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We estimate the resource requirements, the total number of physical qubits and computational time, required
to compute the ground-state energy of a one-dimensional quantum transverse Ising model �TIM� of N spin-1/2
particles, as a function of the system size and the numerical precision. This estimate is based on analyzing the
impact of fault-tolerant quantum error correction in the context of the quantum logic array architecture. Our
results show that a significant amount of error correction is required to implement the TIM problem due to the
exponential scaling of the computational time with the desired precision of the energy. Comparison of our
results to the resource requirements for a fault-tolerant implementation of Shor’s quantum factoring algorithm
reveals that the required logical qubit reliability is similar for both the TIM problem and the factoring problem.
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I. INTRODUCTION

The calculation of the basic properties of quantum sys-
tems �eigenstates and eigenvalues� remains a challenging
problem for computational science. One of the most signifi-
cant issues is the exponential scaling of the computational
resource requirements with the number of particles and de-
grees of freedom, which for even a small number of particles
��100� exceeds the capabilities of current computer sys-
tems. In 1982 Feynman addressed this problem by proposing
that it may be possible to use one quantum system as the
basis for the simulation of another �1�. This was the early
promise of quantum simulation, and one of the original mo-
tivations for quantum computing. Since that time, many re-
searchers have investigated different approaches to quantum
simulation �2–7�. For example, Abrams and Lloyd proposed
a quantum algorithm for the efficient computation of eigen-
values and eigenvectors using a quantum computer �4�.
Many of the investigations into quantum simulation have
assumed ideal performance from the underlying components
resulting in optimistic estimates for the quantum computer
resource requirements �number of qubits and time to comple-
tion�. It is well known, however, that in order to address the
effects of decoherence and other sources of faults and errors
in the implementation of qubits and gates, it is necessary to
incorporate fault-tolerant quantum error correction into an
estimate of the resource requirements.

In this paper we estimate the resource requirements for a
quantum simulation of the ground-state energy for the one-
dimensional �1D� quantum transverse Ising model �TIM�,
specifically incorporating the impact of fault-tolerant quan-
tum error correction. We apply the general approach of
Abrams and Lloyd �3,4�, and compute estimates for the total
number of physical qubits and computational time as a func-
tion of the number of particles �N� and required numerical
precision �M� in the estimate of the ground-state energy.

We have chosen to study the resource requirements for
computing the ground-state energy for the 1D quantum TIM
since this model is well studied in the literature and has an
analytical solution �8–10�. The relevant details of the TIM
are summarized in Sec. II. In Sec. III, we map the calculation
of the ground-state energy for the TIM onto a quantum phase
estimation circuit that includes the effects of fault-tolerant
quantum error correction. The required unitary transforma-
tions are decomposed into one-qubit gates and two-qubit
controlled-NOT gates using gate identities and the Trotter for-
mula. The one-qubit gates are approximated by a set of gates
which can be executed fault tolerantly using the Solovay-
Kitaev theorem �11�. In Sec. III C, the quantum circuit is
mapped onto the quantum logic array �QLA� architecture
model, previously described by Metodi et al. �12�. Our final
results, utilizing the QLA architecture, are given in Sec. III D
including a discussion of how improvements in the underly-
ing technology affects the performance for executing the
TIM problem. In Sec. IV, we extend our resource estimate
from 1D to higher dimensions. In Sec. V, we compare our
present results for the TIM quantum simulation with a pre-
vious analysis of the resource requirements for Shor’s factor-
ing algorithm �12,13�. Finally, our conclusions are presented
in Sec. VI.

II. TRANSVERSE ISING MODEL

The 1D transverse Ising model is one of the simplest
models exhibiting a quantum phase transition at zero tem-
perature �8,9,14,15�. The calculation of the ground-state en-
ergy of the TIM varies from analytically solvable in the lin-
ear case �8� to computationally inefficient for frustrated two-
dimensional �2D� lattices �16�. For example, the calculation
of the magnetic behavior of frustrated Ising antiferromagnets
requires computationally intensive Monte Carlo simulations
�17�. Given the difficulty of the generic problem and the
centrality of the TIM to studies of quantum phase transitions
and quantum annealing, the TIM is a good benchmark model
for quantum computation studies.*ken.brown@chemistry.gatech.edu
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The transverse Ising model consists of N spin-1/2 par-
ticles with nearest-neighbor spin-spin interactions along the z
axis in the presence of an external magnetic field along the x
axis. The Hamiltonian, HI, for this system is

HI = �
i

��i
x + �

�i,j�
Jij�i

z� j
z, �1�

where J is the spin-spin interaction energy, � is the energy of
a spin the external magnetic field, and �i , j� implies a sum
only over nearest neighbors �9�. �i

x and �i
z are the Pauli-spin

operators for the ith spin, and we set �=1 throughout this
paper.

