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We propose a simple scheme for hybrid economical telecloning �HETC� of equatorial qubits with the
well-known W-type entangled states. The so-called HETC is a synthesis of several types of quantum cloning
and quantum teleportation, in which economical symmetric and asymmetric clonings and anticlonings can be
simultaneously achieved by teleportation. We use the global fidelity and average-single-qubit fidelity to esti-
mate, respectively, the collective copying quality and show that the two criteria lead to different results. We
obtain interesting equalities and inequalities about the fidelities of clones or anticlones. We also introduce
controlled HETC of equatorial qubits with recently proposed Greenberger-Horne-Zeilinger �GHZ�–W-type
entangled states �L. Chen and Y. X. Chen, Phys. Rev. A 74, 062310 �2006��, in which the achievement of
phase-covariant telecloning between the sender �Alice� and the receivers �Bobs� is conditioned on the collabo-
ration of all the supervisors �Charlies�. This idea may open a perspective for the applications of such interesting
type of entangled states. A method for generating the GHZ–W-type entangled states is also presented.
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I. INTRODUCTION

Differing from classical information encoded in binary
numbers, quantum information is encoded in two-state quan-
tum systems, i.e., qubits, on which the manipulations are
based on the fundamental principles of quantum mechanics.
Quantum information theory can exploit the unique proper-
ties of quantum mechanics to realize many information
transferring and processing tasks that classical information
theory cannot achieve. On the other hand, the inner structure
of quantum mechanics imposes many restrictions on the ma-
nipulation of quantum information, such as the no-cloning
theorem �1,2� and no-flipping theorem �3� resulting from the
linearity and unitarity of quantum mechanics, respectively.
Although the exact cloning and flipping operations on an
arbitrary unknown quantum state are unrealizable, the ap-
proximate ones are achievable �4,5�. As for the input states
chosen from a subset of linear independent states, exact
copying and flipping can also be realized probabilistically
�6–8�. When the fidelities of the clones or orthogonal
complement of the input unknown state reach the maximum
�quantum mechanics allowed� and are independent of the
input arbitrary state, the related quantum devices are called
universal optimal quantum cloning �UOQC� machines �9� or
universal NOT gates �5�. Quantum cloning has recently at-
tracted much interest �10,11� because of its use in connection
with quantum computation, quantum communication, and
quantum cryptography �see, e.g., �12–15��. The cloning and
flipping transformations are deeply interconnected �5,16,17�:
the two processes are always realized contextually and their
optimal fidelities are directly related. Consequently, more
and more attention is paid to the study of quantum anticlon-
ing �copying the orthogonal complement of the input state�
and cloning-cum-flipping �copying the input state and its or-
thogonal complement simultaneously� �5,8,18–20�. It has

been shown that the fidelity of each copy in 1→n symmetric
UOQC is F1,n= �2n+1� /3n �9�, and the optimal fidelity of
universal quantum flipping or anticloning transformation is
2/3 which is equal to that of the measure-based flipping strat-
egy �classical way� �3,5�. However, when partial information
of the input state is known both the cloning and anticloning
transformations can be dramatically improved. The typical
examples are the phase-covariant cloning �PCC� and phase-
covariant anticloning �PCAC�, in which the initial state of
the input qubit is on the equator of the Bloch sphere �21�.
The PCC and PCAC for equatorial qubits has been exten-
sively studied �see, e.g., �22–27��, and many PCC and PCAC
machines or maps were presented, including a very interest-
ing type of cloning machine in which no ancilla is needed,
i.e., the so-called economical phase-covariant cloning ma-
chine �28–30�.

In quantum approximate copying, the information on the
input qubit is not degraded but only distributed on a larger
quantum system. According to whether or not the initial
quantum information is equally distributed, quantum cloning
can be divided into two types, i.e., the symmetric quantum
cloning �SQC� �4� and asymmetric quantum cloning �AQC�
�31�. In SQC the fidelities of all outputs are equal, while in
AQC they are usually different. AQC may be more efficient
than its counterpart of SQC in applications such as quantum
cryptography attacks. As a consequence, much attention has
been paid to the AQC, especially the asymmetric phase-
covariant cloning �28,32,33�.

As mentioned above, quantum cloning process can be re-
garded as the distribution of quantum information from ini-
tial system to final ones. Thus quantum cloning combining
with other quantum information processing tasks may have
potential applications in many-party quantum communica-
tion and distributed quantum computation �34–36�. This
leads to the advent of the concept of telecloning �37� that is
the combination of quantum cloning and quantum teleporta-
tion �38�. Telecloning functions as transmitting many copies
of an unknown state of the input qubit to many distant qu-
bits, i.e., realizing one-to-many cloning at distant sites, via*yanggj@bnu.edu.cn
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previously shared multipartite entangled states. It can be re-
garded as a generalization of quantum teleportation to many-
recipient case. In the past few years, telecloning was exten-
sively studied and developed �39,40�, involving symmetric
telecloning �41� and asymmetric telecloning �42�. Recently,
it has been shown that the quantum information previously
distributed by telecloning procedure from an input qubit can
be remotely concentrated back to a qubit via suitable en-
tanglement channel �34�. Then the telecloning and concen-
trating processes can be regarded as, respectively, informa-
tion depositing and withdrawing, or information encoding
and decoding.

