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We examine the dynamics of a particle in a general rotating quadratic potential, not necessarily stable or
isotropic, using a general complex mode formalism. The problem is equivalent to that of a charged particle in
a quadratic potential in the presence of a uniform magnetic field. It is shown that the unstable system exhibits
a rich structure, with complex normal modes as well as nonstandard modes of evolution characterized by
equations of motion which cannot be decoupled �nonseparable cases�. It is also shown that in some unstable
cases the dynamics can be stabilized by increasing the magnetic field or tuning the rotational frequency, giving
rise to dynamical stability or instability windows. The evolution in general nondiagonalizable cases is as well
discussed.
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I. INTRODUCTION

Quadratic forms in boson operators or generalized coor-
dinates and momenta are a ubiquitous presence in the theo-
retical description of diverse physical systems. They often
arise through the linearization of the equations of motion
around a stationary point, as in the case of the random-phase
approximation �RPA� �1,2�, providing a basic tractable sce-
nario. They play an important role in the description of Bose-
Einstein condensates �BECs� �3–8� as well as in other areas
such as quantum optics �9�, disordered systems �10�, and
dynamical systems �11–13�. Nonetheless, while positive
forms, characteristic of stable systems, are well known to be
diagonalizable, i.e., they can be written in terms of normal
coordinates and viewed as a set of independent bosons or
separate oscillators �plus eventually free particle terms in the
presence of standard zero-frequency modes �1,2��, nonposi-
tive ones may not admit such a diagonal representation �14�.
Nonpositive forms can arise in the description of BEC insta-
bilities �6–8� and fast rotating condensates �15–20�, as well
as in generalized RPA treatments �21,22�.

In �14� we have extended the standard methodology for
diagonalizing quadratic bosonic forms by using generalized
quasiparticle operators fulfilling bosonlike commutation re-
lations, associated with non-Hermitian coordinates and mo-
menta. This allows one to characterize the operators exhibit-
ing purely exponential evolutions �complex modes� in
nonpositive forms, enabling a precise description of the dy-
namics and quadratic invariants. We have also pointed out
that nonpositive forms can in some cases be dynamically
stable, as the evolution can remain quasiperiodic, irrespec-
tive of the initial conditions. Moreover, we have noticed the
existence of nondiagonalizable cases where the equations of
motion cannot be fully decoupled and which may arise even
if all eigenfrequencies are nonzero. The method of Ref. �14�
has been found useful in the context of BEC, being em-
ployed to study the emergence of instabilities in trapped
BEC with a highly quantized vortex �6–8� through the
Bogoliubov-de Gennes equations.

Here we will apply this methodology to the basic problem
of a particle in a rotating anisotropic quadratic potential, not
necessarily stable. This system is formally equivalent to that

of a charged particle in a uniform magnetic field in a general
quadratic potential �15,16,23�. The problem is therefore rel-
evant for many fields. In particular, the rotating case has
recently become relevant in the context of BEC in rotating
anisotropic traps �15–20�, which in the Landau-level ap-
proach are basically described by a cranked quadratic poten-
tial of the type considered here. The stable system is well
known �1,2,23,24� and diverse aspects of the stable aniso-
tropic rotating case in the context of rotating condensates
have recently been investigated �17–20�.

We will examine here the general unstable case, which is
of interest for fast rotating condensates as the Hamiltonian
ceases to be positive definite at high frequency due to the
centrifugal force. As we shall see, the unstable system exhib-
its a rich structure, with several different dynamical regimes
as well as some quite remarkable features, including �a� the
possibility of becoming nonseparable at the boundaries of
regions with distinct dynamics, in the sense that the Hamil-
tonian can no longer be written as a sum of two independent
standard or complex modes; in such cases the system will
exhibit anomalous evolutions characterized by a set of linear
equations which cannot be decoupled and which may lead to
coordinates and/or momenta evolving with terms �te�t or
even �t3 and �b� the possibility of achieving dynamical sta-
bility in some unstable cases by increasing the magnetic field
or tuning the rotational frequency. In particular, a stable an-
isotropic rotating potential becomes dynamically unstable
just in a finite frequency window, recovering dynamical sta-
bility at high rotational frequency, whereas an unstable
saddle-type potential can become dynamically stable in a
certain frequency window.