In present work we focus on the 1D linear chain TIM of N
spins with constant Ising interaction energy Jij =−J. The
ground state of the system is determined by the ratio of g
=� /J. For the large magnetic field case, g�1 the system is
paramagnetic with all the spins aligned along the x̂ axis, and
in the limit of small magnetic field, g�1, the system has two
degenerate ferromagnetic ground states, parallel and antipar-
allel to the ẑ axis. In the intermediate range of magnetic field
strength the linear 1D TIM exhibits a quantum phase transi-
tion at g=1 �9�.

The TIM Hamiltonian in Eq. �1�, for the 1D case with
constant coupling can be rewritten as

HI = − J	�
j=1

N

gXj + �
j=1

N−1

ZjZj+1
 , �2�

where the Pauli-spin operators, � j
x and � j

z, are replaced with
their corresponding matrix operators Xj and Zj. For the 1D
TIM, the ground-state energy can be calculated analytically
in the limit of large N �8�. In the case of a finite number of
spins with nonuniform spin-spin interactions �J is not con-
stant�, it is possible to efficiently simulate the TIM using
either the Monte Carlo method �18� or the density-matrix
renormalization-group approach �10�. The challenge for clas-
sical computers comes from the 2D TIM on a frustrated lat-
tice where the simulation scales exponentially with N. Ap-
plying the quantum phase estimation circuit to calculate the
ground-state energy of the TIM requires physical qubit re-
sources, which scale polynomially with N, and the number of
computational time steps is also polynomial in N. In addi-
tion, just as the complexity of the problem is independent of
the lattice dimension and layout when applying classical
brute force diagonalization, the amount of resources required
to apply the quantum phase estimation circuit is largely in-
dependent of the dimensionality of the TIM Hamiltonian.

III. TIM QUANTUM SIMULATION RESOURCE
ESTIMATES

Our approach to estimating the resource requirements for
the ground-state energy calculation with Hamiltonian HI in-
volves two steps. First, we follow the approach of Abrams
and Lloyd and map the problem of computing the eigenval-
ues of the TIM Hamiltonian in Eq. �2� onto a phase estima-
tion quantum circuit �3,4�. Second, we decompose each op-
eration in the phase estimation circuit into a set of universal
gates that can be implemented fault tolerantly within the con-
text of the QLA architecture. This allows us an accurate es-
timate of the resources in a fault-tolerant environment.

A. Phase estimation circuit

The phase estimation algorithm calculates an M-bit esti-
mate of the phase � of the eigenvalue e−i2�� of the time
evolution unitary operator U���=e−iHI� for a fixed � given an
eigenvector of HI. �	1 and can be represented by the bi-
nary fraction 0.x1 . . .xM �3,4�. The energy eigenvalue E
= 2��

� when E�	2�. Calculation of the ground-state energy
�Eg� requires that �	2� / �Eg�. For the 1D TIM, the magni-
tude of the ground-state energy �Eg� is bounded by NJ
�1+g� �8�. In the region near the phase transition g�1, we
choose �= �10JN�−1.

The quantum circuit for implementing the phase estima-
tion algorithm is shown in Fig. 1. The circuit consists of two
quantum registers: an N-qubit input quantum register pre-
pared in an initial quantum state �
� and an output quantum
register consisting of a single-qubit recycled M times
�19,20�. Each of the N qubits in the input register corre-
sponds to one of the N spin-1/2 particles in the TIM model
�21�. At the beginning of each of the M steps in the algo-
rithm, the output qubit is prepared into the state 1

2
��0�+ �1��

using a Hadamard �H� gate. The H gate is followed by a
controlled power of U���, denoted with U�2m��, applied on
the input register, where 0�m�M −1.