In this paper, we propose a simple scheme for hybrid
economical telecloning �HETC� of the phase-covariant state

���� =
1
�2

��0� + ei��1�� , �1�

where �� �0,2�� and ��0� , �1�	 represents the computational
basis for a qubit. The qubits of this form are called “equato-
rial qubits” because the z component of their Bloch vector is
zero, i.e., the Bloch vector is restricted to the intersection of
the x-y plane with the sphere �21�. The parameter � is the
angle between the Bloch vector and the x axis. The so-called
HETC is a synthesis of aforementioned several types of
quantum cloning and quantum teleportation, in which eco-
nomical symmetric and asymmetric clonings and anticlon-
ings can be simultaneously achieved by teleportation. We use
the global fidelity and average-single-qubit fidelity to esti-
mate, respectively, the collective copying quality and show
that the two criteria lead to different results. We obtain inter-
esting equalities and inequalities about the fidelities of clones
or anticlones. Our scheme may be very interesting from the
point of view of quantum information distribution and have
potential applications in quantum information depositing or
encoding. The quantum information channel in our scheme is
the well-known W-type entangled states �43�. The generation
of W-type entangled states have been experimentally realized
in different physical systems �44–46�. This implies that our
HETC scheme can be directly demonstrated in these sys-
tems. We also introduce controlled HETC of equatorial qu-
bits with recently presented Greenberger-Horne-Zeilinger
�GHZ�–W-type entangled states �47�, in which phase-
covariant telecloning can be realized if and only if �iff� the

supervisors cooperate. This idea may open a perspective for
the applications of such interesting type of entangled states.
A method for generating the GHZ–W-type entangled states is
also presented.

The paper is organized as follows. In Sec. II, we describe
the HETC protocol and use the global fidelity and average-
single-qubit fidelity to estimate the collective copying qual-
ity, respectively. It will be shown that when the superposition
coefficients of the W state satisfying a suitable condition, the
suboptimal phase-covariant telecloning can be realized. In
Sec. III, we demonstrate probabilistic suboptimal economical
phase-covariant telecloning with a special configuration of
asymmetric W state. In Sec. IV, we introduce the controlled
HETC protocol. A generation scheme for GHZ–W-type en-
tangled states is presented in Sec. V. Concluding remarks
appear in Sec. VI.

II. HETC OF EQUATORIAL QUBITS VIA W-TYPE
ENTANGLED STATES

The task of HETC is: Alice wishes to send the copies of
the phase-covariant state ���� �� is unknown� on the qubit T
or its orthogonal complementary state ����� to distant asso-
ciates Bob1, Bob2,…, Bobn. In this task, some Bobs receive
the clones �copies of �����, while the others obtain the anti-
clones �copies of �����= ��0�−ei��1�� /�2�. Note that the fi-
delities of these clones or anticlones are not necessarily
equal. To this end, we distribute in advance among Alice and
n Bobs the quantum information channel

�Wn+1� = x0�1A�

j=1

n

�0Bj
� + �0A��

j=1

n �xj�1Bj
� 


k=1,k�j

n

�0Bk
� ,

�2�

where x0= �x0�ei�0 and xj = �xj�ei�j are complex coefficients sat-
isfying the normalized condition �x0�2+� j

n�xj�2=1. The chan-
nel �Wn+1� is a generalized �n+1�-qubit W-type entangled
state which has been recently realized with linear optical
elements �45�. Here qubit A is on Alice’s hand and qubit Bj is
held by the jth Bob. For clarity and convenience, the qubit T
will be called input qubit, qubit A will be called port qubit,
and the others will be called output qubits.

The state of the total system is

���total = ����T � �Wn+1�

=
1

2���+�TA�x0

j=1

n

�0Bj
� + ei��

j=1

n �xj�1Bj
� 


k=1,k�j

n

�0Bk
�� + ��−�TA�x0


j=1

n

�0Bj
� − ei��

j=1

n �xj�1Bj
� 


k=1,k�j

n

�0Bk
��

+ ��+�TA��
j=1

n �xj�1Bj
� 


k=1,k�j

n

�0Bk
� + x0ei�


j=1

n

�0Bj
�� + ��−�TA��

j=1

n �xj�1Bj
� 


k=1,k�j

n

�0Bk
� − x0ei�


j=1

n

�0Bj
��� , �3�
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where ��	�TA and ��	�TA are the conventional four ortho-
normal Bell states given by

��	�TA =
1
�2

��01� 	 �10��TA,

��	�TA =
1
�2

��00� 	 �11��TA. �4�

The HETC of ���� can be accomplished by the following
simple procedure. �i� Alice performs a Bell-basis measure-
ment on the input qubit T and port qubit A, obtaining one of
the four outcomes ���	�TA , ��	�TA	. Thereafter, Alice broad-
casts her measurement outcome to Bobs through the classical
channel. �ii� After receiving Alice’s Bell-basis measurement
outcome, Bobs perform, respectively, corresponding local
operations on their output qubits to get the desired clones or
anticlones.

