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This work presents a theory of the frequency-resolved light emission of active two-dimensional dielectric
microresonators, which are characterized by a highly nonparaxial mode structure and frequently feature a
position-dependent dielectric constant and nonuniform gain. The Lorentzian intensity profile is characterized
by an appropriately generalized Petermann factor, a renormalized peak position, and the cold-cavity resonance
lifetime �. The theory also delivers a relation of � to the laser threshold that improves earlier phenomenologi-
cal expressions even for the case of a homogeneous medium.
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Breit-Wigner theory is a cornerstone of the study of open
quantum systems and finds numerous applications from
atomic and nuclear physics to mesoscopic transport and op-
tical or acoustical resonators. This perturbative theory starts
from the isolated situation and delivers a relation between
the total scattering cross section and the resonance linewidth
��. Because of its perturbative nature, Breit-Wigner theory
breaks down for moderately open systems. A context which
is particularly suited to explore the ensuing new physics are
lasers, which are known to emit light around a sharply de-
fined frequency �̄ with a Lorentzian intensity profile,

I��� =
1

2�

I��

�� − �̄�2 + ��2/4
. �1�

Here I=�d�I��� is the total output intensity. The linewidth
is ultimately limited by the spontaneous emission of photons.
For almost lossless resonators, the Schawlow-Townes for-
mula relates the quantum-limited linewidth ��ST=�2 /2I to
the total output intensity I and the cold-cavity decay rate �
�1�. This prediction is based on Breit-Wigner theory and
amounts to one spontaneously emitted noise photon per cav-
ity mode. The explicit factor of 1/2 accounts for the ampli-
tude suppression of field fluctuations due to the active feed-
back of the medium and is absent below the lasing threshold.

That the sensitivity to quantum noise increases for more
open resonators was first realized by Petermann �2�, who
considered gain-guided semiconductor lasers. He predicted
that the linewidth is enhanced by a factor of K�1 such that
��=K�2 /2I �2�. Siegman �3� developed a general frame-
work to study open-sided resonators with a paraxial mode
structure and arrived at the expression

K0 = �� ��0�2dr

� �0
2dr �

2

, �2�

which relates the Petermann factor to the inverse condition
number of the transverse resonance wave function �0. This
establishes a direct connection to a mathematical measure of
mode nonorthogonality �3�. Several groups demonstrated the
excess noise in experiments on various open-sided resonator
geometries with different cross section �4–7�.

The past decade has seen the development of a new class
of microlasers in which the confinement is due to internal
reflection at dielectric interfaces �8–15�. The typical feature
size s is often not much larger than the optical wavelength �.
Due to their shape, these resonators support effectively two-
dimensional, highly nonuniform, anisotropic modes which
are of a decisively nonparaxial character. These systems are
currently under intense experimental and theoretical investi-
gations. Until very recently, however, the consequence of
mode nonorthogonality has been ignored. Models based on
random-matrix theory �16–19� only partially account for the
structured wave patterns of typical microresonators. The first
steps into this direction have been taken in recent numerical
investigations of stadium billiards �20� and spirals �21�,
which focus on the case of two cross-talking modes �22� and
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FIG. 1. �Color� Inset: the white circles indicate the dielectric
interfaces of an annular resonator with radii R2=0.6R1 and eccen-
tricity d=0.22R1. The refractive index in the inner disk is n2=3.3,
while in the annular region Re n1 is fixed to 1.8. The color-coded
density plot shows a TM-polarized resonator mode at its threshold,
where n1,0=1.8− i0.029 and �0R1=6.45. Main panel: frequency-
resolved intensity close to the threshold �suitably scaled to be inde-
pendent of the small detuning of Im n1�. The exact numerical result
�solid black curve� is a Lorentzian whose width and height can be
accurately described using the theory developed in this paper �solid
red curve on top of the black curve� �Eq. �3� with parameters de-
termined from Eqs. �4� to �7� �TM polarization��. A discrepancy in
the height is observed when the Petermann factor is determined
from the homogeneous expression K0 �Eq. �2� �dashed blue
curved�� or when it is completely neglected �dotted blue curve,
corresponding to the Schawlow-Townes result�.
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demonstrate that the Petermann factor can be arbitrarily large
even for high-Q modes. Experiments on this subject have
just picked up �23�. Therefore, there is a demand for a sys-
tematic theory of mode nonorthogonality and its conse-
quences for the quantum noise that accounts for the specific
features of dielectric microresonators.