In Sec. II we briefly revisit the main features of the for-
malism, discussing the concept of separability in generalized
coordinates and momenta and the evolution for general non-
separable cases. The application is discussed in Sec. III while
conclusions are drawn in Sec. IV.

II. FORMALISM

We consider a general quadratic Hamiltonian,

h =
1

2�
i,j

Tijpipj + Vijqiqj + Uij�qipj + pjqi� , �1a�
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=
1

2
RtHcR, R = �q

p
�, Hc = � V U

Ut T
� , �1b�

where t denotes transpose, T ,V are symmetric matrices, and
p ,q are Hermitian coordinates and momenta satisfying
�pi ,qj�=−i�ij, �qi ,qj�= �pi , pj�=0, i.e.,

RRt − �RRt�t = Mc, Mc = i� 0 1

− 1 0
� . �2�

The ensuing Heisenberg equations of motion lead to a
closed set of linear equations which can be written as

i
dR

dt
= − �h,R� = H̃cR , �3�

H̃c = McH = i� Ut T

− V − U
� , �4�

where H̃c represents the RPA matrix in coordinate represen-
tation �14�. It completely determines the system dynamics.
Its eigenvalues come in pairs of opposite sign and can be

complex in unstable systems. Moreover, H̃c can also be non-
diagonalizable �as in the case of free particles U=V=0, Tij
= ti�ij, although other cases can also arise, as discussed later�.
A positive definite Hc �RtHcR�0 ∀ real R�0� ensures a

diagonalizable H̃c together with a real spectrum �1,2,14�
�standard stable case�, but the converse is not true.

Under a general linear canonical transformation R=UR�,
with the matrix U satisfying UMcUt=Mc in order to pre-

serve Eq. �2�, we have Hc�=UtHcU but H̃c�=McHc�

=U−1H̃cU, ensuring the invariance of the eigenvalues and the

Jordan canonical form of H̃c. Matrices Õ�McO are pre-
cisely those accounting for the closed algebra of the forms
�1�: if Oi=

1
2RtOiR, then

�Oi,Oj� = 1
2RtCR, with C̃ = �Õi,Õ j� . �5�

It is obviously equivalent to using a representation of h in
terms of boson operators bj ,bj

†= �qj � ipj� /	2 satisfying
�bi ,bj

†�=�ij. Defining Z= � b
b† � and the unitary matrix S

= 1
	2

� 1 i
1 −i �, such that Z=SR, we may rewrite h as

h = �
i,j

Aij�bi
†bj +

1

2
�ij� +

1

2
�Bij

+bi
†bj

† + Bij
−bibj�

=
1

2
Z†HZ, H = SHcS

† = � A B+

B− At � ,

A = 1
2 �V + T − i�U − Ut��, B� = 1

2 �V − T � i�U + Ut�� .

�6�

The ensuing RPA matrix, defined by idZ /dt=H̃Z, is just H̃
=SH̃cS† and has obviously the same eigenvalues �and Jor-

dan canonical form� as H̃c.

A. General evolution and dynamical stability

For a time-independent h, the solution of system �3� is

R�t� = exp�− iH̃ct�R , �7�

where R�R�0�. Equation �7� is itself a linear canonical
transformation. A system which is dynamically stable, i.e.,
leading to a bounded quasiperiodic evolution of all operators

pi ,qi, corresponds to a matrix H̃c which �i� is diagonalizable
and �ii� has only real eigenvalues.

�a� If H̃c is diagonalizable, such that H̃c=WH̃c�W−1 with

�H̃c����=�����, we may expand Eq. �7� as

R�t� = �
�

e−i��tW�Z��, �8�

where W� is the �th column of the eigenvector matrix W and
Z�=W−1R is a set of normal operators satisfying

i
dZ��

dt
= ��Z��, �9�

and evolving then as Z���t�=e−i��tZ��. For complex eigenval-
ues ��, these generalized normal operators represent expo-
nentially increasing or decreasing modes �complex modes�
and the dynamics is unbounded ���� are both eigenvalues�.
They can always be ordered and normalized such that those

associated with ��� �b�� and b̄��, with Z�= �b� ,b�̄�t� satisfy

bosonlike commutation relations �14�, i.e., �b�� , b̄�� �=���,

�b�� ,b���= �b̄�� , b̄���=0, but b̄���b��
† if �� is nonreal �14�.