We now discuss the second step in detail. As an example,
we assume that Alice’s measurement outcome is ��+�TA.
Then the state of the output qubits collapses into

���out = x0

j=1

n

�0Bj
� + ei��

j=1

n �xj�1Bj
� 


k=1,k�j

n

�0Bk
� . �5�

The state-density operator of the jth output qubit is


 j = � �
k=0,k�j

n

�xk�2�0Bj
��0Bj

� + �xj�2�1Bj
��1Bj

� + ei�xjx0
��1Bj

�

��0Bj
� + e−i�x0xj

��0Bj
��1Bj

� . �6�

Obviously, 
 j only depends on the superposition coefficients
x0 and xj of the quantum information channel �Wn+1�. The
fidelities of the state of qubit Bj relative to the states ���� j
and ���� j

� are, respectively,

Fj= j����
 j���� j =
1

2
+ �x0xj�cos��0 − � j� ,

Fj
�= j

�����
 j���� j
� =

1

2
− �x0xj�cos��0 − � j� . �7�

It can be easily verified that a local phase-rotating operation,

U�j
= exp�− i

� j

2
 j

z , �8�

on the qubit Bj performed by the jth Bob will result in

Fj =
1

2
+ �x0xj�cos��0 − � j − � j� ,

Fj
� =

1

2
− �x0xj�cos��0 − � j − � j� . �9�

x,y,z denotes conventionally the Pauli matrix, and � j is the
rotated angle about the z axis of Bloch sphere. Obviously, the
summation of Fj and Fj

� is always equal to one, i.e., Fj
+Fj

�=1. This can be easily understood from that two or-
thogonal components � and �� of an arbitrary state vector ��

in a plane satisfy the geometric relationship ���2+ ����2=1.
In addition, the jth Bob can modulate the rotation angle � j to
alter the fidelities Fj and Fj

�. In other words, when the jth
Bob wants to obtain a clone of ���� on his qubit Bj, he can
maximize the fidelity Fj by setting � j =�0−� j −2m�, with m
being an integer; when the jth Bob wishes to get an anticlone
of ����, i.e., a clone of �����, he can maximize the fidelity
Fj

� by choosing � j =�0−� j − �2m+1��. The maximum of
both Fj and Fj

� is

F̃j =
1

2
+ �x0xj� . �10�

It can be seen that F̃j cannot reach one as long as n�1,
which implies that the initial information of the input qubit
cannot be totally assigned to any one of many receivers and
also indicates that the rotation on the state vector �� j�
��� j��� j�=
 j� in the ����− ����� plane is constrained by the
quantum channel �x0 ,xj� and thus it cannot be rotated to the
directions parallel to ���� or �����. As a consequence, we
obtain the equality

F̃j − F̃k = �x0���xj� − �xk�� . �11�

Equation �11� indicates that the difference of the fidelities of
any two clones or anticlones is linearly dependent of the
difference of corresponding probability amplitudes of the
W-type entanglement channel of Eq. �2�.

If Alice’s measurement outcome is one of the other three
Bell states, Bobs can also obtain the desired clones or anti-

clones with the maximal fidelity F̃ by suitable local opera-
tions �see Table I�.

According to the discussion above, we can safely con-
clude that the presented telecloning scheme may simulta-
neously achieve the cloning and anticloning of ����, with
some Bobs obtaining the clones and the other Bobs getting
the anticlones. It is worth pointing out that whether getting
the clones or anticlones are determined by themselves, which
is different from previous schemes. In addition, some clone’s
or anticlone’s fidelities may be the same, while the others’
may be different. For instance, if �xk�= �xl�� �xj� �j
=1,2 , . . . ,n , l� j�k� and all the ��xj�	 are different, the fi-
delities of the clones or anticlones of the kth Bob and lth Bob
are equal, and that of the other Bobs are unequal. In this
sense, our scheme may simultaneously implement the sym-
metric and asymmetric clonings and anticlonings of ����.
Our scheme does not require the ancilla and thus is economi-

TABLE I. The corresponding local operations the jth Bob per-
formed on the qubit Bj for getting the desired clones or anticlones

of ���� with the maximal fidelity F̃j, according to Alice’s four pos-
sible Bell-measurement outcomes ��	�TA and ��	�TA.

Bell states Clone Anticlone

��+�TA U�0−� j−2m� U�0−� j−�2m+1��

��−�TA U�0−� j−�2m+1�� U�0−� j−2m�

��+�TA U�0−� j−2m� �  j
x U�0−� j−�2m+1�� �  j

x

��−�TA U�0−� j−�2m+1�� �  j
x U�0−� j−2m� �  j

x
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cal. In a nutshell, our telecloning scheme can simultaneously
achieve economical symmetric and asymmetric clonings and
anticlonings of the phase-covariant state ���� by teleporta-
tion. Note that all the telecloning schemes in this paper in-
volve both cloning and anticloning tasks. In addition, be-
cause all the telecloning schemes in our paper are
economical, we will drop the word “economical” in descrip-
tion.

Next, we study the collective copying quality by consid-
ering the global and the average-single-qubit fidelities fol-
lowing the foregoing discussion.

First, we consider the global fidelity with definition
�22,37�,

Fg = Tr��UMM���total���M+UM
+ �����������m����

�������n−m�� , �12�

where M is the Bell-basis measurement operator given by

M = ��+�TA��+� + ��−�TA��−� + ��+�TA��+� + ��−�TA��−� ,

�13�

UM is the proper local operations performed by Bobs for
obtaining the desired clones or anticlones with the maximal

fidelity F̃ �see Table I�, and ����������m����������n−m� de-
notes m Bobs getting the anticlones and the other n−m Bobs
obtaining the clones. By some simple calculations, we obtain

Fg =
1

2n�1 + 2�
k=0

n−1 ��xk� �
j=k+1

n

�xj�� , �14�

with the constraint �k=0
n �xk�2=1. Evidently, Fg is the function

of all the superposition coefficients of the entanglement
channel �Wn+1� and should have a maximum with suitable
values of these parameters. By the Lagrange multipliers, we
find the suitable values