Letting j denote the jth step in the circuit, each time the
output qubit is measured �meter symbols� the result is in the
mth bit in the estimate of �, following the rotation of the
output qubit via the gate,

Rj = �0��0� + exp	i� �
m=M+2−j

M
2M+1xm

2m+j 
�1��1� , �3�

where the gate Rj corresponds to the application of the quan-
tum Fourier transform on the output qubit at each step
�19,20�. The result after each of the M measurements is an
M-bit binary string �x1x2 . . .xM�, which corresponds the M-bit
approximation of � given by 0.x1 . . .xM. Using this estimate

Output
Qubit

⎥0〉

N-qubit
Input
Register

⎥0〉 H R'2 H

U(2M-1τ)

H H

U(2M-2τ)

⎥0〉 H R'm H

U(2mτ)

xM xM-1 xm
⎥0〉 H R'M H

U(τ)

x1

FIG. 1. The circuit for implementing the phase estimation algorithm using one continuously recycled control qubit.
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of �, the corresponding energy eigenvalue E= 2��
� will be the

ground-state energy Eg with a probability equal to ��
 �
g��2
�3�, where �
g� is the ground eigenstate of HI.

To maximize the probability of success ��
 �
g��2, the
initial quantum state �
� should be an approximation of the
ground state �
g�. For arbitrary Hamiltonians the preparation
of an approximation to �
g� is generally computationally dif-
ficult �22,23�. For certain cases, the preparation can be ac-
complished using classical approximation techniques to cal-
culate an estimated wave function or adiabatic quantum state
preparation techniques �6,21�. If the state can be prepared
adiabatically, the resource requirements for preparing �
� are
comparable in complexity to the resource requirements for
implementing the circuit for the phase estimation algorithm
shown in Fig. 1 �21�. For this reason, we focus our analysis
on estimating the number of computational time steps and
qubits required to implement the circuit, assuming that the
input register has been already prepared in the N-qubit quan-
tum state �
�.

B. Decomposition of the TIM quantum circuit
into fault-tolerant gates

Figure 1 in Sec. III A shows the TIM circuit at a high
level, involving N+1 unitary operators. In this section, each
unitary operation of the circuit is decomposed into a set of
basic one- and two-qubit gates which can be implemented
fault tolerantly using the QLA architecture. The set of basic
gates used is

�X,Z,H,T,S,CNOT,MEASURE� , �4�

where MEASURE is a single-qubit measurement in the ẑ basis,
CNOT denotes the two-qubit controlled-NOT gate, and T and S
gates are single-qubit rotations around the ẑ axis by � /4 and
� /2 radians, respectively. The high-level circuit operations
which require decomposition are the controlled-U�2m�� gates
and each Rj gate.

The controlled-U�2m�� gate can be decomposed using the
second-order Trotter formula �24,25�. First, HI is broken into
two terms: HX=� j=0

N gXj, representing the transverse mag-
netic field, and HZZ=� j=0

N−1ZjZj+1, representing the Ising inter-
actions. By considering the related unitary operators

Ux�2�� = �
j=1

N

exp�− ig�Xj� , �5�

Uzz�2�� = �
j=1

N−1

exp�− i�ZjZj+1� , �6�

and setting g=1 �as discussed in Sec. II�, we can construct

the Totter approximation of U�2m��, denoted by Ũ�2m�� as

U�2m�� = �Ux���Uzz�2��Ux����k + T = Ũ�2m�� + T, �7�

where �= �2m� /k� and T is the Trotter approximation error,
which scales as O��2m��3 /k2� �24�. The Trotter approxima-
tion error can be made arbitrarily small by increasing the
integer Trotter parameter k. Since the controlled-U�2m�� cor-
responds to the �M −m�th bit, T must be less than 1 /2M−m,

which is the precision of the �M −m�th measured bit in the
binary fraction for the phase �. Thus, when approximating
U�2m��, k is increased until T is less than 1 /2M−m. For a
given M, we estimate a numerical value for the Trotter pa-
rameter k�m=0�=k0 as a function of N�10, with the con-
straint that T	1 /2M. We thus find that for fixed M, k0 scales
as 1 /N. We extrapolate k0 for larger N based on a power-law
fit of N�10. For m�0, we set k=2mk0, which will satisfy
the error bound based on the scaling of T with k.

The circuit corresponding to the Trotter approximation of
U�2m�� is shown in Fig. 2, where it can be seen that the
controlled-U�2m�� is composed of two controlled-Ux��� op-
erations and a controlled-Uzz��� operation, repeated k times
and controlled on the mth instance of the output qubit de-
noted with Qm. Expanding the circuit in Fig. 2, we can ex-

press Ũ�2m�� as

Ũ�2m�� = Ux����Uzz�2��Ux�2���k−1Uzz�2��Ux��� , �8�

which shows that approximating U�2m�� will require the se-
quential implementation of k controlled-Uzz�2�� gates, �k
−1� controlled-Ux�2�� gates, and two instances of
controlled-Ux��� gates, all controlled on the mth instance of
the output qubit.