�b� If H̃c is nondiagonalizable, system �3� cannot be fully

decoupled, but we may use its Jordan canonical form H̃c

=WH̃c�W−1, with H̃c� having blocks of the form

H̃c� =

¯

�� 1 0 0

0 �� 1 0

�

��

¯

� .

We may then expand Eq. �7� as

R�t� = �
�

e−i��t�
k=1

d�

W�k�
l=k

d�

Z�l
�

tl−k

�l − k�!
, �10�

where again Z�=W−1R, d� is the dimension of the block and
�k �k=1, . . . ,d�� labels elements within each block, with W�k
as the �k column of the generalized eigenvector matrix W.
The generalized normal operators Z� satisfy the “minimally
coupled” evolution equations allowed by the Jordan form,

i.e., idZ� /dt=H̃c�Z� or

i
dZ�k

�

dt
= ��Z�k

� + �1 − �k,d�
�Z�k+1

� , �11�
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leading to Z�k
� �t�=e−i��t�l=k

d� Z�l
� tl−k

�l−k�! . The dynamics is then un-
bounded even for real ��. The free particle case corresponds
to ��=0 and d�=2. Other cases are discussed in Sec. III.

B. Separability

We will denote Hamiltonian �1� as separable if there is a
linear canonical transformation R=UR� �with UMcUt=Mc�
such that Hc�=UtHcU is diagonal. In this case we may then
rewrite h as a sum of independent elementary quadratic sys-
tems,

h =
1

2�
�

���p��
2 + 	�q��

2� , �12�

where �q�� , p�� �= i���, �q�� ,q�� �= �p�� , p�� �=0. The diagonal
form �12� is not unique, as p�� ,q�� can be rescaled ��p�� ,q���
→ ��p�� ,q�� /��� or swapped ��p�� ,q���→ �q�� ,−p����, but the

products ��	�=��
2 determine the eigenvalues of H̃c and are

hence unique.
In contrast with the conventional normal-mode expansion

of a positive definite h, each of the terms in Eq. �12� can here
represent not only �i� a standard stable oscillator ���

�0, 	��0�, but also �ii� an “inverted” oscillator ���


0, 	�
0�, �iii� a generalized free particle ���	�=0, with
���0 or 	��0, which can be standard or inverted�, �iv� an
“unstable oscillator” ���	�
0�, and �v� a “complex oscilla-
tor” ���	� complex�, where p�� ,q�� are no longer Hermitian
�U complex�. We should also add the vanishing case �0� ��

=	�=0, where both p�� and q�� commute with h. Separability
in Hermitian coordinates and momenta �U real� is a restricted
class of separability �14�, since the eigenvalues �	��	� of

H̃c are in such a case real or imaginary, while diagonalizable
cases with full complex �� do exist �14�.

A diagonalizable H̃c ensures separability since in this case
we may rewrite h in terms of the generalized normal opera-

tors Z�= �b� , b̄��t of Eq. �9� as �14�

h = �
�

���b̄��b�� +
1

2
� =

1

2�
�

���p��
2 + q��

2� , �13�

where q��= �b��+ b̄��� /	2, p��= �b��− b̄��� / �	2i�, i.e., U=WS. For

complex ��, b̄���b��
† and p�� ,q�� are non-Hermitian. In case

�iv� we may still rewrite the ensuing term in Eq. �13� in
terms of Hermitian q�� , p�� by a complex rescaling �p�� ,q���
→ �p�� /	i ,	iq��� �14�, while in �ii� we should choose ��
0
for p�� ,q�� Hermitian. Conversely, for ��	��0 or ��=	�=0,
each term in Eq. �12� leads to a diagonalizable 2�2 block in

H̃c�. However, the separable case also includes the free par-

ticle case �iii� where H̃c is nondiagonalizable, as H̃c� will

contain a Jordan block H̃0�= � 0 1
0 0 � with ��=0. Here H̃c

2 re-
mains diagonalizable.

Hence, systems where H̃c
2 is nondiagonalizable, implying

H̃c� having a Jordan block of dimension d��2 or d�=2 and
���0, are nonseparable. They may arise even in simple
unstable cases �Sec. III� and their evolution can be deter-
mined through the general solution �10�.