�x0� = �x1� = ¯ = �xn� =
1

�n + 1
�15�

corresponding to the maximal global fidelity Fg
max= �n

+1� /2n. Thus when the quantum channel �Wn+1� is fully
symmetric, the global fidelity hits to the maximum. Then

each clone or anticlone has the same fidelity, i.e., F̃1= F̃2

= ¯ = F̃n=1 /2+1 / �n+1�.
Now let us move on to the average-single-qubit fidelity. It

is defined as

F̄ =
1

n
�
j=1

n

F̃j . �16�

From Eq. �10�, we obtain

F̄ =
1

2
+

�x0�
n

�
j=1

n

�xj� , �17�

with the constraint �k=0
n �xk�2=1. With the help of Lagrange

multipliers, we find the optimal solution that maximizes F̄
given by

�x0� =
1
�2

,

�x1� = �x2� = ¯ = �xn� =
1

�2n
. �18�

The maximal average-single-qubit fidelity is

F̄max =
1

2�1 +
1
�n

 . �19�

In fact, each clone or anticlone has the same fidelity, i.e.,

F̃1= F̃2= ¯ = F̃n=1 /2�1+1 /�n�. In the case n=2, the fidelity
is equal to the optimal one of 1→2 phase-covariant cloning
�21,22�. Thus the telecloning scheme is suboptimal with this
choice of parameters. Then the entanglement channel of Eq.
�2� reduces to

�Wn+1� � =
1
�2
�ei�0�1A��

j=1

n

�0Bj
�

+
1
�n

�0A��
j=1

n �ei�j�1Bj
� 


k=1,k�j

n

�0Bk
�� . �20�

It can be easily verified that 
A=trB1B2¯Bn
��Wn+1� ��Wn+1� ��

= I /2 and its von Neumann entropy is just one, which implies
that there is one ebit of entanglement between the subsystem
of Alice and the subsystem of Bobs. From Eq. �19�, we can
also obtain the inequality

�
j=1

n

Fj �
1

2
�n + �n� , �21�

which indicates that the summation of the fidelities of all
clones or anticlones has the upper bound �n+�n� /2.

As discussed above, maximizing the global fidelity and
the average-single-qubit fidelity generally leads to different
results, i.e., different configuration of the W state �Eq. �2��
are expected, respectively, for the two criteria. In other
words, the expected entanglement channel depends on the
criterion adopted to assess the collective copying quality.
However, both the two criteria indicate that the symmetric
telecloning is optimal from the point of view of collective
copying quality. In the special case n=1, the maximum of
global fidelity Fg

max is equal to that of the average-single-

qubit fidelity F̄max. This can be understood from that the
telecloning scheme reduces to the standard teleportation pro-
tocol with only one receiver.

III. PROBABILISTIC SUBOPTIMAL PHASE-COVARIANT
TELECLONING

In Sec. II, we have shown that the W-type entangled state
�Wn+1� � �see Eq. �20�� can be used to achieve suboptimal
�economical� telecloning of the phase-covariant state ����.
As explained above, the “suboptimal” means that when n
=2 the fidelity of clones or anticlones is equal to the optimal
one of 1→2 phase-covariant cloning. The quantum channel
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�Wn+1� � implies that there is one ebit of entanglement shared
between the sender, Alice, and the receivers, Bobs. �Wn+1� � is
obtained from �Wn+1� �see Eq. �2�� by setting the parametric
values of Eq. �18�. If part conditions of Eq. �18� are not
satisfied, i.e., �x0��1 /�2 or �x1�= �x2�= ¯ = �xn��1 /�2n, the
state �Wn+1� � will degrade to �Wn+1� � �see Eq. �22�� which has
less than one ebit of entanglement between the subsystem of
Alice �qubit A� and the subsystem of Bobs �qubits Bj , j
=1,2 , . . . ,n�. The degradation of �Wn+1� � to �Wn+1� � may be
induced by a kind of decoherence on the port-qubit A �48�. In
this section, we demonstrate that the suboptimal telecloning
can also be achieved via �Wn+1� � with a certain probability. It
is easy to verify that the state �Wn+1� � can be written as

�Wn+1� � =
1

Q�qei�0�1A��
j=1

n

�0Bj
�

+ �0A��
j=1

n �ei�j�1Bj
� 


k=1,k�j

n

�0Bk
�� , �22�

where q= �x0� / �x1�= �x0� / �x2�= ¯ = �x0� / �xn� and Q=�n+q2.
Before describing the suboptimal telecloning procedure, we

define a set of two-qubit orthonormal basis states as follows:

��h
+� =

1

H
��01� + h�10�� ,

��h
−� =

1

H
�h�01� − �10�� ,

��h
+� =

1

H
��00� + h�11�� ,

��h
−� =

1

H
�h�00� − �11�� , �23�

where H=�1+h2, with h being real number. Here h is a free
parameter manipulated by Alice. With this basis, the state of
the whole system can be expanded as