The quantum circuits for the decomposition of the
controlled-Ux�2�� and controlled-Uzz�2�� gates are shown in
Figs. 3 and 4, respectively. The gates are decomposed into
rotations about the ẑ axis, Rz���=exp�−i �

2Z�, and CNOT gates.
�N−1� additional qubits are used to prepare an N-qubit cat
state in order to parallelize each of the N Rz��� gates. The
preparation of an N-qubit cat state requires �N−1� CNOT

gates, which can be implemented in O�N� time steps in par-
allel with the Rz�� /4� gates in Fig. 3 and in parallel with the
Rz�� /2� gates in Fig. 4.

The three single-qubit Rz gates �Rz���, Rz�� /2�, and
Rz�� /4�� can be approximated using O�log3.97�1 /sk�� basics
gates �H ,T ,S� by the Solovay-Kitaev theorem �11,26�. The
Solovay-Kitaev error �sk� is equivalent to a small rotation
applied to the qubit. The algorithm of Dawson and Nielsen
�26� is used to compute the sequence of H, T, and S gates
required to approximate each of the three Rz gates for �

= 2m�
k . We define SR as the length of the longest of these three

sequences. For M =30, for example, we find that SR=4
�105, requiring a sixth-order Solovay-Kitaev approximation
�26�. The results of this calculation show that the Solovay-

Qm

Uzz(2θ)

repeat k times

Ux(θ) Uzz(2θ)

N

Uzz(2θ)

Uzz(2θ)

Uzz(2θ)

Uzz(2θ)

Ux(θ)

Ux(θ)

Ux(θ)

Ux(θ)

Ux(θ)

Ux(θ)

Ux(θ)

U(2mτ) Ux(θ)

Ux(θ)

Ux(θ)

Ux(θ)

Ux(θ)

Ux(θ)

FIG. 2. Circuit for the controlled unitary operation U�2m��
approximated using the Trotter formula.
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Kitaev error sk	
T

k , in order that the total error, T, is less
than the required precision �1 /2M−m�, when we approximate
U�2m��. As a result SR scales as O�log3.97�k /T��=O�M3.97�.

We now have a complete decomposition of the
controlled-U�2m�� into the basic gates given in Eq. �4�. As a
function of SR, the number of time steps required to imple-
ment controlled-Ux��� and Uzz��� is equal to �3SR+4� and
�6SR+7�, respectively. Following Eq. �8�, the number of time
steps required to implement the entire controlled-U�2m�� is
k�9SR+11�+3SR+4, where k=2mk0. Each Rj gate in Fig. 1 is
equivalent to at most a rotation by Rz��� and requires less
than SR gates.

Putting all of the above together, the total number of time
steps �K� required to implement the TIM circuit as a function
of SR, k0, and M is given by

K = �
m=0

M−1

�2mk0�9SR + 11� + 3SR + 4 + SR� = O�2M�SR. �9�

Since SR scales as O�M3.97�, the total number of time steps is
dominated by the exponential dependence on the precision
�M�. The number of qubits Q required to implement the cir-
cuit is 2N, since N qubits are needed for the input register
�
�, one qubit is needed for the output register, and N−1
qubits are needed for the cat state.

In the next section we include fault-tolerant QEC into our
circuit model and determine the resulting resource require-
ments, K and Q. We also provide an estimate on how long it
could take to implement the TIM problem in real time by
taking into account the underlying physical implementation
of each gate and qubit in the context of the QLA architecture.

C. Mapping onto the QLA architecture

Incorporating quantum error correction and fault tolerance
�27–30� into the TIM circuit design will impact the resource

requirements in two ways. First, each of the qubits becomes
a logical qubit, which is encoded into a state using a number
of lower-level qubits. Second, each gate becomes a logical
gate, realized via a circuit composed of lower-level gates
applied on the lower-level qubits that make up a logical qu-
bit. Each lower-level qubit may itself be a logical qubit all
the way down to the physical level. Thus, quantum error
correction and fault tolerance increase the number of physi-
cal time steps and qubits required to implement each basic
gate and may even require additional logical qubits, depend-
ing on how each gate is implemented fault tolerantly and the
choice of error correcting code. The resource requirements
necessary to implement encoded logical qubits and gates will
depend on the performance parameters of the underlying
physical technology, the type of error correcting code used,
and the level of reliability required per logical operation. The
physical technology performance parameters that are taken
into account in the design of the QLA architecture are the
physical gate implementation reliability, time to execute a
physical gate, and the time it takes for the state of the physi-
cal qubits to decohere.