In this Rapid Communication I fill this gap and develop a
theory of the frequency-resolved light emission that applies
to general, nonparaxial modes in such resonators and further-
more admits spatial nonuniformity of the dielectric constant
and the gain �I assume single mode lasing and therefore also
ignore degeneracies of lasing modes�. The result entails that
formally, the concept of the Petermann factor emerges only
in the limit of a small wavelength �or a large resonator�,
� /s�1. In reality, however, the relations given below al-
ready work for relatively small resonators �for illustration see
Fig. 1, which presents results for an annular microresonator
where both the dielectric constant as well as the gain are
nonuniform.� The Lorentzian intensity profile can then be
parametrized by a few characteristic parameters,

I��� =
K

2�

�2 + 4	�c
2

�� − �0 − 	��2 + ��2/4
. �3�

This result contains an appropriately defined Petermann fac-
tor in the form of a generalized condition number,

K = �� ��0�2Im n0
2dr

� �0
2 Im n0

2dr �
2

�TM polarization� , �4a�

K = � � ���0�2Im n0
−2dr

� ���0�2Im n0
−2dr�

2

�TE polarization� , �4b�

where n0 is the complex refractive index at threshold and �0
is the associated resonance wave function. The resonance
frequency at threshold is denoted by �0. Below threshold,
the linewidth is given by

�� = − 2 Im �0

� �0
2n0�n0 − n�dr

� �0
2n0

2dr

�TM� , �5a�

�� = 2 Im
� ���0�2n0

−3�n0 − n�dr

�0� �0
2dr

�TE� , �5b�

where n is the refractive index at the working point.
�Throughout this work the vacuum speed of light c	1;
above threshold, the linewidth is further reduced by a factor
of 1/2 �24�, as in the Schawlow-Townes case.� The theory
also predicts a systematic line shift,

	� = �0 Re
� �0

2n0�n0 − n�dr

� �0
2n0

2dr

�TM� , �6a�

	� = − Re
� ���0�2n0

−3�n0 − n�dr

�0� �0
2dr

�TE� , �6b�

which is of the same order as the linewidth and generally
only disappears for large resonators filled with a homoge-
neous medium. The cold-cavity characteristics � and 	�c are
obtained from the relation 	�c− i� /2=	
c where

	
c = i

�0� �0
2 Im n0

2dr

2� �0
2n0

2dr

�TM� , �7a�

	
c = − i
� ���0�2Im n0

−2dr

2�0� �0
2dr

�TE� . �7b�

As a notable side product, the latter expressions generalize
and improve the common phenomenological relation Im n0
=−�2� /�0�Re n0 �TM� between the cold-cavity lifetime and
the laser threshold of homogenous systems.

All considerations in this Rapid Communication are based
on the effective-medium approach, where the geometric and
material-specific properties of a dielectric microresonator are
described by a position-dependent refractive index n�r�. Let
us assume n�r�=1 outside the resonator. Inside the resonator
the refractive index can be complex, with Im n�0 in the
amplifying �active� regions of the medium. For an effectively
two-dimensional resonator, the classical electromagnetic
field is represented by a scalar wave function ��r ;�� which
fulfills the Helmholtz equation �25�,

L��r;�� = 0, L = � + �2n2�r� �TM� , �8a�

L = �n−2�r� � + �2 �TE� . �8b�

Consider the case that Re n�r� is fixed while Im n�r� can be
controlled via pumping. At the laser threshold Im n�r�
	 Im n0�r�, Eq. �8� admits a solution �0 satisfying purely
outgoing boundary conditions with real angular frequency
�0. Below the laser threshold, the resonance frequency 

associated to this solution becomes complex, where
−2 Im 
=� is the decay rate. The cold-cavity decay rate � is
obtained for Im n=0 �the complex cold-cavity resonance fre-
quency is denoted by 
c=�c− i� /2�.