Dynamically stable quadratic systems correspond to a
separable h with terms just of the form �i�, �ii�, or �0�, and
have then a discrete spectrum

E�n� = �
�

���n� +
1

2
� , �14�

where ���0, 
0, or 0 in case �i�, �ii�, or �0�. An example of
a nonpositive dynamically stable form is an angular momen-
tum component l=q+p−−q−p+= 1

2 �p+�
2+q+�

2�− 1
2 �p−�

2+q−�
2�,

where p�� = p�−q� /2, q�� =q� /2+ p�� , which is the sum of a

positive plus an inverted oscillator. Here L̃c is diagonalizable
with eigenvalues �1, �1.

III. APPLICATION

We will consider the quantum problem of a particle in an
anisotropic quadratic potential, not necessarily stable, rotat-
ing around one of its principal axes �z�. It is formally equiva-
lent to that of a particle of charge e in a uniform magnetic
field H parallel to this axis in a quadratic potential. The
Hamiltonian of the latter reads

H =
�P − eA/c�2

2m
+

1

2
�KxX

2 + KyY
2 + KzZ

2� , �15�

=
1

2
�Px

2 + Py
2

m
+ Kx�X

2 + Ky�Y
2 − Lz� + Hz, �16�

where A= 1
2H�R is the vector potential, =e�H� /mc is the

cyclotron frequency, Lz=XPy −YPx is the angular momentum

component, Hz= 1
2 �

Pz
2

m +KzZ
2�, and

Kx,y� = Kx,y + m2/4.

For →2, Eq. �16� is just the cranked Hamiltonian de-
scribing the intrinsic motion of a particle in a rotating qua-
dratic potential with constants Kx,y� : if H�t�=U�t�H�0�U†�t�,
with U�t�=e−iLzt/�, the Heisenberg equations for rotating op-
erators O�t�=U�t�OU†�t� are those for the t-independent
cranked Hamiltonian H=H�0�−Lz.

Since Hz is fully decoupled from the rest and its treatment
is trivial, it will be omitted in what follows and all consider-
ations will refer to the motion in the xy plane. Defining di-
mensionless operators q=R	m0 /�, p=P /	�m0 satisfy-
ing �q� , p���= i����, where 0 is a reference frequency, we
can rewrite h�Hxy /�0 as

h = 1
2 �px

2 + py
2 + kx�qx

2 + ky�qy
2� − �lz, �17�

= 1
2RtHcR, kx,y� = kx,y + �2, �18�

with k�=K� / �m0
2�, �= / �20�, lz=qxpy −qypx, and Rt

= �qx ,qy , px , py�.
From the form of Eq. �15�, it is apparent that for fixed k�,

the field cannot change the number of positive or negative
eigenvalues of the Hamiltonian matrix Hc �the number of
positive and negative diagonal elements is the same in any
real diagonal representation of a quadratic form�. For m�0,
Hc will then have none, one, or two negative eigenvalues if
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and only if none, one, or both of the constants kx ,ky are,
respectively, negative. The positive definite case corresponds
then to kx�0, ky �0∀�, i.e., k�� ��2 �17,18�, although we
will now see that dynamical stability is not restricted to this
case.

A. Dynamical stability

The RPA matrix H̃c=McH becomes

H̃c = i

0 � 1 0

− � 0 0 1

− kx� 0 0 �

0 − ky� − � 0
� , �19�

and its eigenvalues, which are the system eigenfrequencies
�in units of �0�, are ��+ , ��− with

�� = 	�kx� + ky��/2 + �2 � � , �20�

� = 	�kx� − ky��
2/4 + 2�2�kx� + ky�� . �21�

They satisfy �+
2�−

2 =det�Hc�=kxky. We first note that for

kxky �0 and ��0, H̃c is diagonalizable since it will have
four different eigenvalues. We will then show that, for �

=0, H̃c is nondiagonalizable and, moreover, h is nonsepa-
rable. At fixed k�, �=0 if kx,y 
0 and

��� = �c
� = 1

2 �	− kx � 	− ky� . �22�

It also follows that �� can be both real only if kxky �0. For
a charged particle in a magnetic field, this opens up the pos-
sibility of full dynamical stability around a quadratic maxi-
mum �kx,y 
0� but dismisses it for a saddle point �kxky 
0�.
It is indeed verified that �� are both real for kx,y �0 as well
as for kx,y 
0 and

��� � �c
+. �23�

At fixed k�, the dynamics in the vicinity of a quadratic maxi-
mum can then be stabilized by increasing the field. The be-
havior of �� for increasing ��� at fixed k� is depicted on the
left panels of Fig. 1. As the scaled cyclotron frequency 2���
is increased, at an anisotropic maximum, �� evolve from
imaginary ������c

−� to full complex ��c
−
 ���
�c

+� and fi-
nally to real ������c

+� values, reaching the system dynami-
cal stability for �����c

+, whereas for kxky 
0, �+ is real but
�− is imaginary ∀�.