The QLA architecture �12� is a tile-based homogeneous
quantum computer architecture based on ion-trap technology,
employing 2D surface electrode trap structures �31–33�.
Each tile represents a single computational unit capable of
storing two logical qubits and executing fault tolerantly any
logical gate from the basic gate set given in Eq. �4�. One of
the key features of the QLA architecture is the teleportation-
based logical interconnect which enables logical qubit ex-
change between any two computational tiles. The intercon-
nect uses the entanglement-swapping protocol �34� to enable
logical qubit communication without adding any overhead to
the number of time required to implement a quantum circuit
�12�.

The QLA was originally designed to factor 1024 bit inte-
gers �12�. This requirement resulted in the need to employ

N-1Qm
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Ux(θ)
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Rz(θ)
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R�z(θ/2)

Rz(θ/4)

Rz(θ/4)

Rz(θ/4)

H

H

H

CAT
Undo

CAT
Undo

FIG. 3. The decomposition of the controlled unitary operation Ux��� into single-qubit Rz gates and CNOT gates.
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FIG. 4. The decomposition of the controlled unitary operation Uzz�2�� gate into single-qubit Rz gates and CNOT gates.
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the second-order concatenated Steane �7,1 ,3� quantum error
correcting code �35�. Second-order concatenation means that
each logical qubit is a level 2 qubit, composed of seven level
1 logical qubits each encoded into the state of seven physical
ion-trap qubits.

To estimate the reliability for executing each of the basic
gates fault tolerantly, a lower bound of 3.1�10−6 for the
fault-tolerant threshold of the �7,1 ,3� code. This value was
derived by Metodi et al. �36�, by analysis of the ion-trap-
based geometrical layout of each logical qubit tile. The
�7,1 ,3� code threshold value used in the current research
differs from the previously published estimate of 1.8�10−5

�37� due to our more detailed account of the operations spe-
cific to the ion-trap technology in the implementation of each
logical qubit �36�. These threshold results are combined with
Gottesman’s method for including qubit movement �38� to
estimate the reliability for each logical operation at levels 1
and 2.

Since each qubit in the �7,1 ,3� code moves an average of
ten steps during error correction �36�, we find that each level
1 gate has a failure probability of 3.2�10−10 and each level
2 gate has a failure probability of 3.5�10−14. In our failure
probability estimates, we have assumed optimistic physical
ion-trap gate error probabilities of 10−7 per physical opera-
tion, consistent with recent ion-trap literature �39�. We also
determine the physical resources required for each logical
qubit. Each level 1 qubit requires 21 ion-trap qubits �7 data
qubits and 14 ancilla to facilitate error correction� and each
level 2 qubit requires 21 level 1 qubits. Given that the dura-
tion of each physical operation on an ion-trap device is cur-
rently of the order of 10 �s �40,41�, the time required to
complete a single error correction step is approximately 1.6
ms at level 1 and 0.26 s at level 2.

The number of logical qubits Q directly maps to the num-
ber of computational tiles required by the QLA, allowing us
to estimate the size of the physical system. Similarly, the
number of time steps K maps directly to the time required to
implement the application since the duration of a single time
step in the QLA architecture is defined as the time required
to perform error correction, as discussed in Ref. �12�. We
define an aggregated metric KQ called the problem size
equal to K�Q, which is an upper bound on the total number
of logical gates executed during the computation �42�. The
inverse of the problem size, 1 /KQ, is the maximum failure
probability allowed in the execution of a logical gate �42�,
which ensures that the algorithm completes execution at least
36% of the time. Taking into consideration the failure prob-
abilities per logical gate, the maximum problem size KQ
which can be implemented in the QLA architecture is 3.1
�109 at level 1 error correction, 3�1013 at level 2, and
2.8�1020 at level 3. Level 3 error correction is not described
in the design of the QLA architecture; however, its imple-
mentation is possible since a level 3 qubit is simply a collec-
tion of level 2 qubits and the architecture design does not
change. The estimated failure probability for each level 3
logical gate is 3.6�10−21.