Quantum optics adds spontaneously emitted photons to
this picture, which are generated and amplified by the active
medium. Even in absence of external illumination, the reso-
nator then emits photons of frequency �
Re 
. A conve-
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nient quantum-optical framework to study this radiation is
provided by the input-output formalism, which delivers the
output intensity �18,26�,

I��� = �1/2��tr�S†S − 1� , �9�
in terms of the scattering matrix S��� of the classical field
�assuming complete population inversion in the medium�.

For the cold cavity the scattering matrix is unitary, and the
passive resonator does not emit any radiation. For a finite
gain the scattering matrix departs from unitarity because the
particle flux is no longer conserved due to the stimulated
emission of photons in the active medium. Even if the cold-
cavity resonances are strongly overlapping for the cold cav-
ity �as is typical for low-Q modes with � larger than the
mode spacing�, well-resolved resonances appear when one
steers the system close to the laser threshold. Dielectric mi-
croresonator design aims to support high-Q modes, which
can be resolved even deep below threshold �20,23�; in that
case, however, the threshold is reached more quickly than in
the case of low-Q modes. Both cases can therefore be ap-
proached by a systematic expansion around the threshold
condition �27�, which delivers the output intensity

I��� =
1

2�� � ��0�2Im n0
2dr

� �0
2n0

2��/�0 + n/n0 − 2�dr�
2

�TM� , �10a�

I��� =
1

2�� � ���0�2Im n0
−2dr

�0�� − �0�� �0
2dr +� ���0�2n − n0

n0
3 dr�

2

�TE� .

�10b�

This expression formally diverges at the complex fre-
quency 
=�0+	
 where

	
 = �0

� �0
2n0�n0 − n�dr

� �0
2n0

2dr

�TM� , �11a�

	
 = −
� ���0�2n0

−3�n0 − n�dr

�0� �0
2dr

�TE� . �11b�

The output intensity is hence a Lorentzian �Eq. �1�� whose
center �̄=Re 
 is displaced from �0 by a systematic line
shift 	�=Re 	
 �see Eq. �6��, which is generally of the
same order as the width ��=−2 Im 	
 of the Lorentzian
�see Eq. �5��. The latter can be related to the total intensity
I=�I���d� via the relation

�� =
1

I ��0� ��0�2Im n0
2dr

� �0
2n0

2dr �
2

�TM� , �12a�

�� =
1

I �� ���0�2Im n0
−2dr

�0� �0
2dr �

2

�TE� . �12b�

This expression contains integrals similar to those in the
expression for K0 �Eq. �2�� but weighted by the refractive
index. Moreover, instead of the transverse mode profile, �0
now represents the resonance wave function in the resonator
plane, which encodes the full nonparaxial mode structure. At
this point, the integral in the denominator is not restricted to
the interior of the resonator, and the result does not feature
the cold-cavity decay rate. For the latter reason Eq. �12� can-
not be used to extract a generalized Petermann factor.

In order to make contact with the conventional theory of
the linewidth we now consider the regime ��s of a large
resonator. Under this condition, typical resonances have a
small cold-cavity decay rate, ���0, and the laser threshold
is attained at a small gain, �Im n0��Re n0. Equation �11�
then applies all the way down to the cold-cavity limit and
can be further recast to deliver the complex cold-cavity reso-
nance frequency 
c=�0+	
c, where 	
c is given by Eq.
�7�. This result is perturbative in the gain but nonperturbative
in the openness of the system, which is encoded in �0, n0,
and �0. Note that in Eq. �7�, the numerator is determined by
the active region, while the denominator also depends on the
passive regions—including the region outside the resonator,
where integrals are well defined because n is real �28�. For
homogeneous systems, the simple relation 
c=�0
+ i�Im n0 /Re n0��0 �TM� is often applied �this also entails
the relation for the laser threshold discussed above�. In com-
parison to Eq. �7�, this simple expression is only valid when
one can ignore to the exterior contribution to the denomina-
tor, which in practice requires a very large system size.