Stability in rotating potential. At fixed k�� , the previous
picture is seen quite differently and leads to dynamical sta-
bility and instability windows in the anisotropic case kx��ky�
�right panels in Fig. 1�, i.e., when the rotation has a non-
trivial effect. Owing to the centrifugal force, Hc is here posi-
tive definite just for �2
kx,y� . However, �� are real also for
�2�kx,y� �0, implying that motion in a rotating stable poten-
tial becomes dynamically stable at high rotational frequen-
cies and dynamically unstable just in the finite interval

min�kx�,ky�� � �2 � max�kx�,ky�� , �24�

where �− becomes imaginary or 0 �see Sec. III B�. In con-
trast, for a saddle point with kx��0�ky� �or vice versa� the

system becomes dynamically stable in the windows,

kx� 
 �2 �− kx� 
 ky� 
 0� ,

kx� 
 �2 
 �c�
2 �− 3kx� 
 ky� 
 − kx�� , �25�

with �c�=
�kx�−ky��

	−8�kx�+ky��
as the single value of ��� where �=0 at

fixed k�� �requires kx�+ky�
0�. Thus, lz can turn unstable the
dynamics of a stable anisotropic oscillator and stabilize that
around a saddle point within limits �25�. It can never stabi-
lize a quadratic maximum.

In the isotropic case kx�=ky�=k�, �h , lz�=0 and Eq. �20�
leads then to ����= �	k����. The rotation has no effect ex-
cept for the shift ��. The instability window collapses into a
single point �2=k� where the dynamics remains stable �see
below�, since it corresponds to the Landau case kx=ky =0
�23,25�.

B. Separability

Let us now examine the separable representation of Eq.
�17�, feasible for ��0, and the ensuing distinct dynamical
regimes. Defining, as in the stable case �1,2�,

p� = px,y + �qy,x, q� =
qx,y − �py,x

1 + ��
, �26�

where �=
2�−kx�+ky�

4� , �= 2�

kx�+ky�
and �q� , p��= i���, �p� , p��

= �q� ,q��=0 for � ,�=� �with � ,�→0 if �→0 and kx�
�ky��, we may rewrite Eq. �17� for ��0 as a sum of two
independent elementary quadratic forms,

h = 1
2 ��+p+

2 + 	+q+
2� + 1

2 ��−p−
2 + 	−q−

2� , �27�

0

1

2

Λ�
Ω
�

ky �kx�0.5
kx� 0

k'y �k'x�1.5
k'x > 0

0 1

Ω�Ω�

0

1

2

Λ�
Ω
�

ky �kx��0.5
kx� 0

0 1

Ω�Ω�

k'y �k'x��1.5
k'x > 0

FIG. 1. �Color online� The real �solid lines� and imaginary
�dashed lines� parts of eigenfrequencies �20� for selected fixed val-
ues of kx,y �left panels, corresponding to a particle in a magnetic
field� and kx,y� �right panels, corresponding to a particle in a rotating
potential�, in terms of the scaled cyclotron or rotational frequency.
Vertical dotted lines separate dynamically stable and unstable re-
gions. We have set �0=	�kx� �	kx�� in the left �right� panels.
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�� =
2� + kx� − ky� � 4�2

4�
, 	� =

��2� − kx� + ky� � 4�2�
4�2 ,

�28�

with ��	�=��
2 , For real ��0, p� ,q� are Hermitian and

�� is real or imaginary. Equations �27� and �28� are, how-
ever, also applicable for imaginary ��0, where p� ,q� are
non-Hermitian and �� complex. From the previously men-
tioned property of diagonal quadratic forms, it follows that
all four coefficients �� ,	� must be positive for kx,y �0, just
one �two� of them will be negative for kxky 
0 �kx,y 
0 and
� real�, and one of them will vanish for ky =0, kx�0 �or vice
versa� whereas two of them will vanish in the Landau case
kx=ky =0.