The parameters K and Q for the TIM problem were esti-
mated in Sec. III B, where Q was found to be 2N and K is
O�2M��SR. The fault-tolerant implementation of the T gate,
however, requires an auxiliary logical qubit prepared into the

state T�+� for one time step followed by four time steps com-
posed of H, CNOT, S, and Measure gates �43�, causing the
value of K and Q to increase. Since many of the gates in the
Solovay-Kitaev sequences approximating the Rz gates are T
gates, when calculating K using Eq. �9�, the value of SR must
take into consideration the increased number of cycles for
each T gate. All other basic gates are implemented transver-
sally and require only one time step.

The resulting functional layout for the QLA architecture
for the TIM problem is shown in Fig. 5. The architecture
consists of 4N logical qubit tiles. The tiles labeled with Q1
through QN are the data tiles which hold the logical qubits
used in the N-qubit input register �
� and the “OUT” tile is
for the output register. The tiles labeled with C1 through
CN−1 are the N−1 qubit tiles for the cat state. The T�+� tiles
are for the preparation of the auxiliary states in the event that
T gates are applied on any of the data qubits. All tiles are
specifically arranged as shown in Fig. 5 in order to minimize
the communication required for each logical CNOT gate be-
tween the control and target qubits. For example, when pre-
paring the cat state using all Ci tiles and the OUT tile, CNOT

gates are required only between the OUT tile, C1, and Cr.
Similarly, C1 interacts via a CNOT gate only with C2, while
C2 interacts only with Q3, during the cat state preparation.

D. Resource estimates for the 1D TIM problem

The resource requirements for implementing the 1D TIM
problem using the QLA architecture are given in Fig. 6,
where we show a logarithmic plot of the number of time
steps K �calculated using Eq. �9�� as a function of the energy
precision M �20, assuming N=100. The figure clearly
shows K’s exponential dependence on M. The dependence of
K on the number of spins �N� is negligible and appears only
in the k0 term in Eq. �9� as O�1 /N�, as discussed in Sec.
III B. In fact, since Q=4N, we expect very little increase in
the value of the total problem size KQ as N increases.

We see that for M �8 no error correction is required. This
is because the required reliability per gate of 1 /KQ is still
below the physical ion-trap gate reliability of 1�10−7. With-
out error correction, the architecture is composed entirely of
physical qubits and all gates are physical gates. This means
that each single-qubit Rz gate can be implemented directly
without the need to approximate it using the Solovay-Kitaev
theorem, resulting in SR=1 in Eq. �9�, and the total number
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FIG. 5. QLA architecture for the TIM problem.
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of qubits becomes 2N instead of 4N. For M �9 error correc-
tion is required, resulting in a sudden jump in the number of
time steps at M =9, with an additional scaling factor of
O�M4� in K due to SR’s dependence on M. In fact, K in-
creases so quickly that at M =9 that level 2 error correction is
required instead of level 1. At M �18 level 3 error correction
is required and while there is no increase in K, each time step
is much longer, so there is a jump in the number of days of
computation. The Solovay-Kitaev order �26� for M =9 is
three and increases to order five for M =20.

E. Discussion of the resource estimates

Our resource estimates for the 1D TIM problem indicate
that multiple levels of error correction, even for modest pre-
cision requirements, result in long computational times. As
shown in Fig. 6, it takes longer than 100 days for M �10
with level 2 error correction. When level 3 error correction is
required the estimated time is greater than 7.5�103 years.

The number of logical cycles K, which grows exponen-
tially with M, contributes to the long computational times.
However, the primary factor contributing to the long compu-
tational time is the time it takes to implement a single logical
gate using error correction. Presently, it is difficult to see
how one might reduce the value of K short of implementing
a different approach for solving quantum simulation prob-
lems. On the other hand, the logical gate time can be im-
proved by implementing small changes in three parameters:
decreasing the physical gate time tp, increasing the threshold
failure probability pth, and decreasing the underlying physi-
cal failure probability p0.

The effect of these three parameters on the overall com-
putational time for the 1D TIM problem is shown in Fig. 7.
The figure shows how the total time, in days, for M =18
varies as we improve each of the three parameters by a factor
of 2 during each of the ten iterations shown. The starting
values for each parameter in the figure are 3.1�10−6 for pth,
10−7 for p0, and 10 �s for tp. Decreasing the physical failure
probability and increasing the threshold values by a factor of
2 during each iteration cause the number of days to decrease
quadratically whenever lower error correction level is re-

quired, otherwise the number of days remains constant from
one iteration to the next. A single change in the error correc-
tion level from level 3 to level 2 occurs by increasing pth by
a factor of 2 but there is no gain from additional increases in
the threshold alone. Decreasing only p0 by a factor of 512
yields a reduction of two levels of error correction.

