additional 12.31 dB per
vertex, the two CZ gates applied per vertex would cost 16.72
dB �since each CZ gate requires two online squeezers of
magnitude 4.18 dB�. For a square lattice of size N�N, the
decompositional method would save approximately 4.41N2

dB of squeezing. Thus, not only is it more practical to per-
form universal quantum computation through squeezed of-
fline resources but it also turns out to be more efficient, i.e.,
cheaper in terms of squeezing resources required.

A typical setup would involve the generation of n
squeezed optical modes. These are then passed through a
network of linear optical gates of which the resulting en-
tangled beams formally encode the desired cluster. Since
there exist cluster states that are universal, the setup of this
generation process does not need to be altered for different
algorithms and hence may potentially be mass produced. The
resulting beams can then be measured to perform the desired
quantum computation.

As a final remark in this section, we come back to the
question whether redundant multiple-rail encoding may sup-
press the accumulation of finite-squeezing errors in a cluster
computation �9�. According to Eq. �40�, the offline squeezing
per mode for generating a multiple-rail graph of accuracy s
with m rails �9� is bounded above by �Ks� with K=�1+m2.
Therefore the initial squeezing variances may be as small as
1 / �2s2��1 / �1+m2�, so roughly 1 / �2s2m2� for large m. This
lower bound converges to zero faster than the actual reduc-
tion in the excess noise in the cluster computation which
scales as 1 / �2s2m�. If one has access to squeezing resources
with variances of 1 / �2s2m2�, one may better use them di-
rectly without multiple-rail encoding �9�. However, note that
also here no complete proof for the effective failure of a
decompositional multiple-rail scheme is given, as the above
analysis only relies upon bounds.

B. Optical cluster-state computation

The measurement of optical modes completes the optical
implementation of CV cluster-state computation. Recall from
Sec. IV B that any multiqumode operation may be imple-
mented by measurements that generate �a� the shearing trans-
formation eisq̂2/2 and �b� the cubic phase gate eisq̂3/3 �while a
nontrivial two-mode gate only requires measuring the p̂
quadratures on a two-dimensional cluster state�.

The implementation of �a� is reasonably straightforward.
The required measurement basis, p̂+sq̂, is a rotated quadra-
ture basis. We can write it in the standard form r�sin�	�q̂
+cos�	�p̂�=rp̂	, where
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r = �1 + s2, tan�	� = s . �42�

Thus, the optical implementation involves measurement in
the rotated quadrature basis p̂	, followed by a rescaling of the
result by a factor of r. Therefore, all multiqumode Gaussian
operations may be achieved via simple quadrature measure-
ments on a sufficiently connected graph state. While such
operations are insufficient for universal quantum computa-
tion, they allow for general graph transformations, and thus
many optical experiments that test the foundations of cluster-
state quantum computation can be performed using just
quadrature measurements—i.e., homodyne detection.

The physical implementation of the cubic phase gate is
more challenging. Since the required Hamiltonian to be
implemented is no longer quadratic in the quadrature opera-
tors, a nonlinear optical element is required �1�. Two separate
strategies may be employed, involving either embedding the
nonlinear resource within the cluster �making it a non-
Gaussian state� or using photon counting on the modes of an
existing �Gaussian� graph state.

1. Quantum computation by nonlinear resources

In the standard model of cluster-state computation, all qu-
modes are initialized in the state �0�p prior to the entangling
operation. The quantum computation is entirely dictated by
our choice of measurement basis D†p̂D. However, it is also
possible to encode the computation gates D within our initial
resource. To see this, note that since D commutes with CZ,
the circuit

���

�0�p

�0�p

• ����p̂ m1

• • ����D†p̂D m2

•
is operationally equivalent to

���

D�0�p

�0�p

• ����p̂ m1

• • ����p̂ m2

• �43�

Therefore, instead of measuring in the D†p̂D basis, we may
have used instead the resource state D�0�p for creating the
initial cluster. Since the cubic phase gate D=eisq̂3/3 allows for
universal quantum computation, this observation suggests
that the cubic phase state, eisq̂3/3�0�p, will have the same ef-
fect. One method to optically generate such states is given in
Ref. �4�.

If these states be available, they may be attached at set
locations within a universal cluster state in place of the usual
�0�p. The resulting non-Gaussian cluster would be an im-
proved resource for universal quantum computation. Any CV
unitary may be implemented employing such clusters even
when one is limited to quadrature measurements only. Of
course, generating non-Gaussian quantum states remains
an experimental challenge, and the cubic phase state is no
exception.

2. Cluster-state implementation of the cubic phase gate

The previous observation suggests that if there exists a
method of generating the cubic phase state by viable single-
qumode measurements on a standard cluster state, then cubic
phase gates may be applied to arbitrary inputs.

One possible approach �4� involves photon counting on
one arm of a displaced two-mode squeezed state. This pro-
cedure may be summarized by the following quantum cir-
cuit:

S�s−1��0� n

S�s��0� � ei��n�q̂3
�0�p.