Diagonalizable cases. For ��0 and kxky �0, ���0 and

H̃c is diagonalizable. Defining p�� =	�� /��p�, q��
=		� /��q�, we may rewrite Eq. �27� as

h =
1

2 �
�=�

���p��
2 + q��

2� = �
�=�

���b̄��b�� +
1

2
� , �29�

where b��=
q��+ip��

	2
, b̄��=

q��−ip��
	2

are the generalized normal opera-

tors evolving as b���t�=e−i��tb��, b̄���t�=ei��tb̄��, which can be

directly obtained from the eigenvectors of H̃c. At fixed k�,
the diagonalizable sectors are �Fig. 2�

�A� kx,y �0: here ���0, 	��0, with ���0. This is the
positive definite case �case �i� in Sec. II B�.

�B� kx,y 
0, �����c
+: here �+�0, 	+�0; but �−
0, 	−


0, implying �+�0 but �−
0 for p−� ,q−� Hermitian. Equa-
tion �29� becomes a standard plus an inverted oscillator
�cases �i�+ �ii��, remaining dynamically stable.

�C� kx,y 
0, ���
�c
−: here ��	�
0 for �=� and �� are

both imaginary. Both terms in Eq. �27� are unstable oscilla-
tors �case �iv��, leading to p�� ,q�� non-Hermitian.

�D� kxky 
0: here �+�0, 	+�0; but �−	−
0, with �+
real and �− imaginary. Equation �12� becomes a stable plus
an unstable oscillator �cases �i�+ �iv��, with p−� ,q−� non-
Hermitian.

In all previous cases p� ,q� in Eq. �27� are Hermitian.
�E� kx,y 
0, �c

−
 ���
�c
+: here ��, 	�, and �� are full

complex and p� ,q� as well as p�� ,q�� are non-Hermitian
�case �v��. They represent complex normal modes.

�F� kx=ky =0 �Landau case�: here �+=1, 	+=4�2 whereas
�−=	−=0, leading to �+=2��� and �−=0. h is then a stan-
dard plus a vanishing oscillator �cases �i�+ �0��. This well-
known case �23,25� is then dynamically stable in the xy
plane despite the vanishing eigenfrequency.

In cases �A�, �B�, and �F�, p�� ,q�� are Hermitian, with b̄��
=b��

†, and h possesses then a discrete spectrum,

En+,n−
= �+n+ + �−n− + 1

2 ��+ + �−� , �30�

with �+�0, while �−�0 in case �A�, �−
0 in case �B�, and
�−=0 in case �F�. These are the dynamically stable cases.

At fixed k�� �rotating potential� all regions are just shifted
by +�2 �lower panel in Fig. 2�. This shift leads to the differ-
ent behavior of �� with � depicted in Fig. 1.

Separable non-diagonalizable cases. They arise for ky

=0 and kx�0 or vice versa �sectors g, h, and i in Fig. 2�. For
ky =0, �=2�2+kx /2 and we obtain �−=0 but �+=	4�2+kx
�0 for ��0, with

h =
1

2
�p+

2 + �+
2q+

2� +
1

2

kx

�+
2 p−

2 . �31�

In g, kx�0 and Eq. �31� corresponds to a stable oscillator
��+�0� plus a free particle �cases �i�+ �iii��. In h, −4�2


kx
0 and �+ is still real, but the second term in Eq. �31�
becomes negative: h becomes a stable oscillator plus an in-
verted free particle term. The latter “absorbs” here the insta-
bility, allowing dynamical stability in the coordinates p+ ,q+.
Finally, in sector i �kx
−4�2� �+ becomes imaginary: Eq.
�31� corresponds here to an unstable oscillator plus a stan-
dard free particle �cases �iv�+ �iii��.

Equation �31� leads to an evolution b̄+��t�=ei�+tb̄+�, b+��t�
=e−i�+tb+�, p−�t�= p−, and q−�t�= �kx /�+