From this analysis, we see that in order to reach a com-
putational time on the order of 100 days with only level 1
error correction, we need to achieve parameter values of
pth=1�10−4, p0=3�10−9, and tp=300 ns or better. This
provides goals for the improvement in the device technolo-
gies necessary for quantum simulation. It should also be
noted that these parameters are not completely independent
and improvements in one of them may result in improve-
ments in the others. For example, improving the physical
failure probability may lead to better threshold failure prob-
ability by allowing some of the underlying operations to be
weighted against one another. Similarly, improving the
threshold failure probability may require choosing a more
efficient quantum error correcting code which could have a
fundamentally shorter logical time step.

IV. GENERALIZING TO HIGHER SPATIAL DIMENSIONS

The ground-state energy of the 1D TIM can be efficiently
computed using classical computing resources by taking ad-
vantage of the linear geometry of the spin configuration and
significantly reducing the effective state space to a polyno-
mial in N �10�. A 2D TIM with ferromagnetic and antiferro-
magnetic Ising couplings can be difficult to solve due to spin
frustration. Many reductions to this problem still yield an
exponential number of states with near degenerate energy
�16�. As a result, the problem size scales exponentially with
the size of the lattice. In contrast, the implementation of the
quantum phase estimation circuit in Fig. 1 is independent of
the values of �i and Jij and is weakly dependent on the
geometry of the N spin system. This suggests that, given an
approximation of the ground state, the ground-state energy of
the TIM can be calculated for systems with random cou-
plings �44� or higher dimensions with similar computational
resources. Consider, for example, the calculation of the
ground-state energy for the 2D Villain’s model �45� using the
phase estimation circuit.
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Villain’s model is a 2D square lattice Ising model with N2

spin sites in which the rows have all ferromagnetic coupling
and the columns alternate between ferromagnetic and antifer-
romagnetic. Each of the N2 sites in Villain’s model is repre-
sented by N2 qubits in a N�N grid. The only change to the
circuit for the phase estimation algorithm is the application
of the Uzz Ising interaction, which must be decomposed into
two successive steps. First the rows of spin states are treated
as the 1D TIM problem in parallel, followed by the columns.
Since the Uzz operations within each step are done in paral-
lel, we still require N /2 additional qubits for the cat states.
Given that the remaining operations, including the quantum
Fourier transform implementation, remain the same, the in-
crease in the number of time steps to implement an N2-spin
2D TIM problem, compared to the 1D TIM problem, is by
less than a factor of 2. Similarly, the increase in the resource
requirements between a 1D and a three-dimensional TIM
problem will be by less than a factor of 3.

V. COMPARISON WITH FACTORING

Since the QLA architecture was initially evaluated in the
context of Shor’s quantum factoring algorithm �13�, it would
be interesting to consider how the resource requirements for
implementing the TIM problem compare to those for imple-
menting the factoring algorithm. In this section, we compare
the implementation of the two applications on the QLA ar-
chitecture and highlight some important differences between
each application.

Even though both applications employ the phase estima-
tion algorithm, there are several important differences. First,
the precision requirements are different. For Shor’s quantum
factoring algorithm, the precision M must scale linearly with
the size N of the N-bit number being factored �13�, where
N�1024 for modern cryptosystems. For quantum simula-
tions, the desired precision is independent of the system size
N, and the required M is small compared to factoring. The
second difference lies in the implementation cost of the re-
peated powers of the controlled-U��� gates for each applica-
tion. In Shor’s algorithm, the gate is defined as U����x�
= �ax mod N�. Higher-order powers of the unitary can be gen-
erated efficiently via modular exponentiation �13�. The result
is that the implementation of U�2m�� requires 2m times the
number of gates used for U���. For generic quantum simula-
tion problems, the implementation cost of U�2m�� equals 2m

times the cost of U��� because of the Trotter parameter k.
The implementation of the control unitary gates for quantum
simulation is not as efficient as that for the modular expo-
nentiation unitary gates. The third difference lies in the
preparation of the initial N-qubit state �
�. The preparation
of �
� for the TIM problem by adiabatic evolution is com-
parable in resource requirements to the phase estimation cir-
cuit. For Shor’s quantum factoring algorithm �
�= �1� in the
computational basis and is easily prepared.