���total = ����T � �Wn+1� � =
1

QH���h
+�TA

1
�2
�qei�0


j=1

n

�0Bj
� + hei��

j=1

n �ei�j�1Bj
� 


k=1,k�j

n

�0Bk
�� + ��h

−�TA
1
�2
�qhei�0


j=1

n

�0Bj
�

− ei��
j=1

n �ei�j�1Bj
� 


k=1,k�j

n

�0Bk
�� + ��h

+�TA
1
�2
��

j=1

n �ei�j�1Bj
� 


k=1,k�j

n

�0Bk
� + qhei�ei�0


j=1

n

�0Bj
��

+ ��h
−�TA

1
�2
�h�

j=1

n �ei�j�1Bj
� 


k=1,k�j

n

�0Bk
� − qei�ei�0


j=1

n

�0Bj
��� . �24�

In order to realize the suboptimal telecloning task, Alice
first performs a complete projective measurement jointly on
qubits T and A in the basis ���h

	�TA , ��h
	�TA	 and informs

Bobs her outcome. It can be seen that there are two different
choices of parameter h with which suboptimal telecloning
can be successfully realized for two out of four possible out-
comes of Alice’s measurement. �i� Choosing h=q /�n. If Al-
ice’s outcome is ��h

+�TA or ��h
−�TA, suboptimal telecloning

succeeds and Bobs can obtain the desired clones or anti-
clones with fidelity F̄max by making suitable local operations
given in Table I with ��+�TA and ��−�TA replaced by ��h

+�TA

and ��h
−�TA, respectively. For the outcome ��h

−�TA or ��h
+�TA,

suboptimal telecloning fails. �ii� Choosing h=�n /q. When
Alice’s outcome is ��h

−�TA or ��h
+�TA, suboptimal telecloning

succeeds and Bobs can get the desired clones or anticlones

with fidelity F̄max by making suitable local operations given
in Table I with ��−�TA and ��+�TA replaced by ��h

−�TA and
��h

+�TA, respectively. For the outcome ��h
+�TA or ��h

−�TA, sub-
optimal telecloning fails. For each case, the total probability
of successful suboptimal telecloning is

P =
2nq2

�n + q2�2 . �25�

We notice that all the four outcomes will lead to successful
suboptimal telecloning if and only if h=q /�n=1, and then
state �Wn+1� � reduces to �Wn+1� �. This implies that only with
the choice of the parameters of Eq. �18� the W-type en-
tangled state �Wn+1� can realize deterministic suboptimal
telecloning of the phase-covariant state ����. We can also
conclude that when the quantum information channel is
�Wn+1� �, only the Bell-basis measurement can lead to subop-
timal phase-covariant telecloning.

IV. CONTROLLED PHASE-COVARIANT TELECLONING
WITH GHZ–W-TYPE ENTANGLED STATES

In this section, we introduce controlled telecloning of the
state ����T with the following multiqubit entangled state:
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��m� = x0�

k=1

m

�0Ck
��1A��


j=1

n

�0Bj
� + �


k=1

m

�1Ck
�

��0A��
j=1

n �xj�1Bj
� 


l=1,l�j

n

�0Bl
� . �26�

The state ��m� belongs to the GHZ–W-type entangled states
recently proposed by Chen �47�. Here qubit Ck is held by the
kth supervisor Charlie k, and the distribution of the other
qubits is the same as that of Sec. II. It will be shown that for
getting the desired clones or anticlones Bobs need not only
the help of Alice’s joint measurement but also the assistance
of Charlies’ one-qubit measurements. Generally, Charlies’
one-qubit measurement basis can be described by

�+Ck
� =

1

R
��0� + rk�1��Ck

,

�−Ck
� =

1

R
�rk�0� − �1��Ck

, �27�

where R=�1+rk
2, with rk being real numbers �k

=1,2 , . . . ,m� freely manipulated by Charlies. In a nutshell,
the achievement of telecloning between the sender, Alice,
and the receivers, Bobs, is conditioned on the collaboration
of all the supervisors, Charlies. In other words, if any one of
the Charlies does not cooperate, the desired telecloning will
fails. We need pointing out that the qubits �Ck ,k
=1,2 , . . . ,m	 are different from the ancilla of previous clon-
ing machines in which the ancilla just be traced out but not
be measured.

For clarity, we first consider the case m=1, i.e., there is
only one supervisor. Then with the two-qubit basis
���h

	�TA , ��h
	�TA	 and one-qubit basis ��	C1

�	, the state of the
whole system can be written as

��̃�total = ����T��1� =
1

�2H
���h

+�TA
1

R
��+C1

����0� + ei�hr1��1�� + �−C1
��r1��0� − ei�h��1���+ ��h

−�TA
1

R
��+C1

��h��0� − ei�r1��1�� + �

−C1
��hr1��0� + ei���1���+ ��h

+�TA
1

R
��+C1

��ei�h��0� + r1��1�� + �−C1
��ei�hr1��0� − ��1���+ ��h

−�TA
1

R
��+C1

��− ei���0�

+ hr1��1��

− �−C1
��ei�r1��0� + h��1����	 , �28�

where ��0� and ��1� are given by

��0� = x0

j=1

n

�0Bj
� ,

��1� = �
j=1

n �xj�1Bj
� 


l=1,l�j

n

�0Bl
� . �29�

The telecloning procedure is as follows. �i� Alice per-
forms a joint measurement on the qubits T and A with the
basis ���h

	�TA , ��h
	�TA	, and Charlie1 performs an one-qubit

measurement on the qubit C1, and informs their outcomes to
Bobs. �ii� Bobs make proper local unitary operations on their
own qubits to get the desired clones or anticlones. The de-
tailed discussion of �ii� is the same as that of Sec. II. But the
fidelities of clones or anticlones are related to not only the
channel ��xj�� but also Alice’s and Charlie1’s measurement
basis �h ,r1�. It can be seen that if Charlie1 does not cooper-
ate, i.e., broadcast faithfully his measurement outcome, Bobs
will not know choosing what local operations and none of
them can obtain the desired clones or anticlones. In this
sense, we say that the communication �telecloning� between
Alice and Bobs is supervised and controlled by Charlie1.