B

Z(r) ����n̂

�44�

This circuit entangles two highly squeezed states, S�s��0� and
S�s−1��0�, with s�1, via a standard beam splitter interaction
B. A large momentum displacement Z�r�, with r�s, is ap-
plied to the resulting two-mode squeezed state. We then
make a photon counting measurement n̂ on the displaced
mode, which approximately collapses the unmeasured qu-
mode into a cubic phase state ei��n�q̂3

�0�p, dependent on the
measurement result n through ��n�= �6�2n+1�−1. This pro-
cedure is essentially a measurement-based quantum
computation—it involves the application of suitable mea-
surements on an entangled resource. Thus, we may recast it
into the form of a standard cluster-state computation. The
two-mode squeezed state generated coincides with a two-
qumode cluster state, modulo a local Fourier transform on
one of the nodes. These observations allow us to construct a
circuit that is consistent with the cluster-state formalism and
also functionally equivalent to circuit �44�, i.e.,

S�s��0� n

S�s��0� � ei��n�q̂3
�0�p.

• X(r) ����n̂

• �45�

In this circuit, the initial entangled resource is a standard
two-qumode cluster arranged in a linear configuration. The
quadratures of this state are rotated with respect to the prepa-
ration using a simple beam splitter, so a position displace-
ment is applied to the first qumode, followed by a photon
counting measurement. Just as in circuit �44�, the second
qumode is then collapsed to an approximate measurement-
dependent cubic phase state.

If the above circuit be attached to the second qumode of
circuit �43�, we may apply the cubic phase gate ei��n�q̂3

to an
arbitrary input state. A cubic phase gate eiaq̂3

, for any a, may
be decomposed into a combination of ei��n�q̂3

and two
squeezers that depend on both n and a �4�,

S†
„t�n�…ei��n�q̂3

S„t�n�… = eiaq̂3
, t�n� = �a/��n��1/3.

The addition of these squeezers to circuit �43� gives a
measurement-based scheme to implement eiaq̂3

for any de-
sired a �modulo measurement-dependent shifts in phase
space�,
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���

ei��n�q̂3
�0�p

�0�p

m1

m2

eiaq̂3
��� .

S(t(n)) • ����p̂

• • ����p̂

• S†(t(n), m1)
�46�

Notice that the second squeezing operation depends on
the measurement result m1 �43�, which breaks the parallelism
normally attributed to homodyne detection since the squeez-
ing operation to be implemented now depends on the previ-
ous measurement results. In addition to this required adap-
tiveness, the actual value of a required may also depend
on previous results. Still, any further corrections—including
the squeezing operations shown in the circuit—are Gaussian
operations and thus can always be implemented by a suitable
sequence of quadrature measurements on a linear cluster
state. Combining this circuit with circuit �45� leads to a
cluster-state implementation of the cubic phase gate �see Fig.
5�. For more details of this construction, see Ref. �43�.

Observe that since the squeezing strength t�n� is depen-
dent on the outcome n of the photon counting measurement
�in addition to the fixed parameter a�, implementation of the
squeezers must be done after the photon counting. As with
non-Clifford group operations on qubit clusters, adaptive
measurements are involved, and hence the order of the mea-
surements now matters.

VIII. DISCUSSION AND CONCLUSION

Quantum information processing through the use of CV
cluster states is a recent development in the field of quantum
computation. While its basic principles have already been
introduced in Ref. �7�, here we fleshed out the details of the
protocol in a way that we hope will facilitate further under-
standing of CV cluster states along with their potential opti-
cal implementation.

The Schrödinger representation of CV graph states used
in Ref. �7� becomes unwieldy as we explore graph states of
nontrivial size. In such cases, Heisenberg nullifiers and
Wigner functions are potentially useful tools. We showed
how these representations may be utilized to derive rules of
thumb on how graph states transform under measurements,
as well as the existence of a CV cluster state that can be used
as a resource for arbitrary CV operations.

The optical implementation of CV cluster states has also
been further explored. When the decompositional method
was initially introduced in Ref. �9�, one of the primary con-
cerns was that the price we pay for avoiding the need to
perform online squeezing was an excessively large overhead
in the extra offline squeezing required. Our results alleviate
this concern. We proved that the squeezing overhead per
mode, when only offline squeezing is used for a given accu-
racy of the CV cluster, does not increase with the size of a
universal CV cluster state. The upper bounds derived on the
necessary amount of offline squeezing indicate that the de-
compositional approach has significant advantages over the
direct approach through QND interactions �7� even in cases
where online squeezing is no more costly than its offline
counterpart. While universal quantum computation using CV
cluster states may be no less challenging than its qubit coun-
terpart, the generation of CV clusters—either using the de-
compositional method �9� or through one-step generation us-
ing a single OPO �11�—is potentially more viable than in
corresponding optical qubit schemes �8�.