With Eq. �7�, linewidth �12� simplifies to

�� =
�2 + 4	�c

2

I �� ��0�2Im n0
2dr

� �0
2 Im n0

2dr �
2

�TM� , �13a�

�� =
�2 + 4	�c

2

I � � ���0�2Im n0
−2dr

� ���0�2Im n0
−2dr�

2

�TE� ,

�13b�
which features the cold-cavity decay rate �=−2 Im 	
c
along with the cold-cavity line shift 	�c=Re 	
c. �Far
above the laser threshold, the linewidth is again halved be-
cause amplitude fluctuations are suppressed by the nonlinear
feedback with the medium �24��. The Petermann factor,
hence, takes the form of Eq. �4�. For TM polarization, the
conventional form �Eq. �2�� of the Petermann factor is recov-
ered when the active medium fills the resonator homoge-
neously �so that n0 does not depend on position�. This con-
ceptual relation hence applies even when the mode structure
in the resonator plane is strongly nonparaxial. This is also the
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case for a TE polarization or an inhomogeneous medium,
where Eq. �4� relates the excess noise to an appropriately
generalized measure of mode nonorthogonality �satisfying
K→1 in the limit of a closed resonator�. For an inhomoge-
neous medium, Eq. �4� shows that the excess noise is gener-
ated in the active regions �where Im n0�0�.

Model system. In order to assess the predictive power of
the above analysis I turn to the annular microresonator ge-
ometry, defined by two eccentric circular interfaces such as
indicated in the inset of Fig. 1. In order to exploit the full
generality of the formalism presented above, I assume that
the gain is constrained to the annular region between these
interfaces �Im n1	−iñ�, but vanishes in the interior disk
�Im n2=0�, and furthermore set Re n1=1.8 and Re n2=3.3.
The radii of the two circles are related by R2=0.66R1, and
the eccentricity is d=0.22R1. The finite eccentricity breaks
the rotational symmetry and hence leads to nonintegrable
classical ray dynamics. The classical phase space accommo-
dates domains of stability embedded into regions of chaotic
instability and, hence, exhibits the full complexity of generic
dynamical systems. This complexity results in a rich set of
resonance wave functions, including examples with a highly
directional far-field radiation pattern �29,30�.

Numerical techniques make it possible to investigate a
large number of modes, especially in the interesting regime
where �0R1 is moderately large �29�. Here I focus on a rep-
resentative example of a resonator mode with TM polariza-
tion, which reaches its threshold at ñ0=0.029 and �0R1
=6.45. In the main panel of Fig. 1, the solid black curve
shows the intensity profile close to threshold �for a small
detuning of ñ�, which is directly obtained from Eq. �9� via a
numerical computation of the scattering matrix. The curve is
scaled so that it becomes independent of the detuning when
ñ− ñ0 is small. The red curve is obtained from the theory
developed in this work: a Lorentzian of form �3�, where the

parameters are determined by Eqs. �4� to �7� �for TM polar-
ization�. This curve lies on top of the black curve so that the
latter is barely visible. The theory of this Rapid Communi-
cation hence applies even though the resonator is only mod-
erately larger than the wavelength. The other curves illustrate
the necessity to adopt the results developed in this Rapid
Communication. The dashed blue curve is obtained when the
Petermann factor is taken of the homogeneous form K0 �Eq.
�2��, while the dotted blue curve shows the result when mode
nonorthogonality is entirely ignored �as in Breit-Wigner
theory, which delivers the Schawlow-Townes formula� �31�.

For completeness I remark that in the case of a homoge-
neous circular disk resonator �corresponding to R2=0�, Eq.
�2� applies. In polar coordinates, the radial dependence is
given by Bessel functions, while the constraint on time-
reversal symmetry singles out modes with a standing-wave
angular dependence sin�m�−0�� �29�. For TM polariza-
tion and �R�1, Petermann factor �2� then takes the
asymptotic form K=sinh2 x /x2 where x=2 Im�n�R1� and
therefore approaches unity for modes with a large Q factor.

In summary, I have explored the consequences of mode
nonorthogonality in dielectric microresonators for the gen-
eral case of a highly nonparaxial mode structure and nonuni-
form material properties. This theory leads to an appropri-
ately generalized Petermann factor �Eq. �4��. Compact
expressions �3� to �7� can be used to inform the interpretation
of experiments beyond the simple effective phenomenologi-
cal models employed to date. An open question �beyond the
illustrative example of Fig. 1� that can be pursued on basis of
these expressions is how complex quantum dynamics �regu-
lar versus chaotic wave patterns� express themselves in the
mode nonorthogonality.
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