Next, we pay attention to the suboptimal telecloning with
the choice of the parameters of Eq. �18�. Then the quantum
information channel is

��1�� =
ei�0

�2
�


k=1

m

�0Ck
��1A��


j=1

n

�0Bj
� +

1
�2n

�

k=1

m

�1Ck
�

��0A��
j=1

n �ei�j�1Bj
� 


l=1,l�j

n

�0Bl
� . �30�

The expansion of the total state is similar to Eq. �28� with x0
replaced by ei�0 /�2 and xj �j=1,2 , . . . ,n� replaced by
ei�j /�2n. According to the analysis of Sec. II, for suboptimal
telecloning the output state of qubits �Bj , j=1,2 , . . . ,n	
should be in the form

���out� =
1
�2

ei�0

j=1

n

�0Bj
� 	

ei�

�2n
�
j=1

n �ei�j�1Bj
� 


l=1,l�j

n

�0Bl
�

�31�

or
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���out� =
1

�2n
�
j=1

n �ei�j�1Bj
� 


l=1,l�j

n

�0Bl
� 	

ei�ei�0

�2


j=1

n

�0Bj
� .

�32�

It can be seen from Eq. �28� that when h=r1=1 each pair of
measurement outcomes can lead to suboptimal telecloning,
and thus the success probability is one, provided Charlie1
cooperates.

For more general case that �x0��1 /�2 or �x1�= �x2�= ¯

= �xn��1 /�2n, the conclusions will be different, and an in-
teresting phenomenon will be observed. Then the quantum

channel ��1�� degrades to ��1�� �see Eq. �33��. Such degrada-
tion may be induced by a kind of decoherence on the port-
qubit A �48�. ��1�� can be written as

��1�� =
1

Q�qei�0�

k=1

m

�0Ck
��1A��


j=1

n

�0Bj
� + �


k=1

m

�1Ck
�

��0A��
j=1

n �ei�j�1Bj
� 


l=1,l�j

n

�0Bl
�� , �33�

where q= �x0� / �x1�= �x0� / �x2�= ¯ = �x0� / �xn� and Q=�n+q2.
The state of the whole system can be expanded as

��̃��total = ����T��1�� =
1

HQ���h
+�TA

1

R��+C1
�

1
�2

�q��0�� + ei�hr1��1��� + �−C1
�

1
�2

�r1q��0�� − ei�h��1���� + ��h
−�TA

1

R��+C1
�

1
�2

�hq��0��

− ei�r1��1��� + �−C1
�

1
�2

�hr1q��0�� + ei���1���� + ��h
+�TA

1

R��+C1
�

1
�2

�ei�hq��0�� + r1��1��� + �−C1
�

1
�2

�ei�hr1q��0�� − ��1����
+ ��h

−�TA
1

R��+C1
�

1
�2

�− ei�q��0�� + hr1��1��� − �−C1
�

1
�2

�ei�r1q��0�� + h��1����� , �34�

where ��0�� and ��1�� are given by

��0�� = ei�0

j=1

n

�0Bj
� ,

��1�� = �
j=1

n �ei�j�1Bj
� 


l=1,l�j

n

�0Bl
� . �35�

In order to realize the suboptimal telecloning, the parameters
h and r1 need conforming to a certain relationship. In other
words, Alice’s and Charlie1’s measurements need satisfying
a condition of “measurement matching.” It can be seen from
Eq. �34� that h and r1 require satisfying one of the following
conditions. �i� hr1=q /�n. Then the measurement outcomes
��h

+�TA�+C1
� and ��h

−�TA�+C1
� can lead to suboptimal teleclon-

ing. �ii� h /r1=q /�n. Then the measurement outcomes
��h

+�TA�−C1
� and ��h

−�TA�−C1
� can lead to suboptimal teleclon-

ing. �iii� r1 /h=q /�n. Then the measurement outcomes
��h

−�TA�+C1
� and ��h

+�TA�+C1
� can lead to suboptimal teleclon-

ing. �iv� hr1=�n /q. Then the measurement outcomes
��h

−�TA�−C1
� and ��h

+�TA�−C1
� can lead to suboptimal teleclon-

ing. We notice that if r1=1 or h=1, the conditions �i� and �ii�
or �i� and �iii� are equivalent. For each of the two cases, the
success probability is described by Eq. �25�. We also notice
that all eight pairs of measurement outcomes will lead to
successful suboptimal telecloning iff h=r1=q /�n=1. Then
the state ��1�� reduces to ��1��.

Now a natural question arises: how to achieve the mea-
surement matching. There may be two ways. �i� Alice and
Charlie1 come to an agreement on the choice of h and r1 in

advance. �ii� One of them performs the measurement before
the other one, and the latter one performs a corresponding
measurement matching with that of the former one’s. No
matter which way, however, the classical communication be-
tween Alice and Charlie1 is required.