To perform universal quantum computation, we adapted
the experimental generation of the cubic phase gate as given
in Ref. �4� to the cluster-state formalism. In addition, by
extending the CV cluster-state framework to include the use
of non-Gaussian resource states, we showed that possession
of a suitable non-Gaussian state is sufficient for universal
quantum computation within the cluster-state framework
even when only Gaussian operations, i.e., homodyne detec-
tions are employed during the cluster computation. This
leads to promising possibilities for universal CV cluster-state
computation. One could, for example, envision that difficult
nonlinear measurements are used to generate non-Gaussian
resource states offline, which may then be distributed to con-
sumers who are limited only to simpler measurements—i.e.,
quadrature homodyne detections. The consumers can never-
theless use the non-Gaussian states as resources for universal
quantum computation.

In theory, all the ingredients for universal CV cluster-state
computation have been developed. In particular, since the
necessary squeezing resources for creating a cluster of given
accuracy have been shown to be independent of the size of a
universal cluster state, scalability would only depend on the
ability of suppressing the accumulation of errors at every
measurement step during the cluster computation. At least
for homodyne detections with near-unit efficiency, these er-
rors mainly originate from the finite squeezing and they grow
linearly with the length of the cluster. This could be compen-
sated by increasing the accuracy of the cluster, hence making
the squeezing per mode again dependent on the size of the
cluster and the computation. Alternatively, some form of er-
ror correction may achieve full scalability in a strict sense,
similar to fault tolerant schemes for qubit quantum compu-

FIG. 5. �Color online� A proposed cluster-state implementation
of the cubic phase gate eiaq̂3

applied to an arbitrary input state ���.
The displaced number-state measurement on node C implements
circuit �45�, resulting in the generation of a cubic phase state at D.
This nonlinear resource state, together with subclusters that gener-
ate the n-dependent squeezing corrections at B and E �where the
squeezing operation at E is now additionally dependent on the pre-
vious measurement result m1�, allows us to apply a cubic phase gate
of any specified strength.
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tation. To find an efficient method for CV quantum error
correction, combined with a practical scheme for incorporat-
ing a non-Gaussian element into the Gaussian CV cluster-
state framework, remains the main challenge to scalability
and universality of the CV approach. Nonetheless, our results
here are an important step toward small-scale proof-of-
principle demonstrations of CV cluster computation.
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APPENDIX: THE NULLIFIER FORMALISM
FOR QUADRATURE MEASUREMENTS

Graph state transformations through quadrature measure-
ments have an efficient nullifier description. Consider a mea-
surement p̂i on a graph state ��� nullified by a vector space
with basis elements 
H1 ,H2 , . . . ,Hn�. There are only two dis-
tinct cases:

�1� p̂i commutes with all basis elements Hj. Then, ���
must be an eigenstate of p̂i with some eigenvalue mi.

�2� There exists exactly one basis element that does not
commute with p̂i; we call this as element Hi.

This is because if there were to exist two or more basis
elements that do not commute with p̂i, say Hi and Hj, then

there exists a constant k such that �p̂i ,Hi+kHj�=0. Thus, it is
always possible to construct a basis such that only one ele-
ment does not commute with p̂i, with �p̂i ,Hi�=−i.

In case �1�, Hkp̂i���= p̂iHk���=0 for each nullifier and
thus p̂i���=mi��� for some mi. Hence �p̂i−mi���� must be a
nullifier of ��� for some mi. The measurement of p̂i yields mi
and the state remains undisturbed.

In case �2�, we write Hi as q̂i+� jcjp̂j +� j�idjq̂j +c0 for
some constants cj and dj. Let the measurement result be mi.
Then, the transformed nullifier algebra is obtained by replac-
ing Hi with p̂i−mi. Since the ith mode is now disentangled
from the cluster and no longer interesting, we may discard it
by choosing a basis such that all but one of the elements
�namely, p̂i−mi� acts as the identity on the ith mode. Mea-
surement in the computational basis q̂ can be analyzed analo-
gously. More general quadrature measurements of the form
p̂sq̂2/2= p̂+sq̂ can be treated in this formalism by application
of the unitary eisq̂2/2, followed by a standard momentum mea-
surement.

We demonstrate this formalism on the case where p̂ mea-
surements are made on the first two qumodes �with measure-
ment results m1 and m2� of a linear three-qumode cluster,
defined by the three nullifiers,


H1,H2,H3� = 
p̂1 − q̂2, p̂2 − q̂1 − q̂3, p̂3 − q̂2� . �A1�

p̂1 commutes with all nullifiers except H2, so we replace H2
with p̂1−m1, giving the nullifiers 
p̂1− q̂2 , p̂1−m , p̂3− q̂2�,
which defines the same state as 
q̂2−m1 , p̂3−m1� after dis-
carding the measured mode.

Repeating this procedure for the measurement of p̂2 re-
sults in the nullifier of the output state being p̂3−m1. Thus
the remaining unmeasured node is in the state �m1�p, in
agreement with Eq. �15�.
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