Finally, factoring integers large enough to be relevant for
modern cryptanalysis requires several orders of magnitude
more logical qubits than the scale of quantum simulation
problems considered in this paper. At minimum, the factor-
ing of an N-bit number requires 2N+3 qubits using the same

one-control qubit circuit given in Fig. 1 �46�. As shown later
in this section, choosing to use only the minimum number of
qubits required for factoring leads to very high error correc-
tion overhead. A more reasonable implementation of the fac-
toring algorithm requires O�N2� number of logical qubits,
which corresponds to millions of logical qubits for factoring
a 1024 bit number. Quantum simulation problems require
significantly less computational space and the problems con-
sidered in this paper require less than 500 logical qubits.

We examine how these differences affect the relative size
of the QLA architecture required to implement each applica-
tion. In particular, Fig. 8 shows the performance of QLA-
based quantum computers in KQ space with fixed physical
resources. Each horizontal line corresponds to the KQ limit
for a QLA-based architecture modeled for factoring a 1024
bit number �topmost horizontal dashed line�, a 512 bit num-
ber, a 128 bit number, and an 8 bit number, respectively. The
physical resources for each QLA-N quantum computer
�where N= �1024,512,128,8� bits� are determined by how
many logical qubits at level 2 error correction are required to
implement the quantum carry look-ahead adder factoring cir-
cuit �12,47�, which requires O�N2� logical qubits and
O�N log2 N� logical cycles. The plateaus in each QLA-N line
of Fig. 8 represent using all of the qubits at a specific level of
encoding, with the topmost right-hand plateau representing
level 1. Where the lines are sloped, the model that is only a
certain number of the lower-level encoded qubits can be
used. Once this reaches the number of qubits that can be
encoded at the next level, the quantum computer is switched
from encoding level L to L+1 by using all the available level
L qubits.

A QLA-N quantum computer is capable of executing an
application using level L encoded qubits if the application
instance is mapped underneath the line representing the
computer at level L in Fig. 8. Factoring a 1024 bit number,
for example, falls directly on the level 2 portion of the QLA-
1024 line �see the square markers�. Anything above that line
cannot be implemented with the QLA-1024 computer. Simi-
larly, factoring a 128 bit number maps under the QLA-128
line but can be accomplished using level 1 qubits. The TIM
problem is mapped onto Fig. 8 for N=50, 100, 150, and
several binary precision instances: M = �5,10,15,20,25�. As
expected, factoring requires many more logical qubits; how-
ever, both applications require similar levels of error correc-
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tion. A decimal precision of up to four digits of accuracy
�M =15� can be reached by using a quantum computer ca-
pable of factoring an 8 bit number at level 2 error correction;
however higher precision quickly requires level 3 error cor-
rection.

The resources for implementing quantum factoring with
one-control qubit were calculated following the circuit in
Fig. 1, where the unitary gates are replaced with the unitary
gates corresponding to modular exponentiation, as discussed
in Ref. �46�. The results are shown with the diamond-shaped
markers in Fig. 8. While this particular implementation is the
least expensive factoring network in terms of logical qubits,
the high-precision requirement of M =O�N� makes this net-
work very expensive in terms of time steps. In fact, the num-
ber of time steps required pushes the reliability requirements
into level 4 error correction for factoring even modestly
sized numbers.

VI. CONCLUSION

In this paper, the TIM quantum simulation circuit was
decomposed into fault-tolerant operations and we estimated
the circuit resource requirements and number of logical
cycles K as a function of the desired precision M in the
estimate of the ground-state energy. Our resource estimates

were based on the QLA architecture and underlying technol-
ogy parameters of trapped ions allowing us to estimate both
K, as a function of the level of the error correction level, and
the total length of the computation in real time.

Our results indicate that even for small precision require-
ments K is large enough to require error correction. The
growth of K is due to its linear dependence on the Trotter
parameter k, which scales exponentially with the maximum
desired precision M. In order for K to scale polynomially
with the precision, new quantum simulation algorithms are
required or systems must be chosen where the phase estima-
tion algorithm can be implemented without the Trotter for-
mula. The linear dependence of the number of time steps on
k is due to the fact that Ux and the Uzz do not commute.
However, there are some physical systems, whose Hamilto-
nians are composed of commuting terms, such as the non-
transversal classical Ising model, which has a solution to the
partition function in two dimensions but is intractable for
higher dimensions �48�. In those cases, Trotterization is un-
necessary. In a future work, we intend to generalize the cal-
culations of the resource requirements to other physical sys-
tems and consider different ways to implement the phase
estimation algorithm that limit its dependence on the Trotter
formula.
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