The conclusions above can be generalized to case where
m�1. For the channel ��m� �, the choice h=r1=1 will lead to
suboptimal telecloning with one probability provided all
Charlies cooperate. As to the channel ��m� �, the choice �q
=�nh ,r1=r2= ¯ =rm=1	 will lead to suboptimal telecloning
for the outcomes ���h

+�TA
k=1
m �	Ck

� , ��h
−�TA
k=1

m �	Ck
�	, and

the success probability can also reach P given in Eq. �25�.
Note that the above choice is not necessary condition. In
other words, with some other choices of the parametric val-
ues satisfying the measurement matching the suboptimal
telecloning can also be implemented with certain probabili-
ties. But these probabilities are less than P.

V. GENERATION OF GHZ–W-TYPE ENTANGLED STATES

As discussed above, we need the GHZ–W-type entangled
state ��m� acting as the quantum information channel to re-
alize controlled phase-covariant telecloning. However, the
generation of GHZ–W-type entangled states has not been
reported yet. Here we propose a simple scheme for generat-
ing such states in the ion-trap system.

We consider that m+n+1 identical ions are confined in a
linear Paul trap. Each of them has the ground state �0� and
the excited state �1�. We drive the former m+2 ions with two
classical homogeneous lasers of frequencies �0+�+� and
�0−�−�. Here �0 is the frequency of the transition �1�↔ �0�,
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� is the frequency of the center-of-mass mode of the collec-
tive motion of the ions, and � is the detuning. Assuming �
��, then the excitation of the stretch modes is far off-
resonant and is negligible. We consider the resolved sideband
regime, where the vibrational frequency � is much larger
than other characteristic frequencies. In the Lamb-Dicke re-
gime, i.e., ��N+1�1, with � being the Lamb-Dicke param-
eter and N being the average phonon number of the center-
of-mass mode, the Hamiltonian in the interaction picture is

HI = i��e−i��
j=1

m+2

 j
+�a†e−i�t + aei�t� + H.c., �36�

where a†�a� denotes the creation �annihilation� operator for
the vibrational mode, += �1��0� and −= �0��1� are the spin
flip operators, and � and � are the Rabi frequency and phase
of the laser fields. In the case ����, the effective Hamil-
tonian can be described by �49,50�

HE = ��
j=1

m+2

��1 j��1 j� + �0 j��0 j�� + 2� �
j,k=1,j�k

m+2

� j
+k

+ +  j
+k

−

+ H.c.� , �37�

where �= ����2 /�. It can be seen that the Hamiltonian HE is

independent of the vibrational quantum number. This implies
that the vibrational quantum number conserves during the
interaction. Then if the vibrational mode is initially in the
vacuum state �0v�, it will remain in this state.

We define an atomic basis

�	 j� =
1
�2

��0 j� 	 �1 j�� . �38�

Then HE can be rewritten as

HE = ���
j=1

m+2

��+ j��+ j� − �− j��− j���2

. �39�

It can be easily verified that the Hamiltonian HE
has the eigenvalue �m+1−2l	1�2� for the
eigenstate �	1���−�� l�+���m+1−l��2,3,. . .,m+2 �l�m+1�. Here
��−�� l�+���m+1−l�� denotes that l ions are in the state �−� and
�m+1− l� ions are in the state �+�.

Assume that these ions are initially in the state

���0�� = �11� 

j=2

m+n+1

�0 j�

=
1

�2m+2��+1���
l=0

m+1

Cm+1
l �− �� l�+ ���m+1−l��

2,3,. . .,m+2

�− �−1���
l=0

m+1

Cm+1
l �− �� l�+ ���m+1−l��

2,3,. . .,m+2

	 

k=m+3

m+n+1

�0k� ,� �40�

where Cm+1
l is combinational coefficient and defined as �m+1� ! / �l ! �m+1− l�!�. After an interaction time �, the ionic state

evolves into

������ =
1

�2m+2��+1���
l=0

m+1

exp�− i�m + 2 − 2l�2���Cm+1
l �− �� l�+ ���m+1−l��

2,3,. . .,m+2
��− �−1�

���
l=0

m+1

exp�− i�m − 2l�2���Cm+1
l �− �� l�+ ���m+1−l��

2,3,. . .,m+2

	 

k=m+3

m+n+1

�0k� . �41�

Choosing �=� / �8��, we obtain

��̃� =
1
�2
��11�


j=2

m+2

�0 j� + f�m��01�

j=2

m+2

�1 j�� 

k=m+3

m+n+1

�0k� ,

�42�

where f�m� is equal to i�−1�m/2+1 �m is even number� or
i�−1��m+3�/2 �m is odd number�, and a common phase factor
exp�−i� /4� is discarded.

Then we simultaneously excite each of the latter n atoms
using, respectively, a red sideband laser of frequency �0−�.
The Hamiltonian of the system is �let �=1�

H = H0 + V ,

H0 = �a†a +
1

2
�0 �

k=m+2

m+n+1

k
z ,

XIN-WEN WANG AND GUO-JIAN YANG PHYSICAL REVIEW A 79, 062315 �2009�

062315-8



V = �
k=m+2

m+n+1

exp�− i�k−m−1��k−m−1k
+ exp�i���a† + a� − ��0

− ���	 + H.c., �43�

where z= �0��0�− �1��1� is the usual Pauli matrix and �s and
�s �s=1,2 , . . . ,n� are the Rabi frequency and phase of cor-
responding laser field, respectively. We here assume that the
phases of laser fields are equal to � /2. In the interaction
picture, the Hamiltonian reads