2�p− t+q−, which is

�8 �4 0 4 8

kx �Ω2

�8

�4

0

4

8

k y
�Ω

2
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DE

F
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i

i

jk

k

L

L

�8 �4 0 4 8

k'x �Ω2
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8

k'
y
�Ω
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h

i

i

jk

k

L

L

FIG. 2. �Color online� Top: regions in the kx,y plane at fixed �
with distinct dynamical regimes: A is the positive definite sector, F
is the Landau point, B is the nonpositive dynamically stable sector,
C and D are unstable regions with four and two imaginary eigen-
frequencies, E is that with full complex eigenfrequencies, while the
solid lines j,k depict the nonseparability curve �=0, with degener-
ate real �j� or imaginary �k� eigenfrequencies �see text�. The points
L �kx=0, ky =−4�2 or vice versa� are the exceptional nonseparable
cases with a single vanishing eigenfrequency. Dashed lines indicate
separable cases with a free particle term �standard in g,i and in-
verted in h� and a stable �g,h� or an unstable �i� oscillator. Bottom:
same details in the kx,y� plane, corresponding to the rotating system;
all regions and curves are just shifted by �2. Plots in Fig. 1 depict
the behavior of �� along straight lines running from � ��=0� to the
origin ����→��.
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characteristic of a nondiagonalizable H̃c with a canonical
form �A�B denotes A=W−1BW�

H̃c �

�+ 0 0 0

0 − �+ 0 0

0 0 0 1

0 0 0 0
� . �32�

C. Nonseparability

We now examine the very peculiar case �=0 and ��0,
where the eigenfrequencies become degenerate, ��

=	�3kx�+ky���3ky�+kx��
8�kx�+ky��

=�, and both H̃c and H̃c
2 are nondiagonaliz-

able. It occurs at the threshold for full complex solutions,
i.e., ���=�c

� ��c�� at fixed k� �k�� � and corresponds at fixed �
to a parabola rotated � /4 with respect to the kx,y axes, with
vertex at kx,y =−�2, i.e., kx,y� =0 �curves j and k and point L in
Fig. 2�.

�j� Here ���=�c
+ and �=	4kxky =	�c

+2−�c
−2�0. H̃c can be

reduced to two nontrivial Jordan blocks,

H̃c �

� 1 0 0

0 � 0 0

0 0 − � 1

0 0 0 − �
� , �33�

which indicates nonseparability. The transformation

p� =
	�c

+

	4 − kx,y

�px,y + �c
−qy,x� , �34�

q� =
	4 − kx,y

	�c
+

�c
+2 + �2

2�2 �qx,y +
�c

−

�c
+2 + �2 py,x� �35�

allows one to express h in this case as

h = 1
2 �p+

2 + p−
2� − ��q+p− − q−p+� , �36�

which is the cranked Hamiltonian for a rotating free particle
and is a basic nonseparable form: the equations of motion
dp� /dt= ��p�, dq� /dt= ��q�+ p� cannot be fully decou-
pled even though there is no vanishing eigenfrequency. More

explicitly, defining the operators b�� =
�p++ip−

	2
, b̄�� =

�iq++q−
	2

sat-

isfying �b�� , b̄�� �=���, �b̄�� , b̄�� �= �b�� ,b�� �=0, we can rewrite
Eq. �36� as

h = ��b̄+�b+� − b̄−�b−�� − b+�b−� . �37�

The ensuing equations of motion, i
db��
dt = ��b�� , i

db̄��
dt

= ��b̄�� +b�� , correspond exactly to the Jordan form �33� and
possess the general solution

b�� �t� = e�i�tb�� , b̄�� �t� = e�i�t�b̄�� − itb�� � ,

which gives rise to unbounded spiral-like trajectories in the
variables p� ,q�. This is apparent from Eq. �36�: since
�l ,h�=0, where l=q+p−−q−p+, the evolution operator e−iht

=ei�lte−i�h+�l�t represents a rotation of frequency � applied to
a free motion. Such motion cannot arise from a separable h.
Although h is the sum of two commuting quadratic forms
and the equations of motion can be reduced to two separate
blocks, the operators in each block do not commute with
those of the other.

�k� Here ���=�c
− and �= i	4kxky =	�c

−2−�c
+2�0 is imagi-

nary. This case arises for kx�ky and leads to the same ca-
nonical form �33�. Replacing �c

+↔�c
− in Eqs. �34� and �35�

leads here to

h = 1
2 �p+

2 − p−
2� − ����q+p− + q−p+� , �38�

where p� ,q� are Hermitian. With a complex scaling p−
→ ip−, q−→−iq− Eq. �38� becomes identical to Eq. �36� with
an imaginary �. The remaining equations remain then un-
changed but lead to exponentially increasing or decreasing

evolutions for the operators b�� , b̄�� , corresponding to a
“boost” e−���lt applied to a free motion.

�L� This is an exceptional critical point where cases �B�,
�C�, �D�, �E�, �h�, �i�, �j�, and �k� merge. Here ky =0, kx
=−4�2 �i.e., ky�=�2, kx�=−3�2� or vice versa, implying ���
=�c

+=�c
− and ��=0: all four eigenvalues of H̃c vanish.

Nonetheless, H̃c is still of rank 3, implying that it becomes
similar to a full Jordan block �d�=4�,

H̃c �

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0
� �39�

instead of two free particle blocks, as would appear from Eq.
�33� for �→0. In this case the equations of motion cannot be
even partially decoupled. The transformation

p� = ���px,y + �qy,x�, q� =
1

4��

�3qx,y − �−1py,x�

�40�

with �+=1, �−=2, allows one to rewrite h at this point as

h = 1
2 p+

2 − �q+p−, �41�

which is again a basic nonseparable form: the ensuing equa-
tions of motion,

dp−

dt =0,
dp+

dt =�p−,
dq+

dt = p+,
dq−

dt =−�q+, exhibit
the structure of the Jordan form �39� for ��0 and lead to a
polynomial evolution of third degree in t for q−,

p−�t� = p−, p+�t� = p+ + �tp−,

q+�t� = q+ + p+t + 1
2�t2p−,

q−�t� = q− − �tq+ − 1
2�t2p+ − 1

6�2t3p−. �42�

Coordinates q+ ,q− experience then a constant and linearly
increasing acceleration, respectively. In terms of the opera-

tors b̄−�=−�p−, b+�= ip+, b̄+�=q+, and b−�= iq− /�, which satisfy

�b�� , b̄�� �=���, �b�� ,b��= �b̄�� , b̄���=0, we may also express Eq.
�41� as
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h = b̄+�b̄−� − 1
2b+�

2. �43�

Their equations of motion, db̄−� /dt=0, idb+� /dt= b̄−�, idb̄+� /dt

=b+�, idb−� /dt= b̄+�, follow exactly the Jordan form �39�. Note
that the disappearance of one of the kinetic terms in Eq. �41�
is not exceptional for a nonseparable form: Eq. �36� �and
hence Eq. �38�� can also be rewritten as p+

2 −�l if q�→q�

+ 1
2� p�. We may also rewrite Eq. �41� with two kinetic terms

with a similar transformation.
Equation �39� suggests that this case could be considered

as a “free inseparable pair,” generalizing the free particle

case where H̃c�� 0 1
0 0 �. For a free particle H̃c

2=0 while here

H̃c
4=0.

IV. CONCLUSIONS

We have first analyzed, within the formalism of Ref. �14�,
the dynamics in general unstable quadratic bosonic forms,
discussing the treatment of the general nondiagonalizable
case and determining the conditions for dynamical stability
and separability. We have then applied the formalism to the
basic problem of a particle in a general rotating quadratic
potential, relevant in the context of fast rotating condensates
in harmonic traps and formally equivalent to that of a
charged particle in a uniform magnetic field in a quadratic
potential. The present analysis unveils the rich variety of
behaviors that can be exhibited by the unstable system, sum-

marized in Fig. 2, together with some quite remarkable fea-
tures, which could lead to observable effects in fast rotating
condensates. In particular, we have determined �a� the re-
gions of dynamical stability; intrinsic motion in a rotating
stable potential remains dynamically stable at high frequen-
cies, becoming unstable just in a finite frequency window in
the anisotropic case, whereas in a rotating saddle potential it
can become dynamically stable in a certain window �Eqs.
�24� and �25� and Fig. 1�; �b� the regions in parameter space
where Hxy can be written as a sum of two independent qua-
dratic systems �separability�, employing non-Hermitian nor-
mal coordinates and momenta if necessary �sector E�, and
those where such a representation is not feasible �nonsepara-
bility�; �c� the explicit transformations and final forms for all
cases, including the energy spectrum in the dynamically
stable cases and the minimally coupled standard forms and
equations of motion in the nonseparable cases; and �d� the
existence of an exceptional nonseparable zero mode case
�point L in Fig. 2� where all eigenfrequencies vanish and the
Jordan block has a dimension of 4. It is not equivalent to a
standard zero-frequency mode and leads to coordinates
evolving as a third degree polynomial in time. These results
indicate that similar peculiar effects can arise in more com-
plex unstable quadratic systems, which can be analyzed with
the same general formalism and techniques of Sec. II.
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