HI� = − i exp�−
�2

2
 �

k=m+2

m+n+1

�k−m−1k
+�

l=0

�
�i��2l+1

l ! �l + 1�!
�a†�lal+1

+ H.c., �44�

In the Lamb-Dicke regime, the interaction Hamiltonian can
be approximated by

HE� = �
k=m+2

m+n+1

�k−m−1k
+a + H.c, �45�

where �s=��s �s=1,2 , . . . ,n�. Since �HE� ,M̂�=0, where M̂
=a†a+�k=m+2

m+n+1k
+k

− is the excitation number operator, the dy-
namics is separable into subspaces having a prescribed ei-

genvalue M of M̂. In the subspace with M =1, there are the
following n+1 basis states:

�b�1�� = �1m+2� �
k=m+3

m+n+1

�0k��0v� ,

�b�2�� = �1m+3� �
k=m+2,k�m+3

m+n+1

�0k��0v� ,

]

�b�n�� = �1m+n+1� �
k=m+2

m+n

�0k��0v� ,

�b�v�� = �
k=m+2

m+n+1

�0k��1v� . �46�

After an interaction time ��, the state of the total system is

������� =
1
�2

�11�� 

j=2

m+n+1

�0 j��0v� +
f�m�
�2

�01��

j=2

m+1

�1 j�
���1 − 2�1

2�������b�1�� − 2�1�
s=2

n

�s������b�s��

− i
�1 sin�����

�
�b�v��� , �47�

where �2=�s=1
n �s

2 and �����=sin2���� /2� /�2. By choosing
��= p� /� with p being odd number, we obtain the GHZ–W-
type entangled state ��m� of Eq. �26�, with x0=1 /�2, x1

= �1−2�1
2 /�2�f�m� /�2, and xj =−�2�1� j f�m� /�2 �j

=2,3 , . . . ,n�. Setting �2=�3= ¯ =�n=�1 / ��n	1�, we can
obtain the state ��m� � �see Eq. �30��. All the facilities in the
above scheme are well within the present ion-trap techniques
�46,51,52�.

VI. CONCLUDING REMARKS

In summary, we have studied the HETC of equatorial qu-
bits, in which the symmetric and asymmetric clonings and
anticlonings can be simultaneously achieved by teleporta-
tion. This may be very interesting from the point of view of
quantum information distribution and have potential applica-
tions in quantum information depositing or encoding. Imag-
ining that someone possesses the secret information carried
by a quantum system about an important thing, but he or she
has not enough ability to prevent the potential bad men from
thieving or robbing of the information. Then he or she can
divide the information into many parts and send them to
many distant associates by telecloning protocol. In order to
know about the important thing, all parts of information need
being gathered together, i.e., a recovering process is required
�34�. However, if any one of the associates betrays the col-
lectivity, the content of the thing can only be approximately
estimated by the other parts of information. Of course, the
more information that is lost, the more difficult it is to esti-
mate the thing. Thus he or she should distribute different
amount of information to different associates in view of the
reliability of them.

In Sec. II, we discussed the case where the quantum in-
formation channel is the well-known W-type entangled
states. Interesting equalities and inequalities about the fideli-
ties of clones or anticlones were obtained. We used the glo-
bal fidelity and average-single-qubit fidelity to estimate the
collective copying quality. The two criteria lead to different
results. In order to obtain the maximal global fidelity we
need using a fully symmetric W state as the quantum chan-
nel, while to maximize the average-single-qubit fidelity a
special configuration of asymmetric W state �Wn+1� � �see Eq.
�20�� is required. But both the two criteria indicate that the
fully symmetric telecloning is better than the other cases in
the point of view of collective copying quality. The state
�Wn+1� � has one ebit of entanglement between the subsystem
of Alice �qubit A� and the subsystem of Bobs �qubits Bj , j
=1,2 , . . . ,n�, with which the telecloning is suboptimal. Our
scheme is more close to practice than previous telecloning
schemes because the well-known W-type entangled states
have been successfully prepared in several physical systems
�44–46�. In Sec. III, we demonstrated that when Alice and
Bobs share less than one ebit of entanglement the suboptimal
telecloning can also be implemented with a certain probabil-
ity. In Sec. IV, we introduced the controlled HETC protocol
with recently proposed GHZ–W-type entangled states �47�,
in which the achievement of phase-covariant telecloning is
conditioned on the cooperation of all the supervisors. It has
been shown that in order to realize the desired telecloning
Alice’s �the sender� and Charlies’ �the supervisors� measure-
ments need to satisfy the condition of measurement match-
ing. This idea may open a perspective for the applications of
such interesting type of entangled states. We anticipate that
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the GHZ–W-type entangled states, which have the properties
of both GHZ- and W-type entangled states, may have other
applications in quantum information science and the funda-
mental tests of quantum mechanics. In Sec. V, we presented
a scheme for generating the GHZ–W-type entangled states
with the ion-trap setup. The method can also be generalized
to other systems.

As mentioned above, there have been many research
works about telecloning �see e.g., �39–42��. Comparing with
them, our schemes have many advantages and features. �1�
The receivers can freely choose to getting the clones or an-
ticlones, and one-to-many symmetric and asymmetric clon-
ings and anticlonings can be simultaneously achieved. �2� In
the schemes of Secs. II and III, the quantum channels are the
well-known W-type of entangled states which have been ex-

perimentally realized in different systems �44–46�. �3� In the
scheme of Sec. III, the quantum channel is a partially en-
tangled state. This case has not been discussed. �4� The con-
trolled telecloning introduced in Sec. IV is an idea in which
the achievement of telecloning between the sender and the
receivers is conditioned on the collaboration of all the super-
visors.
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